JPH10134636A - Conductive powder, conductive paste, and electric circuit using conductive paste - Google Patents

Conductive powder, conductive paste, and electric circuit using conductive paste

Info

Publication number
JPH10134636A
JPH10134636A JP28810896A JP28810896A JPH10134636A JP H10134636 A JPH10134636 A JP H10134636A JP 28810896 A JP28810896 A JP 28810896A JP 28810896 A JP28810896 A JP 28810896A JP H10134636 A JPH10134636 A JP H10134636A
Authority
JP
Japan
Prior art keywords
silver
copper
powder
copper powder
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28810896A
Other languages
Japanese (ja)
Inventor
Keizo Hirai
圭三 平井
Hiroshi Wada
和田  弘
Akihiro Sasaki
顕浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP28810896A priority Critical patent/JPH10134636A/en
Publication of JPH10134636A publication Critical patent/JPH10134636A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide powder excellent in conductivity and migration resistance by covering the surface of copper powder with a specific quantity of silver, and setting the peak intensity ratio by an Auger spectral analysis to a specific value. SOLUTION: The silver quantity applied to the surface of copper powder, i.e., coating quantity, is set to 5-30wt.%, preferably to 10-25wt.% and more preferably to 15-25wt,%, against the copper powder. When the costing quantity is below 5wt.%, the exposure face of copper is increased, and the coating effect of silver rarely exists. When the coating quantity exceeds 30wt.%. the conductivity and printing property are deteriorated, and the cost is increased. The area where the copper powder is coated by silver is preferably set to 40% or above, more preferably to 50% or above, and most preferably to 60% or above, against the whole surface area. The peak intensity ratio between copper and silver in an Auger spectral analysis is set to 1:100-30:100, preferably to 5:100-25:100, more preferably to 10:100-20:100.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性粉体、導電
性ペースト及び導電性ペーストを用いた電気回路に関す
る。
The present invention relates to a conductive powder, a conductive paste, and an electric circuit using the conductive paste.

【0002】[0002]

【従来の技術】従来、配線板、電子部品等の電気回路
(配線導体)を形成する方法として、金、銀、パラジウ
ム、銅、アルミニウム等の導電性金属粉末を導電性粉体
とし、これに樹脂、ガラスフリット等のバインダ及び溶
剤を加えてペースト状にした導電性ペーストを塗布又は
印刷して形成する方法が一般的に知られている。各種導
電性金属粉末のうち、金は極めて高価であるため、高い
導電性が要求される分野では銀が、それ以外の分野では
銅が導電性粉体として用いられることが多い。
2. Description of the Related Art Conventionally, as a method of forming an electric circuit (wiring conductor) such as a wiring board or an electronic component, a conductive metal powder such as gold, silver, palladium, copper, or aluminum is used as a conductive powder. It is generally known to form a paste by adding or printing a conductive paste formed by adding a binder such as resin or glass frit and a solvent. Of the various conductive metal powders, gold is extremely expensive, so silver is often used as a conductive powder in fields requiring high conductivity and copper is used in other fields.

【0003】しかしながら、銀は金やパラジウムについ
で高価であり、また水分の存在下で直流電圧が印加され
ると、電極や電気回路にマイグレーションと称する銀の
電析が生じ、電極間又は配線間が短絡するという重大な
問題点が生じる。
[0003] However, silver is more expensive than gold and palladium, and when a DC voltage is applied in the presence of moisture, silver called electrode migration occurs in electrodes and electric circuits, and silver or silver is deposited between electrodes or wiring. Serious shortcomings arise.

【0004】銀のマイグレーションを防止するため、銀
とパラジウムとの合金を導電性粉体とする導電性材料が
市販されているが、やはり極めて高価であるという問題
点がある。
[0004] In order to prevent migration of silver, a conductive material using a conductive powder of an alloy of silver and palladium is commercially available, but still has a problem that it is extremely expensive.

【0005】一方、銅は安価であり、マイグレーション
が比較的生じにくいが、導電性ペーストを加熱する際、
空気及びバインダー中の酸素により銅粒子表面に酸化膜
を形成して導電性を悪化させるという問題点がある。こ
のため、導体の表面に防湿塗料を塗布したり、導電材料
に腐食、酸化防止剤を添加するなどの方策が検討されて
いるが、十分な効果が得られるものではなかった。
On the other hand, copper is inexpensive and migration is relatively unlikely, but when heating the conductive paste,
There is a problem that an oxide film is formed on the surface of the copper particles by air and oxygen in the binder to deteriorate the conductivity. For this reason, measures such as applying a moisture-proof paint to the surface of the conductor and adding corrosion and antioxidants to the conductive material have been studied, but have not been able to obtain a sufficient effect.

