JP3598631B2 - Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same - Google Patents

Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same Download PDF

Info

Publication number
JP3598631B2
JP3598631B2 JP2076396A JP2076396A JP3598631B2 JP 3598631 B2 JP3598631 B2 JP 3598631B2 JP 2076396 A JP2076396 A JP 2076396A JP 2076396 A JP2076396 A JP 2076396A JP 3598631 B2 JP3598631 B2 JP 3598631B2
Authority
JP
Japan
Prior art keywords
noble metal
conductive paste
powder
average
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2076396A
Other languages
Japanese (ja)
Other versions
JPH0969313A (en
Inventor
純一 菊池
章三 山名
圭三 平井
秀次 ▲くわ▼島
和田  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2076396A priority Critical patent/JP3598631B2/en
Publication of JPH0969313A publication Critical patent/JPH0969313A/en
Application granted granted Critical
Publication of JP3598631B2 publication Critical patent/JP3598631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、導電性ペースト、その製造法及び導電性ペーストを用いた電気回路装置、その製造法に関する。
【0002】
【従来の技術】
従来、配線板、電子部品を搭載するための絶縁基材等に配線導体を形成する方法として、金、銀、パラジウム、銅、アルミニウム等の導電性金属粉に、樹脂、ガラスフリット等の結合剤及び溶剤を加えてペースト状にした導電性ペーストを塗布又は印刷して形成する方法が一般的に知られており、スルホール導通用、電極形成用、ジャンパ線用、EMIシールド用等に応用されている。
【0003】
一方、抵抗素子、チップ抵抗、チップコンデンサ等の電子部品を配線導体上に搭載する表面実装法として、はんだ粒子と結合剤からなるはんだペーストを塗布又は印刷し、はんだの融点以上の温度に加熱処理して電子回路装置を得る方法がある。
各種導電性金属粉のうち、金は極めて高価であるため、高い導電性が要求される分野では銀が、それ以外の分野では銅が導電性金属粉として用いられることが多い。
【0004】
しかしながら、銀は金やパラジウムについで高価であり、また水分の存在下で直流電圧が印加されると、電極や配線導体にマイグレーションと称する銀の電析が生じ、電極間又は配線間が短絡するという重大な問題点が生じる。
銀のマイグレーションを防止するため、銀とパラジウムとの合金を導電性金属粉とする導電性材料が市販されているが、やはり極めて高価であるという問題点がある。
【0005】
一方、銅は安価であり、マイグレーションが比較的生じにくいが、導電性ペーストを加熱する際、空気及び結合剤中の酸素により銅粒子表面に酸化膜を形成して導電性を悪化させるという問題点がある。このため、導体の表面に防湿塗料を塗布したり、導電性材料に腐食、酸化防止剤を添加するなどの方策が検討されているが、十分な効果が得られるものではなかった。
【0006】
銅の耐酸化性と銀の耐マイグレーション性を改善するため、銀めっき銅粉を使用する方法が特開昭56−8892号公報に示されるが、この方法では銀粉に比較して導電性が悪く、銀粉の一部を銅粉に置き換えただけにすぎない。また特開平3−247702号公報、特開平4−268381号公報等に提案されているように、銅の表面に銀の粒子をアトマイズ法で作製する方法があるが、この方法では工程が複雑であるためコスト高となり、また得られた粉体は略球形粒子であるため偏平状や樹枝状の粉体に比べて粉体同士の接触面積が小さく、高抵抗になるという問題点がある。
またはんだペーストに関しては、加熱処理温度の低温化と鉛レスという緊急かつ重大な要求があるにもかかわらず、融点や作業性の点で十分な鉛レスはんだはまだ得られてはいない。
【0007】
【発明が解決しようとする課題】
請求項1記載の発明は、高導電性で、導電性と耐マイグレーション性に優れる導電性ペーストを提供するものである。
請求項2記載の発明は、請求項1記載の発明に加えて、特に耐マイグレーション性に優れた導電性ペーストを提供するものである。
請求項3記載の発明は、請求項1記載の発明に加えて、特に導電性と耐マイグレーション性に優れた導電性ペーストを提供するものである。
請求項4記載の発明は、請求項1記載の発明に加えて、特に導電性に優れた導電性ペーストを提供するものである。
請求項5及び6記載の発明は、安価で、かつ高導電性で、耐マイグレーション性に優れる導電性ペーストの製造法を提供するものである。
請求項7記載の発明は、鉛レス、はんだ代替材として電子部品を接着(接続)できる電気回路装置を提供するものである。請求項8記載の発明は、鉛レス、はんだ代替材として電子部品を接着(接続)できる電気回路装置の製造法を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、偏平状非貴金属粉の表面の一部を露出させて全表面積の50%以上が、該偏平状非貴金属粉に対して2〜30重量%の貴金属で被覆され、かつ表面貴金属層と非貴金属層との間に貴金属と非貴金属とが混在する層を介在した導電性金属複合粉及び結合剤を含有してなる導電性ペーストであって、貴金属と非貴金属とが混在する層が、表面貴金属層の厚さの1/2〜1/50である導電性ペーストに関する。
また、本発明は、この導電性ペーストにおいて、導電性金属複合粉における貴金属と非貴金属とが混在する層が、貴金属が80〜20原子数%に対し非貴金属が20〜80原子数%である導電性ペーストに関する。
また、本発明は、この導電性ペーストにおいて、導電性金属複合粉におけ表面貴金属層の厚さが、0.01〜0.2μmである導電性ペーストに関する。
また、本発明は、この導電性ペーストの導電性金属複合粉における長径/厚さが、2〜30である導電性ペーストに関する。
また、本発明は、非貴金属粉の表面の一部を露出させて全表面積の50%以上に、該非貴金属粉に対して2〜30重量%の貴金属を被覆した後、機械的エネルギーを加えて、偏平状への変形及び表面貴金属層と非貴金属層との間に、貴金属と非貴金属とが混在する層の形成を同時に行った後、結合剤を加えて均一に混合することを特徴とする導電性ペーストの製造法に関する。
また、本発明は、非貴金属粉及び貴金属粉の混合粉体に機械的エネルギーを加えて、該混合粉体を偏平状に変形しながら該非貴金属粉の表面の一部を露出させて全表面積の50%以上に、該非貴金属粉に対して2〜30重量%の貴金属を被覆し、かつ表面貴金属層と非貴金属層との間に、貴金属と非貴金属とが混在する層の形成を行った後、結合剤を加えて均一に混合することを特徴とする導電性ペーストの製造法に関する。
また、本発明は、絶縁基材上に上記の導電性ペーストにより配線導体が形成され、その上面に電子部品が搭載された電気回路装置に関する。
さらに、本発明は、絶縁基材上に上記の導電性ペーストを塗布、印刷又はポッティングして配線導体を形成し、次いで配線導体の上面に、電子部品を搭載することを特徴とする電気回路装置の製造法に関する。
【0009】
【発明の実施の形態】
本発明における偏平状とは、球状、塊状等の立体形状のものを一方向に押し潰した形状のものであり、例えば一般的にフレーク状と称するものもこれに含まれる。
【0010】
本発明において用いられる非貴金属粉としては、低価格という観点から、導電性を有する非貴金属で、例えば銅、銅合金、ニッケル等が用いられる。また非貴金属粉の表面に被覆される貴金属は、耐酸化性と高導電性という観点から、金、銀、白金等の貴金属を用いることが好ましい。
【0011】
非貴金属粉への表面に貴金属を被覆する方法については特に制限はなく、めっき法、蒸着法、機械的エネルギーで被覆するメカノフュージョン法等の方法で行うことが好ましい。また、微細、例えば2μm以下の貴金属粉と比較的粒径の大きな、例えば5μm以上の非貴金属粉の混合粉をボールミル、メカニカルアロイング装置等で混合することによっても非貴金属粉への表面に貴金属を被覆することができる。偏平状非貴金属粉が貴金属により被覆される面積(以下、単に被覆面積という)は偏平状非貴金属粉の全表面積に対して50%以上であり、また、この被覆に使用される貴金属の量(以下、単に被覆量という)は、偏平状非貴金属粉に対して2〜30重量%であることが必要である。被覆面積が50%未満又は被覆量が2重量%未満であると、導電性ペーストにして基板などに塗布して加熱処理したとき下地の偏平状非貴金属粉が酸化して導電性が悪くなる。また被覆量が30重量%を超えると耐マイグレーション性が悪くなる。
被覆面積は、次のようにして決定される。すなわち、無作為に導電性金属複合粉の粒子を5個以上取り出し、オージェ分光分析装置で貴金属及び非貴金属を定量分析し、貴金属の占める割合を算出し、その平均値を求め、この平均値を被覆面積とする。
また、非貴金属と貴金属との割合は、例えば導電性金属複合粉を1g取り出し、これを硝酸で溶解し、この溶解液を化学定量分析、原子吸光分析装置等を用いて測定する。
上記の被覆面積は50%以上とされるが、非貴金属粉の粒子に局部電池が形成され貴金属の溶出が抑制できる点で非貴金属粉の表面の一部が露出することが必要とされる。特に貴金属が銀である場合、銅、ニッケル等の非貴金属粉を組み合わせて用いることにより、銀のマイグレーション性が改善され優れた効果を示すので好ましい。また被覆量は7〜25重量%が好ましく、15〜20重量%であればさらに好ましい。
【0012】
本発明でいう貴金属と非貴金属とが混在する層とは、被覆層を形成するのに使用される貴金属と基材層の非貴金属成分の両者が混合された状態にあり、本発明では貴金属と非貴金属が混在する層の厚さが、表面貴金属層の厚さに対して1/2〜1/50の場合に優れた導電性と耐マイグレーション性を示す。貴金属と非貴金属が混在する層の厚さが表面貴金属層の厚さの1/2を超えるか又は1/50未満の場合は導電性が著しく悪化する傾向がある。貴金属と非貴金属が混在する層の厚さは、表面貴金属層の厚さに対して1/2〜1/40であることがより好ましく、1/2〜1/30であることがさらに好ましい。
表面貴金属層の厚さ及び貴金属と非貴金属とが混在する層の厚さは、それぞれ無作為に導電性金属複合粉の粒子を5個以上取り出し、イオンスパッタリングで表面を削っていくと同時に元素定量分析するオージェ分光分析装置などを用いて1個の粒子について3点以上測定し、それぞれの厚さについての平均値を求め、この平均値をそれぞれの厚さと決定する。
【0013】
本発明で用いられる導電性金属複合粉の貴金属と非貴金属とが混在する層は、貴金属80〜20原子数%に対し非貴金属20〜80原子数%を含むものであることが、優れた導電性と耐マイグレーション性を示す点で好ましい。
また、本発明で用いられる導電性金属複合粉は、ペースト化し、さらにスクリーン印刷して使用する場合、表面貴金属層の厚さが、0.01〜0.2μmであることが、導電性と耐マイグレーション性に優れるので好ましい。厚さが0.01μm未満であると導電性が悪くなる傾向があり、厚さが0.2μmを超えると耐マイグレーション性が悪くなる傾向がある。
【0014】
本発明で用いられる導電性金属複合粉において、偏平状非貴金属粉の長径/厚さが、2〜30であることが、優れた導電性と耐酸化性を示す点で好ましく、5〜20であることがより好ましく、7〜15であることがさらに好ましい。偏平状非貴金属粉の長径/厚さが2未満であると粉同士の接触がほとんど点接触となるため高抵抗となる傾向があり、30を超えると貴金属を30重量%被覆しても全表面積の50%以上が被覆されたものを作製することが困難となり、導電性ペーストを基板などに塗布して加熱処理したとき、下地の非貴金属粉が酸化し導電性が悪化する傾向がある。
なお、長径については絶対値で100μm以下が好ましく、50μm以下であることがより好ましく、30μm以下であることがさらに好ましい。導電性金属複合粉の長径/厚さは、走査型電子顕微鏡を用いて導電性金属複合粉のSEM写真をとり、この中から無作為に導電性金属複合粉の粒子を30個以上選び、それの長径/厚さを測定し、その平均値を求め、この平均値を導電性金属複合粉の長径/厚さとする。
【0015】
導電性金属複合粉の製造法について、基材となる非貴金属粉の平均粒径や形状については特に制限はない。また貴金属の被覆方法についても既述したように特に制限はないが、コストと特性のバランスの点から、レーザー法、沈降法等の一般的な粒度分布測定法で求めた平均粒径が1〜30μm以下の銅粉に銀をめっき又は蒸着する方法が好ましい。
【0016】
導電性金属複合粉は、非貴金属粉の表面に貴金属を被覆した後、メカニカルアロイング装置、乾式ボールミリング装置、ロール等による圧縮装置又は高速で固い物質に粉体を吹き付ける装置等を用いて機械的エネルギーを加えるか、非貴金属粉及び貴金属粉の混合粉体に上記に示すような機械的エネルギーを加えることにより製造することができる。
貴金属で表面が被覆された非貴金属粉に機械的エネルギーを加えるか、非貴金属粉及び貴金属粉の混合粉体に上記に示すような機械的エネルギーを加えることにより、貴金属中又は表面貴金属層と非貴金属層との間に存在したボイド(空隙)がなくなり、これによって被覆される貴金属層が緻密化され、その導電性が高められる。また、このとき、表面貴金属層と非貴金属層との間に貴金属と非貴金属とが混在する薄い領域が形成され、これにより表面貴金属層と非貴金属層間の接触抵抗を小さくすることができる。
【0017】
本発明になる導電性ペーストは、導電性金属複合粉に、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂等の有機結合剤又はガラスフリットなどの無機結合剤を加え、さらに必要に応じて、イミダゾール、アミン類等の硬化促進剤及びブチルセロソルブ、テルピネオール、エチレンカルビトール、カルビトールアセテート等の溶剤を加えて、らいかい機、ロール、ニーダ等で均一に混合して得られる。結合剤の含有量は、導電性ペーストに対して5〜30重量%が好ましく、8〜16重量%であればさらに好ましい。硬化促進剤及び溶剤は必要に応じて添加されるが、もし添加する場合その含有量は、それぞれ硬化促進剤は導電性ペーストに対して0.01〜1重量%が好ましく、0.02〜0.05重量%であることがさらに好ましい。また溶剤は導電性ペーストに対して3〜50重量%が好ましく、10〜30重量%であることがさらに好ましい。
【0018】