【0006】銅の耐酸化性と銀の耐マイグレーション性
という両欠点を導電性粉体により改善するため銀めっき
銅粉を使用する方法が特開昭56−8892号公報に示
される。めっき法、特に微細粉体に銀めっきする方法と
して無電解めっき法が用いられるが、無電解めっき法
は、めっきする基材となる金属めっき液中への溶出を伴
う置換めっき法と、めっき液中の金属塩がめっき液中の
還元剤から電子を受け取って金属被膜を形成する化学還
元めっき法に大別される。
JP-A-56-8892 discloses a method of using silver-plated copper powder in order to improve both the oxidation resistance of copper and the migration resistance of silver with a conductive powder. Electroless plating is used as a plating method, particularly as a method of silver-plating fine powder, and the electroless plating method includes a displacement plating method involving elution into a metal plating solution serving as a base material to be plated, and a plating solution. The metal salt therein is roughly classified into a chemical reduction plating method in which electrons are received from a reducing agent in a plating solution to form a metal film.

【0007】このうち置換めっき法は、厚膜の形成と緻
密な膜質を得るのが困難なため、化学還元めっきが多用
されてきたが、可溶性の還元剤、pH調整剤、めっき液
の安定剤等を必須材料とするため、めっき液の調整と制
御が複雑であること及び銅が表面に露出しないように銀
を均一に被覆することに重点が置かれていたため、銀め
っき銅粉を主成分とする導電性ペーストはまだ殆ど実用
化されていない。
In the displacement plating method, chemical reduction plating has been widely used because it is difficult to form a thick film and obtain a dense film quality. However, a soluble reducing agent, a pH adjuster, and a plating solution stabilizer are used. As the essential material, the adjustment and control of the plating solution was complicated, and the emphasis was on uniformly coating silver so that the copper was not exposed on the surface. Has not been practically used yet.

【0008】[0008]

【発明が解決しようとする課題】請求項1記載の発明
は、導電性及び耐マイグレーション性に優れる導電性粉
体を提供するものである。請求項2記載の発明は、導電
性及び耐マイグレーション性に優れる導電性ペーストを
提供するものである。請求項3記載の発明は、導電性及
び耐マイグレーション性に優れる電気回路を提供するも
のである。
SUMMARY OF THE INVENTION The first aspect of the present invention provides a conductive powder excellent in conductivity and migration resistance. The invention described in claim 2 provides a conductive paste having excellent conductivity and migration resistance. The third aspect of the present invention provides an electric circuit having excellent conductivity and resistance to migration.

【0009】[0009]

【課題を解決するための手段】本発明は、銅粉末の表面
が、該銅粉末に対して5〜30重量%の銀で被覆され、
かつオージェ分光分析による銅のピークと銀のピークと
の強度比で、銅のピーク:銀のピークが1:100〜3
0:100である銀被覆銅粉を含有してなる導電性粉体
に関する。また、本発明は、上記の導電性粉体に結合剤
及び溶剤を含有してなる導電性ペーストに関する。さら
に、本発明は、上記の導電性ペーストを用いて基板の表
面に形成された電気回路に関する。
According to the present invention, a surface of a copper powder is coated with 5 to 30% by weight of silver based on the copper powder,
In addition, the intensity ratio between the copper peak and the silver peak determined by Auger spectroscopy indicates that the ratio of the copper peak to the silver peak is 1: 100 to 3
The present invention relates to a conductive powder containing silver-coated copper powder of 0: 100. The present invention also relates to a conductive paste comprising the above-mentioned conductive powder and a binder and a solvent. Further, the present invention relates to an electric circuit formed on the surface of the substrate using the above-mentioned conductive paste.