本発明で用いられる絶縁基材としては、各種基板、各種フィルム等が用いられ、このうち各種基板としては、紙フェノール基板、ガラスエポキシ基板、ホウロウ基板、セラミック基板等が挙げられ、また各種フィルムとしては、ポリエチレン、ポリカーボネート、塩化ビニル、ポリスチレン、ポリエチレンテレフタレート、ポリフェニレンスルフィド、ポリエーテルケトン、ポリエーテルイミド、ポリイミド等フレキシブルな樹脂製のフィルムが挙げられる。また配線導体の上面に搭載される電子部品としては、抵抗素子、チップ抵抗、チップコンデンサ等が挙げられる。
なお本発明においては、上記の絶縁基材の表面やスルホールに、予め、めつき、印刷、蒸着、エッチング等の方法で導体や抵抗の一部を形成したものを用いても差し支えない。
【0019】
本発明になる導電性ペーストは、配線導体の他にスルーホール導通用、電極形成用、ジャンパ線用、EMIシールド用等の形成に用いることができ、また上記の電子部品と絶縁基材を接続する導電性接着剤、鉛レスはんだ代替材としても使用できる。
【0020】
【実施例】
以下本発明の実施例を説明する。
実施例1
平均粒径が5μmの球形銅粉(日本アトマイズ加工(株)製、商品名SF−Cu)を酸性クリーナ(日本マクダーミッド(株)製、商品名L−5B)で脱指、水洗し、水1リットルあたりAgCNを20g及びNaCNを10g含むめっき浴で球形銅粉に対して銀の量が20重量%になるように置換めっきを行い、水洗、乾燥して銀めっき銅粉を得た。
【0021】
次に、この銀めっき銅粉をMA(メカニカルアロイング)装置に投入して以下の条件で変形処理した。本装置はスクリューの回転でボールを運動させる方式であり、ボール及び被処理粉体を投入する容器の有効容積は1.1リットルである。本装置に4kgのジルコニアボール(直径10mm)と200gの銀めっき銅粉を投入し、スクリューの回転数90rpm及び容器内圧力2×10−5torrの条件で2時間回転して導電性金属複合粉(偏平状銀めっき銅粉)を得た。
【0022】
次いで走査型電子顕微鏡を用いて上記で得た導電性金属複合粉のSEM写真をとり、該導電性金属複合粉の粒子を30個選び、長径/厚さを測定したところ2〜15の範囲で平均が6であった。なお長径は、2〜30μmの範囲で平均が15μmであった。
また無作為に導電性金属複合粉の粒子を5個取り出し、走査型オージェ電子分光分析装置で貴金属及び非貴金属を定量分析して銀被覆面積について調べたところ、全表面積に対して45〜85%の範囲で平均が70%であった。
さらに無作為に導電性金属複合粉の粒子を5個取り出し、イオンスパッタリングで表面を削っていくと同時に元素定量分析する走査型オージェ電子分光分析装置で1個の粒子につき3点測定したところ、銀層の厚さは0.02〜0.15μmの範囲で平均が0.045μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層の厚さは0.001〜0.05μmの範囲で平均が0.01μmであり、表面貴金属層の厚さの1/20〜1/2の範囲で平均が1/4.5であった。
以下の実施例及び比較例においても上記と同様の方法で測定した。
【0023】
次に上記の導電性金属複合粉100重量部に対し、ノボラツク型フェノール樹脂(群栄化学工業(株)製、商品名PS−2607)15重量部及び溶剤としてブチルセロソルブ15重量部を加えて均一に混合して導電性ペーストを得た。
【0024】
次いで導電性ペーストを厚さが1.6mmの紙フェノール銅張積層板(日立化成工業(株)製、商品名MCL−437F)の銅箔を除去した積層板の上面に200メッシュのスクリーンを通して幅0.4mm及び長さ100mmのテストパターンを印刷し、大気中で150℃で30分の条件で加熱処理して配線導体を得た。得られた配線導体における導電性ペースト硬化物の比抵抗は平均75μΩCmであり、後述する銀ペーストと比べて遜色のない導電性を示した。
【0025】
一方上記とは別に導電性ペーストをガラス板上に幅2mmの電極を互いに2mm間隔となるように上記と同様の方法で印刷し、大気中で150℃で30分の条件で加熱処理して硬化させて電極を得た。次いで電極間に幅2mmに切断したろ紙を配置し、イオン交換水0.5ccをろ紙上に滴下して電極間に20Vの直流電圧を印加し、経過時間と電極間漏洩電流を測定することによって耐マイグレーション性を評価した。その結果、200μAの漏洩電流が流れるまでに要した時間は平均80分であり、耐マイグレーション性に優れていた。
上記における比抵抗の測定及び耐マイグレーション性の評価については5個の試料の平均値を求めた。以下の実施例及び比較例についても同じである。
【0026】
比較例1
実施例1で得た球形銀めっき銅粉を用い、偏平状への変形を省略した以外は実施例1と同様の工程を経て導電性ペーストを得た。球形銀めっき銅粉の長径/厚さは1、銀被覆面積は全表面積に対して全て95%以上、銀層の厚さは0.1〜0.15μmの範囲で平均が0.12μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層は明確に検知出来なかった。以下実施例1と同様の方法で特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均1200μΩCmと極めて高く、200μAの漏洩電流が流れるまでに要した時間は平均10分と短く、耐マイグレーション性に劣っていた。
【0027】
比較例2
平均粒径が5μmの球形銅粉(日本アトマイズ加工(株)製、商品名SF−Cu)をあらかじめ長径/厚さが6になるように実施例1と同様の方法で変形し、しかる後実施例1と同様のめっき法で20重量%の銀を被覆した。この銀めっき銅粉の銀被覆面積は全表面積に対して全て85%以上、銀層の厚さは0.03〜0.2μmの範囲で平均が0.08μm、貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層は明確に検知出来なかった。以下実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は800μΩCmと高く、200μAの漏洩電流が流れるまでに要した時間は10分と短く、耐マイグレーション性に劣っていた。
【0028】
比較例3
実施例1で用いた導電性金属複合粉に代えて長径/厚さが平均30の銀粉(徳力化学研究所製、商品名TCG−1)を用いた以外は実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均80μΩCmであったが、200μAの漏洩電流が流れるまでに要した時間は平均30秒と極めて短く、耐マイグレーション性に劣っていた。
【0029】
比較例4
市販のEMIシールド用銅ペーストを用いて実施例1と同様の特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均500μΩCmと高く、200μAの漏洩電流が流れるまでに要した時間は平均45分であった。
【0030】
実施例2
平均粒径が6μmの球形銅粉(日本アトマイズ加工(株)製、商品名SF−Cu)に実施例1と同様のめっき法で30重量%の銀を被覆して銀めっき銅粉を得、その後のMA装置での処理時間を1時間とした以外は実施例1と同様の工程を経て導電性金属複合粉を得た。得られた導電性金属複合粉の粒子の長径は3〜15μmの範囲で平均が7μmであり、また長径/厚さは2〜9の範囲で平均が2.5、銀被覆面積は全表面積に対して75〜100%の範囲で平均が95%、銀層の厚さは0.05〜0.2μmの範囲で平均が0.1μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層の厚さは0.001〜0.01μmの範囲で平均が0.006μmであり、表面貴金属層の厚さの1/50〜1/8の範囲で平均が1/16.7であった。以下実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均80μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均40分であった。
【0031】
実施例3
平均粒径が6μmの球形銅粉(日本アトマイズ加工(株)製、商品名SF−Cu)に実施例1と同様のめっき法で10重量%の銀を被覆した以外は実施例1と同様の工程を経て導電性金属複合粉を得た。得られた導電性金属複合粉の粒子の長径は2〜30μmの範囲で平均が15μmであり、また長径/厚さは2〜15の範囲で平均が6、銀被覆面積は全表面積に対して30〜70%の範囲で平均が51%、銀層の厚さは0.01〜0.03μmの範囲で平均が0.02μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層の厚さは0.001〜0.02μmの範囲で平均が0.01μmであり、表面貴金属層の厚さの1/10〜2/3の範囲で平均が1/2であった。以下実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均135μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均60分であった。
【0032】
実施例4
平均粒径が6μmの球形銅粉(日本アトマイズ加工(株)製、商品名SF−Cu)に実施例1と同様のめっき法で2重量%の銀を被覆して銀めっき銅粉を得、その後のMA装置での処理時間を1時間とした以外は実施例1と同様の工程を経て導電性金属複合粉を得た。得られた導電性金属複合粉の粒子の長径は2〜20μmの範囲で平均が9μmであり、また長径/厚さは2〜13の範囲で平均が4、銀被覆面積は全表面積に対して15〜70%の範囲で平均が55%、銀層の厚さは0.0001〜0.02μmの範囲で平均が0.01μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層の厚さは0.0001〜0.003μmの範囲で平均が0.002μmであり、表面貴金属層の厚さの1/15〜1の範囲で平均が1/5であった。以下実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均110μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均100分であった。
【0033】
比較例5
平均粒径が6μmの球形銅粉(日本アトマイズ加工(株)製、商品名SF−Cu)に実施例1と同様のめっき法で1.5重量%の銀を被覆した以外は実施例1と同様の工程を経て導電性金属複合粉を得た。得られた導電性金属複合粉の粒子の長径は2〜30μmの範囲で平均が15μmであり、また長径/厚さは4〜18の範囲で平均が6、銀被覆面積は全表面積に対して5〜35%の範囲で平均が20%、銀層の厚さは0.00005〜0.005μmの範囲で平均が0.003μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層の厚さは0.00005〜0.005μmの範囲で平均が0.003μmであり、表面貴金属層の厚さの1/2〜1の範囲で平均が4/5であった。以下実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均450μΩCmと高く、200μAの漏洩電流が流れるまでに要した時間は平均90分であった。
【0034】
比較例6
平均粒径が6μmの球形銅粉(日本アトマイズ加工(株)製、商品名SF−Cu)に実施例1と同様のめっき法で35重量%の銀を被覆した以外は実施例1と同様の工程を経て導電性金属複合粉を得た。得られた導電性金属複合粉の粒子の長径は2〜25μmの範囲で平均が10μmであり、また長径/厚さは3〜20の範囲で平均が5、銀被覆面積は全表面積に対して65〜95%の範囲で平均が80%、銀層の厚さは0.03〜0.2μmの範囲で平均が0.06μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層の厚さは0.0001〜0.003μmの範囲で平均が0.001μmであり、表面貴金属層の厚さの1/500〜1/50の範囲で平均が1/60であった。以下実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均130μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均10分と短く耐マイグレーション性に劣っていた。
【0035】
実施例5
実施例2で得た銀めっき銅粉(銀被覆量30重量%)を2本のロール間で圧縮して粒子の長径が5〜55μmの範囲で平均が30μmであり、また長径/厚さは15〜50の範囲で平均が27の導電性金属複合粉を得た。得られた導電性金属複合粉の銀被覆面積は全表面積に対して35〜80%の範囲で平均が50%、銀層の厚さは0.002〜0.02μmの範囲で平均が0.0125μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層の厚さは0.0001〜0.0005μmの範囲で平均が0.00025μmであり、表面貴金属層の厚さの1/20〜1/100の範囲で平均が1/50であった。以下実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均115μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均50分であった。
【0036】
実施例6
平均粒径が5μmの球形銅粉(日本アトマイズ加工(株)製、商品名SF−Cu)を蒸着装置内の皿状容器に保持し、皿状容器を回転させながら銀の量が20重量%になるように銀の蒸着を行い銀蒸着銅粉を得た。
次にこの銀蒸着銅粉を実施例1と同様の工程を経て導電性金属複合粉を得た。得られた導電性金属複合粉の粒子の長径は3〜15μmの範囲で平均が7μmであり、また長径/厚さは2〜15の範囲で平均が6、銀被覆面積は全表面積に対して75〜100%の範囲で平均が90%、銀層の厚さは0.02〜0.18μmの範囲で平均が0.04μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層の厚さは0.001〜0.05μmの範囲で平均が0.015μmであり、表面貴金属層の厚さの1/20〜4/5の範囲で平均が1/2.7であった。以下実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均55μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均90分であった。
【0037】
実施例7
ビスフェノールA型液状エポキシ樹脂(油化シェル(株)製、商品名エピコート828)100重量部及びノボラック型フェノールホルムアルデヒド樹脂(日立化成工業(株)製、商品名HP−607N)55.8重量部を110℃で加熱混合して無溶剤の混合樹脂を得た。
次に実施例1で得た導電性金属複合粉100重量部に対し、上記で得た無溶剤の混合樹脂8重量部及び硬化促進剤としてベンジルジメチルアミン0.04重量部を加えて均一に混合して導電性ペーストを得た。以下実施例1と同様の方法で特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均85μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均80分であった。
【0038】
実施例8
平均粒径が6μmの球形銅粉(日本アトマイズ加工(株)製、商品名SF−Cu)80重量部(160g)及び平均粒径が1μmの微細球形銀粉(日本アトマイズ加工(株)製、微粉)20重量部(40g)をMA装置に投入し、以下実施例1と同様の工程を経て銀被覆量が20重量%の導電性金属複合粉を得た。得られた導電性金属複合粉の粒子の長径は2〜30μmの範囲で平均が15μmであり、また長径/厚さは2〜15の範囲で平均が6、銀被覆面積は全表面積に対して40〜65%の範囲で平均が55%、銀層の厚さは0.005〜0.1μmの範囲で平均が0.03μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層の厚さは0.003〜0.05μmの範囲で平均が0.01μmであり、表面貴金属層の厚さの1/10〜1/2の範囲で平均が1/5であった。以下実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均140μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均40分であった。
【0039】
実施例9
平均粒径が2.0μmの微細球形銅粉(日本アトマイズ加工(株)製、試作品)80重量部(160g)及び実施例8で用いた微細球形銀粉20重量部(40g)を配合し、以下直径が5mmのジルコニアボールを用いた以外は実施例1と同様の工程を経て銀被覆量が20重量%の導電性金属複合粉を得た。得られた導電性金属複合粉の粒子の長径は5〜20μmの範囲で平均が10μmであり、また長径/厚さは2〜20の範囲で平均が5、銀被覆面積は全表面積に対して40〜60%の範囲で平均が52%、銀層の厚さは0.005〜0.07μmの範囲で平均が0.03μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層の厚さは0.01〜0.05μmの範囲で平均が0.015μmであり、表面貴金属層の厚さの1/7〜2/3の範囲で平均が1/2であった。以下実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均130μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均30分であった。
【0040】
実施例10
実施例8で得た導電性金属複合粉50重量%及び比較例3で用いた銀粉50重量%をV型混合機で均一に混合した混合粉体100重量部に対し、ノボラック型フェノール樹脂(群栄化学工業(株)製、商品名PS−2607)12重量部、ビスフェノールA型エポキシ樹脂(油化シェルエポキシ(株)製、商品名エピコート828)2重量部及び溶剤としてブチルセロソルブ15重量部を加えて均一に混合して導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均70μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均15分であった。
【0041】
実施例11
平均粒径が25μmの球形銅粉(日本アトマイズ加工(株)製、商品名SF−Cuから分級して得た)50重量部(100g)及び実施例8で用いた微細球形銀粉50重量部(100g)を配合した以外は、実施例1と同様の工程を経て銀被覆量が30重量%の導電性金属複合粉を得た。得られた導電性金属複合粉の粒子の長径は2〜30μmの範囲で平均が15μmであり、また長径/厚さは2〜15の範囲で平均が6、銀被覆面積は全表面積に対して45〜75%の範囲で平均が65%、銀層の厚さは0.01〜0.2μmの範囲で平均が0.05μm及び貴金属(銀)の割合が80〜20原子数%である貴金属と非貴金属(銅)とが混在する層の厚さは0.01〜0.06μmの範囲で平均が0.02μmであり、表面貴金属層の厚さの1/5〜1/2の範囲で平均が1/3であった。以下実施例1と同様の工程を経て導電性ペーストを作製して特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均60μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均10分であった。
【0042】
実施例12
ビスフェノールA型エポキシ樹脂(油化シェルエポキシ(株)製、商品名エピナール834)60重量部及びビスフェノールA型エポキシ樹脂(油化シェルエポキシ(株)製、商品名エピナール828)40重量部を予め加温溶解させ、次いで室温(20℃)に冷却した後、2エチル4メチルイミダゾール5重量部、エチルカルビトール20重量部及びブチルセロソルブ20重量部を加えて均一に混合して樹脂組成物とした。
【0043】
平均粒径が7.2μmの球形銅粉(日本アトマイズ加工(株)製、商品名SF−Cu)を希塩酸中に浸漬し、純水で洗浄した後、AgCN80g/水1kgの混合液中で25±5℃で20分間撹拌しながら銀を置換めっきし、水洗、乾燥して銀めっき銅粉を得た。
【0044】
次いで2リットルボールミル容器内に上記で得た銀めっき銅粉400gと直径が5mmのジルコニアボール3kgを投入し、毎分60回転の条件で30分間回転させて該銀めっき銅粉を変形処理して導電性金属複合粉を得た。得られた導電性金属複合粉の粒子の長径は2〜24μmの範囲で平均が11.5μmであり、また長径/厚さは3〜14の範囲で平均が9、銀被覆面積は全表面積に対して60〜85%の範囲で平均が75%であった。
この後上記で得た樹脂組成物145gに上記で得た導電性金属複合粉215gを加えてらいかい機及び三本ロールで均一に混合分散して導電性ペーストを得た。なお導電性金属複合粉の含有量は、導電性ペーストの固形分に対して60重量%であった。
【0045】
次に上記で得た導電性ペーストで、厚さが1.6mmで直径が0.8mmのスルーホールを形成した紙フェノール銅張積層板(日立化成工業(株)製、商品名MCL−437F)に図1に示すテストパターンを印刷すると共に、これをスルーホール1に充填したものを大気中で60℃、30分間さらに160℃、30分間の条件で加熱処理して配線導体3を得た。なお図1において2は紙フェノール銅張積層板である。
【0046】
得られた配線導体の抵抗を測定した結果、銅箔の抵抗を除いたスルーホール1の抵抗は54穴の平均で22mΩ/穴であり、平面に印刷して測定した比抵抗は95μΩcmであった。また、隣り合うスルーホール1間の絶縁抵抗は10Ω以上であった。該配線導体の冷熱衝撃試験を実施した結果、スルーホール1の抵抗は平均で26.2mΩ/穴であった。また該配線導体の湿中負荷試験を実施した結果、スルーホール1間の絶縁抵抗は10Ω以上であった。なお、冷熱衝撃試験は125℃、30分〜−65℃、30分を100サイクル行い、湿中負荷試験は40℃、90%RH中、隣り合うライン間に50Vの電圧を印加して2000時間保持した。さらに耐はんだ試験(260℃、10秒、5回)を行ったが、抵抗変化率は30%以内であった。
【0047】
実施例13
実施例12で得た銀めっき銅粉250gと直径が5mmのジルコニアボール5kgを円筒状の2リットル容器内に投入し、振動ミルで10分間振動させ、該銀めっき銅粉を変形処理して導電性金属複合粉を得た。得られた導電性金属複合粉の粒子の長径は3〜25μmの範囲で平均が11.5μmであり、また長径/厚さは2〜12の範囲で平均が7、銀被覆面積は全表面積に対して60〜85%の範囲で平均が70%であった。
この後実施例12で得た樹脂組成物145gに上記で得た導電性金属複合粉240gを加え、以下実施例12と同様の工程を経て導電性ペーストを得た。なお導電性金属複合粉の含有量は、導電性ペーストの固形分に対して63重量%であった。
【0048】
以下実施例12と同様の工程を経て配線導体を作製して特性を評価した。その結果、スルーホールの抵抗は54穴の平均で21.5mΩ/穴であり、平面に印刷して測定した比抵抗は102μΩcmであった。また、隣り合うスルーホール間の絶縁抵抗は10Ω以上であった。該配線導体の冷熱衝撃試験を実施した結果、スルーホールの抵抗は平均で24.5mΩ/穴であり、湿中負荷試験の結果では、スルーホール間の絶縁抵抗は10Ω以上であった。さらに実施例12と同様の耐はんだ試験を行ったが、抵抗変化率は30%以内であった。
【0049】
比較例7
実施例12で得た樹脂組成物145gに実施例12で得た銀めっき銅粉195gを加え、以下実施例12と同様の工程を経て導電性ペーストを得た。なお銀被覆面積は全表面積に対して93〜99%の範囲で平均が97%であった。また導電性金属複合粉の含有量は、導電性ペーストの固形分に対して57重量%であった。
【0050】
以下実施例12と同様の工程を経て配線導体を作製して特性を評価した。その結果、スルーホールの抵抗は54穴の平均で228mΩ/穴であり、平面に印刷して測定した比抵抗は350μΩcmであり、隣り合うスルーホール間の絶縁抵抗は10Ω以上であった。また該配線導体の冷熱衝撃試験を実施した結果、スルーホールの抵抗は平均で251mΩ/穴であり、湿中負荷試験の結果では、スルーホール間の絶縁抵抗は10Ω以上であった。さらに実施例12と同様の耐はんだ試験を行ったところ、抵抗変化率は200%であった。
【0051】
実施例14
実施例12で得た樹脂組成物145gに実施例12で得た導電性金属複合粉195gを加えてらいかい機及び三本ロールで均一に混合分散して導電性ペーストを得た。なお導電性金属複合粉の含有量は、導電性ペーストの固形分に対して66.1重量%であった。
次に上記で得た導電性ペーストで、厚さが1.6mmの紙フェノール銅張積層板(日立化成工業(株)製、商品名MCL−437F)に図2に示すテストパターンを印刷し、これを大気中で60℃、30分間さらに160℃、30分間の条件で加熱処理して配線導体3を形成した電磁波シールド材を得た。得られた電磁波シールド材の抵抗を測定した。その結果、比抵抗は35μΩCmであり、シート抵抗は13mΩ/□であった。また、冷熱試験を125℃、30分〜−65℃、30分を100サイクルの条件で行うと共に耐はんだ試験(260℃、10秒、5回)を行ったが、ともに抵抗変化率は10%以内であった。また、60℃、95%相対湿度で1000時間保持した場合の抵抗変化率も10%以内であった。
【0052】
実施例15
実施例1で得た導電性金属複合粉100重量部に対し、ビスフェノールA型液状エポキシ樹脂(油化シェル(株)製、商品名エピコート828)10重量部、硬化剤としてイミダゾール0.3重量部及び溶剤としてブチルセロソルブ5重量部を加えて均一に混合して導電性ペーストを得た。以下実施例1と同様の方法で特性を評価した。その結果、導電性ペースト硬化物の比抵抗は平均90μΩCm及び200μAの漏洩電流が流れるまでに要した時間は平均80分であった。
一方上記とは別に導電性ペーストを厚さが1.6mmの紙フェノール銅張積層板(日立化成工業(株)製、商品名MCL−437F)の銅箔を除去した積層板の上面に4×4mmの寸法で、かつ160μmの厚さのテストパターンを印刷し、次いでその上面に寸法が5×5mmのチップコンデンサ(電子部品)を搭載して処理した。圧着後の導電性ペースト硬化物の比抵抗は平均30μΩCmであった。またチップコンデンサの接着強度は、電子部品の接着強度として十分な1.5kg/1チップであった。
【0053】
【発明の効果】
請求項1記載の導電性ペーストは、高導電性で、導電性とマイグレーション性に優れる。
請求項2記載の導電性ペーストは、請求項1記載の導電性ペーストの効果を奏し、特に耐マイグレーション性に優れる。
請求項3記載の導電性ペーストは、請求項1記載の導電性ペーストの効果を奏し、特に導電性と耐マイグレーション性に優れる。
請求項4記載の導電性ペーストは、請求項1記載の導電性ペーストの効果を奏し、特に導電性に優れる。
請求項5記載の方法により、導電性ペーストを安価に製造することができ、得られる導電性ペーストは、高導電性で、耐マイグレーション性に優れる。
請求項6記載の方法により導電性ペーストを安価に製造することができ、得られる導電性ペーストは、高導電性で、耐マイグレーション性に優れる。
請求項7記載の電気回路装置は、鉛レス、はんだ代替材として電子部品との接着性に優れる。
請求項8記載の方法により得られる電気回路装置は、鉛レス、はんだ代替材として電子部品を接着することができる。
【図面の簡単な説明】
【図1】紙フェノール銅張積層板に導電性ペーストを印刷すると共にスルーホールに充填した状態を示す平面図である。
【図2】紙フェノール銅張積層板に導電性ペーストを印刷した電磁波シールド材の平面図である。
【符号の説明】
1 スルーホール
2 紙フェノール銅張積層板
3 配線導体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive paste, a method for manufacturing the same, an electric circuit device using the conductive paste, and a method for manufacturing the same.
[0002]
[Prior art]
Conventionally, as a method of forming a wiring conductor on an insulating substrate or the like for mounting a wiring board or an electronic component, a conductive metal powder such as gold, silver, palladium, copper, or aluminum is added to a binder such as a resin or a glass frit. A method of applying or printing a conductive paste in the form of a paste by adding a solvent and forming a paste is generally known, and applied to through-hole conduction, electrode formation, jumper wires, EMI shielding, and the like. I have.
[0003]
On the other hand, as a surface mounting method for mounting electronic components such as resistor elements, chip resistors, chip capacitors, etc. on wiring conductors, a solder paste consisting of solder particles and a binder is applied or printed and heated to a temperature equal to or higher than the melting point of the solder. There is a method of obtaining an electronic circuit device.
Of the various conductive metal powders, gold is extremely expensive, so silver is often used as the conductive metal powder in fields requiring high conductivity, and copper is used in other fields.
[0004]