【0010】[0010]

【発明の実施の形態】本発明の導電性粉体について、基
材となる銅粉末の平均粒径については特に制限はない
が、コストと特性のバランスの点から、レーザー法、沈
降法等の一般的な粒度分布測定法で求めた平均粒径が1
〜30μm以下の銅粉末を用いることが好ましい。1μ
m未満の粉末を安価に作製することは極めて困難であ
り、30μmを超えると抵抗と印刷性が悪化する傾向が
ある。また、銅粉末の形状については特に制限はないが
ほぼ球状であることが好ましい。また銅粉末は表面が酸
化されておらず、かつ油脂などの付着していないものを
用いることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION With respect to the conductive powder of the present invention, there is no particular limitation on the average particle size of copper powder as a base material. The average particle size obtained by a general particle size distribution measurement method is 1
It is preferable to use a copper powder having a size of 30 μm or less. 1μ
It is extremely difficult to produce a powder of less than m inexpensively, and if it exceeds 30 μm, the resistance and printability tend to deteriorate. The shape of the copper powder is not particularly limited, but is preferably substantially spherical. Further, it is preferable to use copper powder whose surface is not oxidized and to which no fat or oil is attached.

【0011】銅粉末の表面に銀を被覆する方法について
は特に制限はなく、めっき法、蒸着法、機械的エネルギ
ーで被覆するメカノフェージョン法等の方法が挙げら
れ、このうち銅の耐酸化性と銀のマイグレーション性の
点でめっき法が好ましい。めっき法としては、特に制限
はないが置換めっき法でめっきすることが好ましい。こ
のめっきは、めっき浴中で銅粉末を撹拌分散させなが
ら、例えばシアン化銀及びシアン化ナトリウムを溶解し
ためっき液を投入するなど公知の方法を用いればよい
が、本発明の要件を満足するためには、所定量のめっき
液を一気に投入するなどの方法により、高いめっき速度
でめっきを行うことが好ましい。
The method of coating silver on the surface of the copper powder is not particularly limited, and examples thereof include a plating method, a vapor deposition method, and a mechanophase method of coating with mechanical energy. The plating method is preferable from the viewpoint of the migration property of silver and silver. Although there is no particular limitation on the plating method, it is preferable to perform plating by a displacement plating method. For this plating, while stirring and dispersing the copper powder in the plating bath, for example, a known method such as charging a plating solution in which silver cyanide and sodium cyanide are dissolved may be used, but in order to satisfy the requirements of the present invention. It is preferable to perform plating at a high plating rate by a method such as charging a predetermined amount of plating solution at a time.

【0012】銅粉末の表面に被覆される銀の量(以下、
単に被覆量という)は、銅粉末に対して5〜30重量
%、好ましくは10〜25重量%、より好ましくは15
〜20重量%の範囲とされ、被覆量が5重量%未満であ
ると、銅の露出面が多くなり銀を被覆する効果がほとん
どなく、例えば導電性ペーストにして基板などに塗布し
て加熱処理したとき下地の銅粉末が酸化して導電性が悪
くなる。また被覆量が30重量%を超えると導電性や印
刷性が悪くなると共に高価となる。
The amount of silver coated on the surface of the copper powder (hereinafter referred to as
The amount is simply 5 to 30% by weight, preferably 10 to 25% by weight, more preferably 15% by weight based on the copper powder.
If the coating amount is less than 5% by weight, the exposed surface of copper is increased and there is almost no effect of coating silver. For example, a conductive paste is applied to a substrate or the like to perform heat treatment. Then, the underlying copper powder is oxidized and the conductivity is deteriorated. On the other hand, if the coating amount exceeds 30% by weight, the conductivity and printability deteriorate and the cost increases.

【0013】銅粉末が銀により被覆される面積(以下、
単に被覆面積という)は、銅粉末の全表面積に対して4
0%以上が好ましく、50%以上であることがより好ま
しく、60%以上であることがさらに好ましい。被覆面
積は、次のようにして決定される。即ち、無作為に銀被
覆銅粉の粒子を10個以上取り出し、オージェ分光分析
装置で銀及び銅粉末を定量分析し、銀の占める割合を算
出し、その平均値を求め、この平均値を被覆面積とす
る。
The area where the copper powder is covered with silver (hereinafter referred to as
Simply referred to as coating area) is 4 to the total surface area of the copper powder.
It is preferably at least 0%, more preferably at least 50%, even more preferably at least 60%. The coverage area is determined as follows. That is, 10 or more particles of silver-coated copper powder are randomly taken out, silver and copper powder are quantitatively analyzed with an Auger spectrometer, the ratio of silver is calculated, the average value is obtained, and this average value is coated. Area.