However, silver is expensive after gold and palladium, and when a DC voltage is applied in the presence of moisture, silver deposition called migration occurs on electrodes and wiring conductors, and short-circuits between the electrodes or wirings A serious problem arises.
In order to prevent the migration of silver, a conductive material using a conductive metal powder of an alloy of silver and palladium is commercially available, but still has a problem that it is extremely expensive.
[0005]
On the other hand, copper is inexpensive and migration is relatively unlikely to occur, but when heating the conductive paste, air and oxygen in the binder form an oxide film on the surface of the copper particles to deteriorate the conductivity. There is. For this reason, measures such as applying a moisture-proof paint to the surface of the conductor and adding corrosion and antioxidants to the conductive material have been studied, but have not been able to obtain a sufficient effect.
[0006]
In order to improve the oxidation resistance of copper and the migration resistance of silver, a method using silver-plated copper powder is disclosed in JP-A-56-8892, but this method has poor conductivity compared to silver powder. However, only silver powder was partially replaced with copper powder. Further, as proposed in JP-A-3-247702, JP-A-4-268381, etc., there is a method of producing silver particles on a copper surface by an atomizing method. However, this method involves complicated steps. Therefore, there is a problem that the cost is high, and since the obtained powder is substantially spherical particles, the contact area between the powders is smaller than that of a flat or dendritic powder, resulting in high resistance.
Regarding solder paste, although there is an urgent and serious demand for a lower heat treatment temperature and lead-free soldering, a lead-free solder sufficient in melting point and workability has not yet been obtained.
[0007]
[Problems to be solved by the invention]
The first aspect of the present invention provides a conductive paste having high conductivity and excellent in conductivity and migration resistance.
The invention according to claim 2 provides, in addition to the invention according to claim 1, a conductive paste having particularly excellent migration resistance.
A third aspect of the present invention provides, in addition to the first aspect, a conductive paste having particularly excellent conductivity and migration resistance.
A fourth aspect of the present invention provides a conductive paste having particularly excellent conductivity, in addition to the first aspect of the present invention.
The fifth and sixth aspects of the present invention provide a method for producing a conductive paste which is inexpensive, highly conductive, and excellent in migration resistance.
The invention according to claim 7 provides an electric circuit device capable of bonding (connecting) an electronic component as a lead-free and solder substitute material. The invention described in claim 8 provides a method for manufacturing an electric circuit device capable of bonding (connecting) electronic components as a lead-free and solder substitute material.
[0008]
[Means for Solving the Problems]
The present invention relates to a non-precious metal powder having a surface exposed at least 50% of the total surface area of the flat non-precious metal powder by 2 to 30% by weight of the flat non-precious metal powder. And a conductive paste containing a conductive metal composite powder and a binder having a layer in which a noble metal and a non-noble metal are interposed between a non-precious metal layer and a non-noble metal layer. And a conductive paste having a thickness of 1/2 to 1/50 of the thickness of the surface noble metal layer.
Further, in the present invention, in the conductive paste, the layer in which the noble metal and the non-noble metal are mixed in the conductive metal composite powder has 80 to 20 atomic% of the noble metal and 20 to 80 atomic% of the noble metal. The present invention relates to a conductive paste.
The present invention also relates to the conductive paste, wherein the thickness of the surface noble metal layer in the conductive metal composite powder is 0.01 to 0.2 μm.
The present invention also relates to a conductive paste in which the conductive paste has a major axis / thickness of 2 to 30 in the conductive metal composite powder.
The present invention also provides a method in which a part of the surface of the non-noble metal powder is exposed and 50% or more of the total surface area is coated with 2 to 30% by weight of the noble metal powder based on the noble metal powder, and then mechanical energy is applied. After the simultaneous formation of a layer in which a noble metal and a non-noble metal are mixed between a flat noble metal layer and a non-noble metal layer, a binder is added and uniformly mixed. The present invention relates to a method for producing a conductive paste.
Further, the present invention provides a mixed powder of non-noble metal powder and noble metal powder by applying mechanical energy, while exposing a part of the surface of the non-noble metal powder while deforming the mixed powder into a flat shape, thereby reducing the total surface area. After forming at least 50% of the non-precious metal powder with 2 to 30% by weight of the precious metal based on the non-precious metal powder and forming a layer in which the precious metal and the non-precious metal are mixed between the surface precious metal layer and the non-precious metal layer And a method for producing a conductive paste, which comprises adding a binder and mixing the mixture uniformly.
In addition, the present invention relates to an electric circuit device in which a wiring conductor is formed on the insulating base material using the conductive paste, and an electronic component is mounted on an upper surface thereof.
Further, the present invention provides an electric circuit device characterized in that a wiring conductor is formed by applying, printing or potting the conductive paste on an insulating base material, and then mounting an electronic component on the upper surface of the wiring conductor. A method for producing the same.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The flat shape in the present invention is a shape obtained by crushing a three-dimensional shape such as a sphere or a lump in one direction, and includes, for example, a shape generally called a flake shape.
[0010]
The non-noble metal powder used in the present invention is a non-noble metal having conductivity, for example, copper, copper alloy, nickel or the like, from the viewpoint of low cost. As the noble metal coated on the surface of the non-noble metal powder, it is preferable to use a noble metal such as gold, silver or platinum from the viewpoint of oxidation resistance and high conductivity.