【0014】本発明で用いるオージェ分光分析装置は、
高真空雰囲気下で表面層の元素分析を行う装置であり、
910〜930eVに出現する銅のピークと330〜3
60eVに出現する銀のピークとの強度比が1:100
〜30:100、好ましくは5:100〜25:10
0、より好ましくは10:100〜20:100の範囲
とされ、この強度比が1:100未満であると、耐酸化
性の点では問題はないが、耐マイグレーション性が悪く
なる。また銀の層の密着性が悪くなり、ペーストの過程
で銀の層が部分的に剥離し易くなる。一方、強度比が3
0:100を超えると、耐マイグレーション性の点では
問題はないが、表面の銅粉末成分がペーストを加熱処理
したときに酸化されるため、導電性が悪化する。なお、
上記における銅のピークと銀のピークとの強度比は、無
作為に銀被覆銅粉の粒子を10個以上選び、オージェ分
光分析装置で評価し、その平均値を算出することにより
求める。
The Auger spectroscopic analyzer used in the present invention is:
It is a device that performs elemental analysis of the surface layer in a high vacuum atmosphere,
Copper peaks appearing at 910-930 eV and 330-3
The intensity ratio to the peak of silver appearing at 60 eV is 1: 100.
~ 30: 100, preferably 5: 100 ~ 25: 10
0, more preferably in the range of 10: 100 to 20: 100. If the strength ratio is less than 1: 100, there is no problem in terms of oxidation resistance, but the migration resistance is poor. Further, the adhesion of the silver layer is deteriorated, and the silver layer is likely to be partially peeled off during the paste process. On the other hand, when the intensity ratio is 3
If the ratio exceeds 0: 100, there is no problem in terms of migration resistance, but since the copper powder component on the surface is oxidized when the paste is heat-treated, the conductivity deteriorates. In addition,
The intensity ratio between the copper peak and the silver peak in the above is determined by randomly selecting 10 or more silver-coated copper powder particles, evaluating them with an Auger spectroscopic analyzer, and calculating the average value.

【0015】本発明になる導電性粉体を用いて導電性ペ
ーストを作製するためには、エポキシ樹脂、フェノール
樹脂、不飽和ポリエステル樹脂、ヘキサメチレンテトラ
ミン等の結合剤、ブチルセロソルブ、エチレンカルビト
ール、カルビトールアセテート等の溶剤、さらに必要に
応じてイミダゾール、アミン類等の硬化促進剤、シラン
系カップリング剤、チタン系カップリング剤等の界面活
性剤、イミダゾール化合物等の銅の酸化防止剤などを添
加して、らいかい機、ロール、ニーダ等で均一に混合し
て得られる。
In order to prepare a conductive paste using the conductive powder according to the present invention, a binder such as epoxy resin, phenol resin, unsaturated polyester resin, hexamethylenetetramine, butyl cellosolve, ethylene carbitol, carbitol Solvents such as tall acetate, and if necessary, curing accelerators such as imidazole and amines, surfactants such as silane coupling agents and titanium coupling agents, and copper antioxidants such as imidazole compounds are added. Then, the mixture is uniformly mixed with a grinder, roll, kneader or the like.

【0016】結合剤及び溶剤の含有量は、導電性ペース
トに対して結合剤が5〜30重量%及び溶剤が3〜50
重量%の範囲が好ましく、結合剤が10〜25重量%及
び溶剤が10〜40重量%の範囲であることがより好ま
しい。硬化促進剤、界面活性剤、銅の酸化防止剤等は必
要に応じて添加されるが、もし添加する場合その含有量
は、導電性ペーストに対して硬化促進剤が0.5〜3重
量%、界面活性剤が0.05〜0.5重量%及び銅の酸
化防止剤が0.01〜0.1重量%の範囲が好ましく、
硬化促進剤が0.5〜1.5重量%、界面活性剤が0.
1〜0.3重量%及び銅の酸化防止剤が0.02〜0.
06重量%の範囲であることがより好ましい。
The content of the binder and the solvent is 5 to 30% by weight based on the conductive paste and 3 to 50% by weight of the solvent.
%, More preferably 10 to 25% by weight of binder and 10 to 40% by weight of solvent. A curing accelerator, a surfactant, an antioxidant for copper, and the like are added as necessary. If added, the content is 0.5 to 3% by weight based on the conductive paste. Preferably, the surfactant is in the range of 0.05 to 0.5% by weight and the copper antioxidant is in the range of 0.01 to 0.1% by weight,
0.5 to 1.5% by weight of a curing accelerator and 0.1% of a surfactant.
1 to 0.3% by weight and an antioxidant of copper of 0.02 to 0.
More preferably, it is in the range of 06% by weight.