[0011]
The method of coating the surface of the non-noble metal powder with a noble metal is not particularly limited, and is preferably performed by a method such as a plating method, a vapor deposition method, or a mechanofusion method of coating with mechanical energy. Alternatively, the surface of the non-precious metal powder may be added to the surface of the non-precious metal powder by mixing a fine powder, for example, a precious metal powder having a particle size of 2 μm or less and a non-precious metal powder having a relatively large particle size, for example, 5 μm or more, with a ball mill, a mechanical alloying device or the like. Can be coated. The area where the flat non-noble metal powder is coated with the noble metal (hereinafter, simply referred to as the coating area) is 50% or more of the total surface area of the flat non-noble metal powder, and the amount of the noble metal used for this coating ( Hereinafter, it is necessary that the coating amount is 2 to 30% by weight based on the flat non-noble metal powder. If the coating area is less than 50% or the coating amount is less than 2% by weight, when the conductive paste is applied to a substrate or the like and subjected to heat treatment, the flat non-noble metal powder on the base is oxidized and the conductivity is deteriorated. On the other hand, if the coating amount exceeds 30% by weight, the migration resistance deteriorates.
The coverage area is determined as follows. That is, five or more particles of the conductive metal composite powder are randomly taken out, a noble metal and a non-noble metal are quantitatively analyzed by an Auger spectrometer, a ratio of the noble metal is calculated, an average value thereof is obtained, and this average value is calculated. The coverage area.
The ratio between the non-noble metal and the noble metal is measured, for example, by taking out 1 g of the conductive metal composite powder, dissolving it with nitric acid, and measuring the solution using a chemical quantitative analysis, an atomic absorption spectrometer, or the like.
Although the above-mentioned coating area is set to 50% or more, a part of the surface of the non-noble metal powder may be exposed in that a local battery is formed on the particles of the non-noble metal powder and elution of the noble metal can be suppressed. Needed . In particular, when the noble metal is silver, it is preferable to use a combination of non-noble metal powders such as copper and nickel because the migration property of silver is improved and an excellent effect is exhibited. The coating amount is preferably from 7 to 25% by weight, more preferably from 15 to 20% by weight.
[0012]
The layer in which the noble metal and the non-noble metal are mixed according to the present invention is in a state in which both the noble metal used to form the coating layer and the non-noble metal component of the base layer are mixed. When the thickness of the layer in which the non-noble metal is mixed is 1/2 to 1/50 of the thickness of the surface noble metal layer, excellent conductivity and migration resistance are exhibited. When the thickness of the layer in which the noble metal and the non-noble metal are mixed is more than 1/2 or less than 1/50 of the thickness of the surface noble metal layer, the conductivity tends to be significantly deteriorated. The thickness of the layer in which the noble metal and the non-noble metal are mixed is more preferably 1/2 to 1/40, and even more preferably 1/2 to 1/30, of the thickness of the surface noble metal layer.
The thickness of the surface precious metal layer and the thickness of the layer where precious metal and non-precious metal are mixed are determined at random by extracting at least 5 particles of the conductive metal composite powder, shaving the surface by ion sputtering, and quantifying the element at the same time. One or more particles are measured at three or more points using an Auger spectroscopic analyzer or the like to be analyzed, an average value for each thickness is determined, and this average value is determined as each thickness.
[0013]
The layer in which the noble metal and the non-noble metal are mixed in the conductive metal composite powder used in the present invention contains 20 to 80 atomic% of the noble metal with respect to 80 to 20 atomic% of the noble metal. It is preferable in that it shows migration resistance.
When the conductive metal composite powder used in the present invention is used as a paste and screen-printed, the thickness of the surface noble metal layer is preferably 0.01 to 0.2 μm, so that the conductivity and the resistance can be improved. It is preferable because of its excellent migration property. When the thickness is less than 0.01 μm, the conductivity tends to deteriorate, and when the thickness exceeds 0.2 μm, the migration resistance tends to deteriorate.
[0014]
In the conductive metal composite powder used in the present invention, the major axis / thickness of the flat non-precious metal powder is preferably 2 to 30 in terms of exhibiting excellent conductivity and oxidation resistance. More preferably, it is more preferably 7 to 15. If the major axis / thickness of the flat non-precious metal powder is less than 2, contact between the powders becomes almost point contact, so that the resistance tends to be high. If it exceeds 30, the total surface area even if 30% by weight of the noble metal is coated. It becomes difficult to produce a substrate coated with 50% or more of the non-precious metal, and when a conductive paste is applied to a substrate or the like and subjected to heat treatment, the non-precious metal powder on the base tends to be oxidized, and the conductivity tends to deteriorate.
The major axis is preferably 100 μm or less in absolute value, more preferably 50 μm or less, and even more preferably 30 μm or less. To determine the major diameter / thickness of the conductive metal composite powder, take a SEM photograph of the conductive metal composite powder using a scanning electron microscope, and randomly select 30 or more particles of the conductive metal composite powder from these. Of the conductive metal composite powder is measured, and the average value is defined as the major axis / thickness of the conductive metal composite powder.
[0015]
Regarding the method for producing the conductive metal composite powder, there is no particular limitation on the average particle size and shape of the non-noble metal powder as the base material. The method of coating the noble metal is also not particularly limited as described above, but from the viewpoint of the balance between cost and characteristics, the average particle diameter obtained by a general particle size distribution measuring method such as a laser method and a sedimentation method is 1 to 1. A method of plating or vapor-depositing silver on copper powder of 30 μm or less is preferred.
[0016]
The conductive metal composite powder is prepared by coating the surface of a non-precious metal powder with a precious metal, and then mechanically using a mechanical alloying device, a dry ball milling device, a compression device using rolls, or a device that sprays the powder onto a hard material at high speed. It can be produced by adding mechanical energy or adding mechanical energy as described above to a mixed powder of non-noble metal powder and noble metal powder.
By applying mechanical energy to the non-noble metal powder whose surface is coated with the noble metal or to the above-mentioned mechanical energy to the mixed powder of the non-noble metal powder and the noble metal powder, The voids (voids) existing between the noble metal layer and the noble metal layer are eliminated, and the noble metal layer to be covered is densified, thereby increasing the conductivity. Further, at this time, a thin region in which the noble metal and the non-noble metal are mixed is formed between the surface noble metal layer and the non-noble metal layer, whereby the contact resistance between the surface noble metal layer and the non-noble metal layer can be reduced.
[0017]
The conductive paste according to the present invention is obtained by adding a conductive metal composite powder to an epoxy resin, a phenol resin, an unsaturated polyester resin, a saturated polyester resin, a polyamide resin, a polyimide resin, a polyamide resin, a polyimide resin, a polyamideimide resin, an acrylic resin, and the like. An organic binder or an inorganic binder such as glass frit is added, and if necessary, a curing accelerator such as imidazole and amines and a solvent such as butyl cellosolve, terpineol, ethylene carbitol, and carbitol acetate are added. It is obtained by uniformly mixing with a paddle, roll, kneader, or the like. The content of the binder is preferably from 5 to 30% by weight, more preferably from 8 to 16% by weight, based on the conductive paste. The curing accelerator and the solvent are added as necessary. If added, the content of the curing accelerator is preferably 0.01 to 1% by weight based on the conductive paste, and 0.02 to 0% by weight. More preferably, it is 0.05% by weight. The solvent is preferably used in an amount of 3 to 50% by weight, more preferably 10 to 30% by weight, based on the conductive paste.
[0018]
As the insulating base material used in the present invention, various substrates, various films and the like are used. Among these, various substrates include a paper phenol substrate, a glass epoxy substrate, an enamel substrate, a ceramic substrate, and the like. Examples thereof include flexible resin films such as polyethylene, polycarbonate, vinyl chloride, polystyrene, polyethylene terephthalate, polyphenylene sulfide, polyether ketone, polyether imide, and polyimide. In addition, examples of the electronic component mounted on the upper surface of the wiring conductor include a resistance element, a chip resistor, and a chip capacitor.
In the present invention, a conductor or a part of a resistor may be formed on the surface or through-hole of the insulating base material in advance by a method such as plating, printing, vapor deposition, or etching.
[0019]
The conductive paste according to the present invention can be used for forming a through conductor, an electrode, a jumper wire, an EMI shield, etc. in addition to a wiring conductor, and also connects the above electronic component to an insulating base material. It can also be used as a conductive adhesive and a lead-less solder substitute.
[0020]
【Example】
Hereinafter, embodiments of the present invention will be described.
Example 1
Spherical copper powder having an average particle size of 5 μm (trade name: SF-Cu, manufactured by Nippon Atomize Processing Co., Ltd.) was removed with an acidic cleaner (trade name: L-5B, manufactured by Nippon McDermid Co., Ltd.), washed with water, and washed with water 1 In a plating bath containing 20 g of AgCN and 10 g of NaCN per liter, displacement plating was performed so that the amount of silver was 20% by weight with respect to the spherical copper powder, washed with water and dried to obtain silver-plated copper powder.
[0021]
Next, this silver-plated copper powder was put into an MA (mechanical alloying) apparatus and subjected to a deformation treatment under the following conditions. This apparatus is a system in which a ball is moved by rotation of a screw, and the effective volume of a container into which the ball and the powder to be processed are charged is 1.1 liter. 4 kg of zirconia balls (diameter 10 mm) and 200 g of silver-plated copper powder were charged into the apparatus, the screw rotation speed was 90 rpm, and the pressure in the vessel was 2 × 10 -5 After rotating for 2 hours under the condition of torr, a conductive metal composite powder (flat silver-plated copper powder) was obtained.
[0022]
Next, a SEM photograph of the conductive metal composite powder obtained above was taken using a scanning electron microscope, 30 particles of the conductive metal composite powder were selected, and the major axis / thickness was measured. The average was 6. The major axis had an average of 15 μm in the range of 2 to 30 μm.
Also, five particles of the conductive metal composite powder were randomly taken out, and the noble metal and non-noble metal were quantitatively analyzed by a scanning Auger electron spectrometer to determine the silver covering area. In the range, the average was 70%.
Furthermore, five particles of the conductive metal composite powder were taken out at random, and the surface was scraped by ion sputtering, and at the same time, three points were measured for each particle by a scanning Auger electron spectrometer that quantitatively analyzed the elements. The thickness of the layer is in the range of 0.02 to 0.15 μm, the average is 0.045 μm, and the thickness of the layer in which a noble metal (copper) and a noble metal (copper) having a ratio of noble metal (silver) of 80 to 20 atomic% is mixed. The average was 0.01 μm in the range of 0.001 to 0.05 μm, and the average was 1 / 4.5 in the range of 1/20 to の of the thickness of the surface noble metal layer.
In the following Examples and Comparative Examples, the measurement was performed in the same manner as above.
[0023]
Next, with respect to 100 parts by weight of the conductive metal composite powder, 15 parts by weight of a novolak type phenol resin (trade name: PS-2607, manufactured by Gunei Chemical Industry Co., Ltd.) and 15 parts by weight of butyl cellosolve as a solvent are added and uniformly added. The mixture was mixed to obtain a conductive paste.
[0024]
Next, a conductive paste was passed through a 200-mesh screen on the upper surface of the copper phenol copper-clad laminate (manufactured by Hitachi Chemical Co., Ltd., trade name: MCL-437F) having a thickness of 1.6 mm from which the copper foil had been removed. A test pattern of 0.4 mm and a length of 100 mm was printed and heat-treated at 150 ° C. for 30 minutes in the atmosphere to obtain a wiring conductor. The average resistivity of the conductive paste cured product in the obtained wiring conductor was 75 μΩCm on average, and showed conductivity comparable to that of a silver paste described later.
[0025]
On the other hand, separately from the above, a conductive paste is printed on a glass plate in the same manner as described above so that electrodes having a width of 2 mm are spaced apart from each other by 2 mm, and is cured by heating at 150 ° C. for 30 minutes in the atmosphere. Thus, an electrode was obtained. Next, a filter paper cut to a width of 2 mm is placed between the electrodes, 0.5 cc of ion-exchanged water is dropped on the filter paper, a DC voltage of 20 V is applied between the electrodes, and the elapsed time and the leakage current between the electrodes are measured. The migration resistance was evaluated. As a result, the time required for a leakage current of 200 μA to flow was an average of 80 minutes, and was excellent in migration resistance.
For the measurement of the specific resistance and the evaluation of the migration resistance in the above, the average value of five samples was obtained. The same applies to the following examples and comparative examples.
[0026]
Comparative Example 1
A conductive paste was obtained through the same steps as in Example 1 except that the spherical silver-plated copper powder obtained in Example 1 was omitted and the flattened shape was omitted. The major axis / thickness of the spherical silver-plated copper powder is 1, the silver coating area is 95% or more of the total surface area, the thickness of the silver layer is 0.1 to 0.15 μm, the average is 0.12 μm and noble metal A layer in which a noble metal (copper) in which the ratio of (silver) was 80 to 20 atomic% and a non-noble metal (copper) was not clearly detected. Thereafter, the characteristics were evaluated in the same manner as in Example 1. As a result, the cured product of the conductive paste had an extremely high specific resistance of 1200 μΩCm on average, and the time required for a leakage current of 200 μA to flow was as short as 10 minutes on average, indicating poor migration resistance.
[0027]
Comparative Example 2
Spherical copper powder having an average particle diameter of 5 μm (trade name: SF-Cu, manufactured by Nippon Atomize Processing Co., Ltd.) was deformed in advance by the same method as in Example 1 so that the major axis / thickness became 6, and then implemented. 20% by weight of silver was coated by the same plating method as in Example 1. The silver-coated area of the silver-plated copper powder is 85% or more of the total surface area, the thickness of the silver layer is 0.03 to 0.2 μm, the average is 0.08 μm, and the ratio of the noble metal (silver) is 80%. A layer in which a precious metal of 混 在 20 atomic% and a non-precious metal (copper) were mixed could not be clearly detected. Hereinafter, a conductive paste was produced through the same steps as in Example 1, and the characteristics were evaluated. As a result, the specific resistance of the cured conductive paste was as high as 800 μΩCm, the time required for a leakage current of 200 μA to flow was as short as 10 minutes, and the migration resistance was poor.
[0028]
Comparative Example 3
Through the same process as in Example 1 except that silver powder having a long diameter / thickness of 30 on average (trade name: TCG-1) was used instead of the conductive metal composite powder used in Example 1. A conductive paste was prepared and the characteristics were evaluated. As a result, although the specific resistance of the cured conductive paste was 80 μΩCm on average, the time required for a leakage current of 200 μA to flow was extremely short at 30 seconds on average, and was poor in migration resistance.
[0029]
Comparative Example 4
The same characteristics as in Example 1 were evaluated using a commercially available copper paste for EMI shielding. As a result, the specific resistance of the cured conductive paste was as high as 500 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 45 minutes on average.
[0030]
Example 2
Spherical copper powder having an average particle diameter of 6 μm (trade name: SF-Cu, manufactured by Nippon Atomize K.K.) was coated with 30% by weight of silver by the same plating method as in Example 1 to obtain a silver-plated copper powder. A conductive metal composite powder was obtained through the same steps as in Example 1 except that the subsequent processing time in the MA apparatus was 1 hour. The major axis of the particles of the obtained conductive metal composite powder is 7 μm on average in the range of 3 to 15 μm, and the average of major axis / thickness is 2.5 in the range of 2 to 9; On the other hand, the average is 95% in the range of 75 to 100%, the thickness of the silver layer is 0.1 μm in the range of 0.05 to 0.2 μm, and the ratio of the noble metal (silver) is 80 to 20 atomic%. The thickness of a layer in which a certain noble metal and a non-noble metal (copper) are mixed is 0.001 to 0.01 μm and the average is 0.006 μm, and is 1/50 to 1/8 of the thickness of the surface noble metal layer. The average in the range was 1 / 16.7. Hereinafter, a conductive paste was produced through the same steps as in Example 1, and the characteristics were evaluated. As a result, the specific resistance of the cured conductive paste was 80 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 40 minutes on average.
[0031]
Example 3
Same as Example 1 except that a spherical copper powder having an average particle diameter of 6 μm (trade name: SF-Cu, manufactured by Nippon Atomize K.K.) was coated with 10% by weight of silver by the same plating method as in Example 1. Through the steps, a conductive metal composite powder was obtained. The major axis of the particles of the obtained conductive metal composite powder is 15 μm on average in the range of 2 to 30 μm, and the major axis / thickness is 6 on average in the range of 2 to 15; A noble metal having an average of 51% in a range of 30 to 70%, a thickness of a silver layer of 0.02 μm in a range of 0.01 to 0.03 μm, and a ratio of noble metal (silver) of 80 to 20 atomic%. And a non-precious metal (copper) mixed layer has an average thickness of 0.01 μm in the range of 0.001 to 0.02 μm and a thickness of 1/10 to 2/3 of the thickness of the surface precious metal layer. The average was 1/2. Hereinafter, a conductive paste was produced through the same steps as in Example 1, and the characteristics were evaluated. As a result, the specific resistance of the cured conductive paste was 135 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 60 minutes on average.
[0032]
Example 4
Spherical copper powder having an average particle size of 6 μm (trade name: SF-Cu, manufactured by Nippon Atomize K.K.) was coated with 2% by weight of silver by the same plating method as in Example 1 to obtain a silver-plated copper powder. A conductive metal composite powder was obtained through the same steps as in Example 1 except that the subsequent processing time in the MA apparatus was 1 hour. The major axis of the particles of the obtained conductive metal composite powder is 9 μm on average in the range of 2 to 20 μm, the average is 4 in the major axis / thickness in the range of 2 to 13, and the silver coating area is relative to the total surface area. A noble metal having an average of 55% in the range of 15 to 70%, a thickness of the silver layer of 0.01 to 0.02 μm, an average of 0.01 μm, and a noble metal (silver) ratio of 80 to 20 atomic%. And a non-precious metal (copper) mixed layer has an average thickness of 0.002 μm in the range of 0.0001 to 0.003 μm, and an average of 1/15 to 1 of the thickness of the surface precious metal layer. It was 1/5. Hereinafter, a conductive paste was produced through the same steps as in Example 1, and the characteristics were evaluated. As a result, the specific resistance of the cured conductive paste was 110 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 100 minutes on average.
[0033]
Comparative Example 5
Example 1 was repeated except that a spherical copper powder having an average particle size of 6 μm (trade name: SF-Cu, manufactured by Nippon Atomize K.K.) was coated with 1.5% by weight of silver by the same plating method as in Example 1. Through the same steps, a conductive metal composite powder was obtained. The major axis of the particles of the obtained conductive metal composite powder is 15 μm on average in the range of 2 to 30 μm, and the major axis / thickness is 6 on average in the range of 4 to 18; A noble metal having an average of 20% in the range of 5 to 35%, a thickness of the silver layer of 0.00005 to 0.005 μm, an average of 0.003 μm, and a ratio of the noble metal (silver) of 80 to 20 atomic%. And a non-precious metal (copper) mixed layer has an average thickness of 0.003 μm in the range of 0.00005 to 0.005 μm, and an average thickness in the range of 1/2 to 1 of the thickness of the surface precious metal layer. 4/5. Hereinafter, a conductive paste was produced through the same steps as in Example 1, and the characteristics were evaluated. As a result, the specific resistance of the cured conductive paste was as high as 450 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 90 minutes on average.
[0034]
Comparative Example 6
Same as Example 1 except that a spherical copper powder having an average particle size of 6 μm (trade name: SF-Cu, manufactured by Nippon Atomize K.K.) was coated with 35% by weight of silver by the same plating method as in Example 1. Through the steps, a conductive metal composite powder was obtained. The average length of the particles of the obtained conductive metal composite powder is 10 μm in the range of 2 to 25 μm, and the average length / length is 5 in the range of 3 to 20. The silver coating area is based on the total surface area. A noble metal having an average of 80% in a range of 65 to 95%, an average thickness of 0.06 μm in a thickness of a silver layer of 0.03 to 0.2 μm, and a ratio of noble metal (silver) of 80 to 20 atomic%. And a non-precious metal (copper) mixed layer has a thickness of 0.0001 to 0.003 μm and an average of 0.001 μm, and a thickness of 1/500 to 1/50 of the surface noble metal layer thickness. The average was 1/60. Hereinafter, a conductive paste was produced through the same steps as in Example 1, and the characteristics were evaluated. As a result, the resistivity of the cured conductive paste was 130 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 10 minutes on average, and the migration resistance was poor.
[0035]
Example 5
The silver-plated copper powder (silver coating amount 30% by weight) obtained in Example 2 was compressed between two rolls, and the average diameter was 30 μm in the range of 5 to 55 μm in the major axis of the particle. A conductive metal composite powder having an average of 27 in the range of 15 to 50 was obtained. The obtained conductive metal composite powder has an average silver coverage of 50% in the range of 35 to 80% of the total surface area, and a silver layer thickness of 0.002 to 0.02 μm with an average of 0.1%. The thickness of the layer in which the noble metal (copper) and the noble metal (copper) in which the ratio of 0125 μm and the noble metal (silver) is 80 to 20 atomic% is in the range of 0.0001 to 0.0005 μm and the average is 0.00025 μm. The average was 1/50 in the range of 1/20 to 1/100 of the thickness of the surface noble metal layer. Hereinafter, a conductive paste was produced through the same steps as in Example 1, and the characteristics were evaluated. As a result, the specific resistance of the cured conductive paste was 115 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 50 minutes on average.
[0036]
Example 6
A spherical copper powder having an average particle size of 5 μm (trade name: SF-Cu, manufactured by Nippon Atomize K.K.) is held in a dish-shaped container in a vapor deposition apparatus, and the amount of silver is 20% by weight while rotating the dish-shaped container. Was deposited to obtain silver-deposited copper powder.
Next, this silver-deposited copper powder was subjected to the same steps as in Example 1 to obtain a conductive metal composite powder. The major axis of the particles of the obtained conductive metal composite powder is 7 μm on average in the range of 3 to 15 μm, the major axis / thickness is 6 on average in the range of 2 to 15, and the silver coating area is relative to the total surface area. A noble metal having an average of 90% in the range of 75 to 100%, a thickness of the silver layer of 0.02 to 0.18 μm, an average of 0.04 μm, and a precious metal (silver) ratio of 80 to 20 atomic%. And a non-precious metal (copper) mixed layer has an average thickness of 0.015 μm in the range of 0.001 to 0.05 μm and a thickness of 1/20 to 4/5 of the thickness of the surface precious metal layer. The average was 1 / 2.7. Hereinafter, a conductive paste was produced through the same steps as in Example 1, and the characteristics were evaluated. As a result, the specific resistance of the cured conductive paste was 55 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 90 minutes on average.