【0017】本発明になる導電性ペーストは、絶縁基材
として用いられる各種基板、各種フィルム等に塗布、印
刷、ポッティングして電気回路を形成する材料として最
適であり、その他スルーホール導通用、電極形成用、ジ
ャンパ線用、EMIシールド用等の形成に用いることが
できる。また抵抗素子、チップ抵抗、チップコンデンサ
等の電子部品と絶縁基材を接続する導電性接着剤、鉛レ
スはんだ代替材としても使用できる。
The conductive paste according to the present invention is most suitable as a material for forming an electric circuit by coating, printing and potting on various substrates and various films used as an insulating base material. It can be used for forming, for jumper wires, for EMI shielding, and the like. It can also be used as a conductive adhesive for connecting electronic components such as resistance elements, chip resistors, and chip capacitors to an insulating base material, and as a lead-free solder substitute.

【0018】上記に示す各種基板としては、紙フェノー
ル基板、ガラスエポキシ基板、ホウロウ基板、セラミッ
ク基板等が挙げられ、また各種フィルムとしては、ポリ
エチレン、ポリカーボネート、塩化ビニル、ポリスチレ
ン、ポリエチレンテレフタレート、ポリフェニレンスル
フィド、ポリエーテルケトン、ポリエーテルイミド、ポ
リイミド等フレキシブルな樹脂製のフィルムが挙げられ
る。電気回路の形成方法については特に制限はなく、公
知の方法、例えば導電性ペーストをスクリーン印刷、コ
ンピュータでコントロールした描画機で形成することが
できる。本発明においては、絶縁基板の表面やスルーホ
ールに、予め、めっき、印刷、蒸着、エッチング等の方
法で回路や抵抗の一部又は全部や、ジャンパー回路を形
成することができる。
Examples of the various substrates described above include a paper phenol substrate, a glass epoxy substrate, an enamel substrate, and a ceramic substrate. Examples of various films include polyethylene, polycarbonate, vinyl chloride, polystyrene, polyethylene terephthalate, polyphenylene sulfide, and the like. Flexible resin films such as polyetherketone, polyetherimide, and polyimide can be used. There is no particular limitation on the method for forming the electric circuit, and the electric circuit can be formed by a known method, for example, screen printing of a conductive paste or a drawing machine controlled by a computer. In the present invention, a part or all of a circuit or a resistor, or a jumper circuit can be formed in advance on a surface or a through hole of an insulating substrate by a method such as plating, printing, vapor deposition, or etching.

【0019】[0019]

【実施例】以下本発明の実施例を説明する。 実施例1 平均粒径が5μmの銅粉末(日本アトマイズ加工(株)、
商品名SF−Cu)を水で撹拌洗浄した後、洗浄した水
を新たな水と交換した。次いで銅粉末を沈殿しないよう
に十分撹拌しながら、投入した銀が全て置換めっきされ
た場合に15重量%の銀がめっきされる量のめっき液
(AgCN20g及びNaCN40gを水1リットルに
溶解)を一気に投入した。30分後、めっき液中に遊離
銀イオンが検出されなくなった時点で撹拌を停止し、デ
カントにより廃液を除去、さらに水洗、乾燥して銀めっ
き銅粉を得た。得られた銀めっき銅粉の銀の被覆量(実
測値)は15重量%であった。
Embodiments of the present invention will be described below. Example 1 Copper powder having an average particle size of 5 μm (Nippon Atomize Processing Co., Ltd.
After washing the product (SF-Cu) under stirring with water, the washed water was replaced with fresh water. Then, while stirring sufficiently so as not to precipitate the copper powder, a plating solution (20 g of AgCN and 40 g of NaCN dissolved in 1 liter of water) at a time is used in such a manner that 15% by weight of silver is plated when all the introduced silver is subjected to displacement plating. I put it in. Thirty minutes later, when no free silver ions were detected in the plating solution, the stirring was stopped, the waste liquid was removed by decanting, further washing with water and drying were performed to obtain silver-plated copper powder. The silver coverage (measured value) of the obtained silver-plated copper powder was 15% by weight.