[0037]
Example 7
100 parts by weight of a bisphenol A type liquid epoxy resin (manufactured by Yuka Shell Co., Ltd., trade name: Epicoat 828) and 55.8 parts by weight of novolak type phenol formaldehyde resin (manufactured by Hitachi Chemical Co., Ltd., trade name: HP-607N) The mixture was heated and mixed at 110 ° C. to obtain a solventless mixed resin.
Next, 8 parts by weight of the solventless mixed resin obtained above and 0.04 part by weight of benzyldimethylamine as a curing accelerator were added to 100 parts by weight of the conductive metal composite powder obtained in Example 1, and mixed uniformly. Thus, a conductive paste was obtained. Thereafter, the characteristics were evaluated in the same manner as in Example 1. As a result, the specific resistance of the cured conductive paste was 85 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 80 minutes on average.
[0038]
Example 8
80 parts by weight (160 g) of spherical copper powder having an average particle size of 6 μm (trade name: SF-Cu, manufactured by Nippon Atomize K.K.) and fine spherical silver powder having an average particle size of 1 μm (fine powder, manufactured by Nippon Atomize K.K.) ) 20 parts by weight (40 g) were charged into a MA apparatus, and the same steps as in Example 1 were performed to obtain a conductive metal composite powder having a silver coating amount of 20% by weight. The major axis of the particles of the obtained conductive metal composite powder is 15 μm on average in the range of 2 to 30 μm, and the major axis / thickness is 6 on average in the range of 2 to 15; A noble metal having an average of 55% in the range of 40 to 65%, a thickness of the silver layer of 0.003 to 0.1 μm and an average of 0.03 μm and a noble metal (silver) ratio of 80 to 20 atomic%. And a non-precious metal (copper) mixed layer has a thickness of 0.003 to 0.05 μm and an average of 0.01 μm, and a thickness of 1/10 to の of the surface precious metal layer. The average was 1/5. Hereinafter, a conductive paste was produced through the same steps as in Example 1, and the characteristics were evaluated. As a result, the specific resistance of the cured conductive paste was 140 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 40 minutes on average.
[0039]
Example 9
80 parts by weight (160 g) of fine spherical copper powder having an average particle size of 2.0 μm (produced by Nippon Atomize Processing Co., Ltd.) and 20 parts by weight (40 g) of fine spherical silver powder used in Example 8, Hereinafter, a conductive metal composite powder having a silver coating amount of 20% by weight was obtained through the same steps as in Example 1 except that zirconia balls having a diameter of 5 mm were used. The average length of the particles of the obtained conductive metal composite powder is 10 μm in the range of 5 to 20 μm, and the average length / length is 5 in the range of 2 to 20. A noble metal having an average of 52% in a range of 40 to 60%, an average thickness of 0.03 µm in a thickness of a silver layer of 0.005 to 0.07 µm, and a ratio of noble metal (silver) of 80 to 20 atomic%. And a non-precious metal (copper) mixed layer has a thickness of 0.01 to 0.05 μm and an average of 0.015 μm, and a thickness of 1/7 to 2/3 of the surface precious metal layer. The average was 1/2. Hereinafter, a conductive paste was produced through the same steps as in Example 1, and the characteristics were evaluated. As a result, the cured product of the conductive paste had an average resistivity of 130 μΩCm and an average time required for a leakage current of 200 μA to flow was 30 minutes.
[0040]
Example 10
Novolak-type phenol resin (group) was added to 100 parts by weight of a mixed powder obtained by uniformly mixing 50% by weight of the conductive metal composite powder obtained in Example 8 and 50% by weight of the silver powder used in Comparative Example 3 with a V-type mixer. 12 parts by weight (trade name: PS-2607, manufactured by Sakae Chemical Industry Co., Ltd.), 2 parts by weight of a bisphenol A type epoxy resin (trade name: Epicoat 828, manufactured by Yuka Shell Epoxy Co., Ltd.) and 15 parts by weight of butyl cellosolve as a solvent were added. The paste was mixed uniformly to prepare a conductive paste, and the characteristics were evaluated. As a result, the specific resistance of the cured conductive paste was 70 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 15 minutes on average.
[0041]
Example 11
50 parts by weight (100 g) of spherical copper powder having an average particle diameter of 25 μm (obtained by classification from SF-Cu, trade name, manufactured by Nippon Atomize K.K.) and 50 parts by weight of fine spherical silver powder used in Example 8 ( Except for blending 100 g), a conductive metal composite powder having a silver coverage of 30% by weight was obtained through the same steps as in Example 1. The major axis of the particles of the obtained conductive metal composite powder is 15 μm on average in the range of 2 to 30 μm, and the major axis / thickness is 6 on average in the range of 2 to 15; A noble metal having an average of 65% in the range of 45 to 75%, a thickness of the silver layer of 0.05 to 0.2 μm in an average of 0.05 μm, and a noble metal (silver) ratio of 80 to 20 atomic%. And a non-precious metal (copper) mixed layer has an average thickness of 0.02 μm in the range of 0.01 to 0.06 μm and a thickness of 1/5 to の of the surface precious metal layer. The average was 1/3. Hereinafter, a conductive paste was produced through the same steps as in Example 1, and the characteristics were evaluated. As a result, the cured product of the conductive paste had an average resistivity of 60 μΩCm and an average time of 10 minutes required for a leakage current of 200 μA to flow.
[0042]
Example 12
60 parts by weight of bisphenol A type epoxy resin (trade name: Epinal 834, manufactured by Yuka Shell Epoxy Co., Ltd.) and 40 parts by weight of bisphenol A type epoxy resin (trade name: Epinal 828, manufactured by Yuka Shell Epoxy Co., Ltd.) are added in advance. After dissolving by warming and then cooling to room temperature (20 ° C.), 5 parts by weight of 2-ethyl-4-methylimidazole, 20 parts by weight of ethyl carbitol and 20 parts by weight of butyl cellosolve were added and uniformly mixed to obtain a resin composition.
[0043]
Spherical copper powder having an average particle size of 7.2 μm (trade name: SF-Cu, manufactured by Nippon Atomize Processing Co., Ltd.) was immersed in dilute hydrochloric acid, washed with pure water, and then washed in a mixed solution of 80 g of AgCN / 1 kg of water. The silver was subjected to displacement plating while stirring at ± 5 ° C. for 20 minutes, washed with water and dried to obtain silver-plated copper powder.
[0044]
Next, 400 g of the silver-plated copper powder obtained above and 3 kg of zirconia balls having a diameter of 5 mm were put into a 2 liter ball mill container, and the silver-plated copper powder was deformed by rotating at 60 rpm for 30 minutes. A conductive metal composite powder was obtained. The average length of the particles of the obtained conductive metal composite powder is 11.5 μm in the range of 2 to 24 μm, and the average length / thickness is 9 in the range of 3 to 14; On the other hand, the average was 75% in the range of 60 to 85%.
Thereafter, 215 g of the conductive metal composite powder obtained above was added to 145 g of the resin composition obtained above, and the mixture was uniformly mixed and dispersed with a grinder and three rolls to obtain a conductive paste. Note that the content of the conductive metal composite powder was 60% by weight based on the solid content of the conductive paste.
[0045]
Next, a paper phenol copper-clad laminate (trade name: MCL-437F, manufactured by Hitachi Chemical Co., Ltd.) formed with a through hole having a thickness of 1.6 mm and a diameter of 0.8 mm using the conductive paste obtained above. The test pattern shown in FIG. 1 was printed on the substrate, and the printed conductor filled in the through hole 1 was subjected to a heat treatment in the air at 60 ° C. for 30 minutes and at 160 ° C. for 30 minutes to obtain a wiring conductor 3. In FIG. 1, reference numeral 2 denotes a paper phenol copper-clad laminate.
[0046]
As a result of measuring the resistance of the obtained wiring conductor, the resistance of the through hole 1 excluding the resistance of the copper foil was 22 mΩ / hole on average of 54 holes, and the specific resistance measured by printing on a plane was 95 μΩcm. . The insulation resistance between the adjacent through holes 1 is 10 8 Ω or more. As a result of performing a thermal shock test of the wiring conductor, the resistance of the through-hole 1 was 26.2 mΩ / hole on average. In addition, as a result of performing a wet and medium load test on the wiring conductor, the insulation resistance between the through holes 1 was 10 8 Ω or more. The thermal shock test was performed at 125 ° C. for 30 minutes to −65 ° C. and 30 minutes for 100 cycles. The wet load test was performed at 40 ° C. and 90% RH for 2000 hours by applying a voltage of 50 V between adjacent lines. Held. Further, a soldering resistance test (260 ° C., 10 seconds, 5 times) was performed, and the resistance change rate was within 30%.
[0047]
Example 13
250 g of the silver-plated copper powder obtained in Example 12 and 5 kg of zirconia balls having a diameter of 5 mm were put into a cylindrical 2 liter container, and vibrated for 10 minutes with a vibrating mill. A composite metal powder was obtained. The major axis of the particles of the obtained conductive metal composite powder has an average of 11.5 μm in the range of 3 to 25 μm, and the major axis / thickness has an average of 7 in the range of 2 to 12; On the other hand, the average was 70% in the range of 60 to 85%.
Thereafter, 240 g of the conductive metal composite powder obtained above was added to 145 g of the resin composition obtained in Example 12, and a conductive paste was obtained through the same steps as in Example 12 below. The content of the conductive metal composite powder was 63% by weight based on the solid content of the conductive paste.
[0048]
Thereafter, a wiring conductor was produced through the same steps as in Example 12, and the characteristics were evaluated. As a result, the resistance of the through-hole was 21.5 mΩ / hole on average of 54 holes, and the specific resistance measured by printing on a flat surface was 102 μΩcm. The insulation resistance between adjacent through holes is 10 8 Ω or more. As a result of conducting a thermal shock test of the wiring conductor, the resistance of the through-hole was 24.5 mΩ / hole on average, and the insulation resistance between the through-holes was 10 8 Ω or more. Further, the same solder resistance test as in Example 12 was performed, but the resistance change rate was within 30%.
[0049]
Comparative Example 7
195 g of the silver-plated copper powder obtained in Example 12 was added to 145 g of the resin composition obtained in Example 12, and a conductive paste was obtained through the same steps as in Example 12 below. The silver coating area was 93 to 99% of the total surface area, with an average of 97%. The content of the conductive metal composite powder was 57% by weight based on the solid content of the conductive paste.
[0050]
Thereafter, a wiring conductor was produced through the same steps as in Example 12, and the characteristics were evaluated. As a result, the through-hole resistance was 228 mΩ / hole on average for 54 holes, the specific resistance measured by printing on a plane was 350 μΩcm, and the insulation resistance between adjacent through-holes was 10 μm. 8 Ω or more. Further, as a result of performing a thermal shock test on the wiring conductor, the resistance of the through-hole was 251 mΩ / hole on average, and the insulation resistance between the through-holes was 10 8 Ω or more. Further, the same solder resistance test as in Example 12 was performed, and the rate of change in resistance was 200%.
[0051]
Example 14
195 g of the conductive metal composite powder obtained in Example 12 was added to 145 g of the resin composition obtained in Example 12, and the mixture was uniformly mixed and dispersed with a grinder and three rolls to obtain a conductive paste. Note that the content of the conductive metal composite powder was 66.1% by weight based on the solid content of the conductive paste.
Next, the test pattern shown in FIG. 2 was printed on a 1.6 mm thick paper phenol copper-clad laminate (manufactured by Hitachi Chemical Co., Ltd., trade name: MCL-437F) with the conductive paste obtained above, This was heated in air at 60 ° C. for 30 minutes and further at 160 ° C. for 30 minutes to obtain an electromagnetic wave shielding material on which the wiring conductor 3 was formed. The resistance of the obtained electromagnetic wave shielding material was measured. As a result, the specific resistance was 35 μΩCm, and the sheet resistance was 13 mΩ / □. In addition, a cooling test was performed at 125 ° C., 30 minutes to −65 ° C., 30 minutes under 100 cycles, and a soldering resistance test (260 ° C., 10 seconds, 5 times) was performed. Was within. Further, the resistance change rate when held at 60 ° C. and 95% relative humidity for 1000 hours was within 10%.
[0052]
Example 15
Based on 100 parts by weight of the conductive metal composite powder obtained in Example 1, 10 parts by weight of a bisphenol A type liquid epoxy resin (trade name: Epicoat 828, manufactured by Yuka Shell Co., Ltd.), and 0.3 parts by weight of imidazole as a curing agent Then, 5 parts by weight of butyl cellosolve as a solvent was added and uniformly mixed to obtain a conductive paste. Thereafter, the characteristics were evaluated in the same manner as in Example 1. As a result, the specific resistance of the cured conductive paste was 90 μΩCm on average, and the time required for a leakage current of 200 μA to flow was 80 minutes on average.
On the other hand, separately from the above, a conductive paste was applied on the upper surface of a paper phenol copper-clad laminate (trade name: MCL-437F, manufactured by Hitachi Chemical Co., Ltd.) having a thickness of 1.6 mm on the upper surface of the laminate from which the copper foil had been removed. A test pattern having a size of 4 mm and a thickness of 160 μm was printed, and then processed by mounting a chip capacitor (electronic component) having a size of 5 × 5 mm on the upper surface thereof. The specific resistance of the conductive paste cured product after the pressure bonding was 30 μΩCm on average. The adhesive strength of the chip capacitor was 1.5 kg / 1 chip, which was sufficient as the adhesive strength of electronic components.
[0053]
【The invention's effect】
The conductive paste according to claim 1 has high conductivity, and is excellent in conductivity and migration.
The conductive paste according to the second aspect has the effect of the conductive paste according to the first aspect, and is particularly excellent in migration resistance.
The conductive paste according to the third aspect has the effect of the conductive paste according to the first aspect, and is particularly excellent in conductivity and migration resistance.
The conductive paste according to the fourth aspect has the effect of the conductive paste according to the first aspect, and is particularly excellent in conductivity.
According to the method of the fifth aspect, the conductive paste can be manufactured at low cost, and the obtained conductive paste has high conductivity and excellent migration resistance.
According to the method of the sixth aspect, a conductive paste can be manufactured at low cost, and the obtained conductive paste has high conductivity and excellent migration resistance.
The electric circuit device according to claim 7 is excellent in adhesion to electronic components as a lead-free and solder substitute material.
The electric circuit device obtained by the method according to claim 8 can bond an electronic component as a lead-free solder replacement material.
[Brief description of the drawings]
FIG. 1 is a plan view showing a state in which a conductive paste is printed on a paper phenol copper clad laminate and filled in through holes.
FIG. 2 is a plan view of an electromagnetic wave shielding material obtained by printing a conductive paste on a paper phenol copper clad laminate.
[Explanation of symbols]
1 Through hole
2 Paper phenol copper clad laminate
3 Wiring conductor

Claims (8)

偏平状非貴金属粉の表面の一部を露出させて全表面積の50%以上が、該偏平状非貴金属粉に対して2〜30重量%の貴金属で被覆され、かつ表面貴金属層と非貴金属層との間に貴金属と非貴金属とが混在する層を介在した導電性金属複合粉及び結合剤を含有してなる導電性ペーストであって、貴金属と非貴金属とが混在する層が、表面貴金属層の厚さの1/2〜1/50である導電性ペースト。Exposing a part of the surface of the flat non-precious metal powder, 50% or more of the total surface area is coated with 2 to 30% by weight of the precious metal based on the flat non-precious metal powder, and the surface precious metal layer and the non-precious metal layer A conductive paste containing a conductive metal composite powder and a binder with a layer containing a mixture of a noble metal and a non-noble metal interposed therebetween, wherein the layer containing a mixture of a noble metal and a non-noble metal has a surface noble metal layer Conductive paste having a thickness of 1/2 to 1/50 of the thickness of the conductive paste. 貴金属と非貴金属とが混在する層が、貴金属が80〜20原子数%に対し非貴金属が20〜80原子数%である請求項1記載の導電性ペースト。2. The conductive paste according to claim 1, wherein the layer in which the noble metal and the non-noble metal are mixed has a non-noble metal content of 20 to 80 atomic% to a noble metal of 80 to 20 atomic%. 表面貴金属層の厚さが、0.01〜0.2μmである請求項1又は2記載の導電性ペースト。3. The conductive paste according to claim 1, wherein the thickness of the surface noble metal layer is 0.01 to 0.2 [mu] m. 導電性金属複合粉の長径/厚さが、2〜30である請求項1、2、又は3記載の導電性ペースト。4. The conductive paste according to claim 1, wherein the major diameter / thickness of the conductive metal composite powder is 2 to 30. 5. 非貴金属粉の表面の一部を露出させて全表面積の50%以上に、該非貴金属粉に対して2〜30重量%の貴金属を被覆した後、機械的エネルギーを加えて、偏平状の変形及び表面貴金属層と非貴金属層との間に、貴金属と非貴金属とが混在する層の形成を行った後、結合剤を加えて均一に混合することを特徴とする導電性ペーストの製造法。After exposing a part of the surface of the non-noble metal powder and coating 2% to 30% by weight of the non-noble metal powder with respect to the non-noble metal powder to 50% or more of the total surface area, mechanical energy is applied to flatten the deformation and A method for producing a conductive paste, comprising: forming a layer in which a noble metal and a non-noble metal are mixed between a surface noble metal layer and a non-noble metal layer, and then adding a binder and mixing uniformly. 非貴金属粉及び貴金属粉の混合粉体に機械的エネルギーを加えて、該混合粉体を偏平状に変形しながら該非貴金属粉の表面の一部を露出させて全表面積の50%以上に、該非貴金属粉に対して2〜30重量%の貴金属を被覆し、かつ表面貴金属層と非貴金属層との間に、貴金属と非貴金属とが混在する層の形成を行った後、結合剤を加えて均一に混合することを特徴とする導電性ペーストの製造法。Mechanical energy is applied to the mixed powder of the non-noble metal powder and the noble metal powder to expose a part of the surface of the non-noble metal powder while deforming the mixed powder into a flat shape, thereby increasing the non-noble metal powder to 50% or more of the total surface area. After forming a layer containing a mixture of a noble metal and a non-noble metal between a surface noble metal layer and a non-noble metal layer by coating 2-30% by weight of the noble metal with respect to the noble metal powder, a binder is added. A method for producing a conductive paste, which comprises mixing uniformly. 絶縁基材上に請求項1、2、3、又は4記載の導電性ペーストにより配線導体が形成され、その上面に電子部品が搭載された電気回路装置。An electric circuit device comprising a wiring conductor formed on the insulating base material by the conductive paste according to claim 1, and an electronic component mounted on an upper surface thereof. 絶縁基材上に請求項1、2、3、又は4記載の導電性ペーストを塗布、印刷又はポッティングして配線導体を形成し、次いで配線導体の上面に、電子部品を搭載することを特徴とする電気回路装置の製造法。Applying, printing or potting the conductive paste according to claim 1 on an insulating base material to form a wiring conductor, and then mounting an electronic component on the upper surface of the wiring conductor. Manufacturing method for electrical circuit devices.
JP2076396A 1995-02-13 1996-02-07 Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same Expired - Lifetime JP3598631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076396A JP3598631B2 (en) 1995-02-13 1996-02-07 Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2325995 1995-02-13
JP7-23259 1995-06-23
JP7-157255 1995-06-23
JP15725595 1995-06-23
JP2076396A JP3598631B2 (en) 1995-02-13 1996-02-07 Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0969313A JPH0969313A (en) 1997-03-11
JP3598631B2 true JP3598631B2 (en) 2004-12-08

Family

ID=27283157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076396A Expired - Lifetime JP3598631B2 (en) 1995-02-13 1996-02-07 Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3598631B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867948B2 (en) * 2003-03-31 2012-02-01 Tdk株式会社 Conductive particles, conductive paste, electronic component, multilayer ceramic capacitor and manufacturing method thereof
JP4182009B2 (en) * 2003-03-31 2008-11-19 Tdk株式会社 Conductive particles, conductive paste, electronic component, multilayer ceramic capacitor and manufacturing method thereof
JP4574476B2 (en) * 2005-07-20 2010-11-04 Sabicイノベーティブプラスチックスジャパン合同会社 Ramp molded products for vehicles
KR20120077318A (en) * 2010-12-30 2012-07-10 삼성전기주식회사 Nano composite powder for inner electrode of multi layer ceramic electronic device and fabricating method thereof
KR20140002725A (en) * 2011-03-31 2014-01-08 도다 고교 가부시끼가이샤 Silver-coated copper powder and method for producing same, silver-coated copper powder-containing conductive paste, conductive adhesive agent, conductive film, and electric circuit
CN108284224B (en) * 2018-03-18 2019-11-29 中船重工黄冈贵金属有限公司 A kind of preparation method of sheet silver coated nickel powder body

Also Published As

Publication number Publication date
JPH0969313A (en) 1997-03-11

Similar Documents

Publication Publication Date Title
US6042933A (en) Electric circuit device having circuit conductors using an electroconductive paste
US5951918A (en) Composite electroconductive powder, electroconductive paste, process for producing electroconductive paste, electric circuit and process for producing electric circuit
JP2012209148A (en) Conductive particle, conductive paste, and circuit board
JP3598631B2 (en) Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same
JP5034206B2 (en) Conductive adhesive
JP3618441B2 (en) Conductive metal composite powder and manufacturing method thereof
JP3513636B2 (en) Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit
JP2002025345A (en) Conductive particle with excellent migration resistance property
JPH10152630A (en) Conductive paste and composite conductive powder
JP2000322933A (en) Conductive paste and its manufacture
JP3596563B2 (en) Conductive paste
JPH10134636A (en) Conductive powder, conductive paste, and electric circuit using conductive paste
JP3952004B2 (en) Conductive paste
JPH10340625A (en) Conductive paste, its manufacture, and printed wiring board using the paste
JPH09282935A (en) Silver-plated copper powder
JPH08148035A (en) Conductive material and conductive paste using this conductive material
JP3783788B2 (en) Manufacturing method of conductive paste and electric circuit forming substrate
JPH0714427A (en) Conductive paste
JP2003068139A (en) Conductive paste
JPH08138437A (en) Conductive material and conductive paste using it
JPH07307109A (en) Conductive paste
JPH06338216A (en) Conductive paste
JPH06338219A (en) Conductive paste
JPH07307112A (en) Conductive paste
JP2004079545A (en) Compound electroconductive powder, electroconductive paste, electric circuit, and manufacturing method of electric circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term