【0020】また無作為に銀めっき銅粉の粒子を10個
取り出し、オージェ分光分析装置で銀及び銅を定量分析
して銀被覆面積について調べたところ、全表面積に対し
て50〜65%の範囲で平均が55%であった。さらに
無作為に銀めっき銅粉の粒子を10個選び表面をオージ
ェ分光分析装置で分析した結果、銅のピークと銀のピー
クの強度比の平均値は、銅のピーク:銀のピークが1
4:100であった。
Further, ten silver-plated copper powder particles were randomly taken out, and silver and copper were quantitatively analyzed by an Auger spectrometer to determine the silver covering area. The average was 55%. Further, as a result of randomly selecting ten silver-plated copper powder particles and analyzing the surface with an Auger spectroscopic analyzer, the average value of the intensity ratio of the copper peak and the silver peak is 1 for the copper peak: the silver peak.
4: 100.

【0021】上記の銀めっき銅粉を70重量部及び平均
粒径が8.5μmのフレーク状銀粉(徳力化学研究所
製、商品名TCG−1)30重量部に、ノボラック型フ
ェノール樹脂(群栄化学工業(株)製、商品名PS−26
07)13重量部及びブチルセロソルブ13重量部を加
えて均一に混合して導電性ペーストを得た。次いで該導
電性ペーストを厚さが1.6mmの紙フェノール銅張積層
板(日立化成工業(株)製、商品名MCL−437F)の
銅箔を除去した積層板の上面に200メッシュのスクリ
ーンを通して幅0.5mm及び長さ100mmのテストパタ
ーンを印刷し、大気中で150℃で45分の条件で加熱
処理して電気回路を得た。得られた電気回路における導
電性ペースト硬化物の比抵抗は90μΩcmであった。
A novolak type phenol resin (Gunei) was added to 70 parts by weight of the silver-plated copper powder and 30 parts by weight of flake silver powder having an average particle size of 8.5 μm (trade name: TCG-1 manufactured by Tokuri Chemical Laboratory). Chemical Industry Co., Ltd., trade name PS-26
07) 13 parts by weight and 13 parts by weight of butyl cellosolve were added and uniformly mixed to obtain a conductive paste. Next, the conductive paste was passed through a 200-mesh screen on the upper surface of a 1.6 mm thick paper phenol copper-clad laminate (manufactured by Hitachi Chemical Co., Ltd., trade name: MCL-437F) from which the copper foil had been removed. A test pattern having a width of 0.5 mm and a length of 100 mm was printed and heat-treated at 150 ° C. for 45 minutes in the atmosphere to obtain an electric circuit. The specific resistance of the cured conductive paste in the obtained electric circuit was 90 μΩcm.

【0022】一方、上記とは別に、導電性ペーストをス
ライドガラス上に幅2mmの電極を互いに2mm間隔となる
ように上記と同様の方法で印刷し、上記と同様の条件で
加熱処理して電極を得た。次いで電極間にイオン交換水
0.05ccを滴下して電極間に20Vの直流電圧を印加
し、経過時間と電極間漏洩電流を測定することによって
耐マイグレーション性を評価した。その結果、200μ
Aの漏洩電流が流れるまでに要した時間は平均40分で
あり、耐マイグレーション性に優れていた。
On the other hand, separately from the above, an electrode having a width of 2 mm is printed on a slide glass by the same method as described above so as to be spaced apart from each other by 2 mm, and heat-treated under the same conditions as described above. I got Next, 0.05 cc of ion-exchanged water was dropped between the electrodes, a DC voltage of 20 V was applied between the electrodes, and the migration resistance was evaluated by measuring the elapsed time and the leakage current between the electrodes. As a result, 200 μ
The time required for the leakage current of A to flow was 40 minutes on average, and was excellent in migration resistance.

【0023】実施例2 実施例1で用いた銅粉末を分級して平均粒径が2μmの
銅粉末を得、銀めっき量の理論値を20重量%として銀
めっきを行った以外は、実施例1と同様の工程を経て銀
めっき銅粉を得た。得られた銀めっき銅粉の銀の被覆量
(実測値)は19重量%であった。また銀被覆面積は全
表面積に対して60〜75%の範囲で、平均が65%で
あった。さらに無作為に銀めっき銅粉の粒子を10個選
び表面をオージェ分光分析装置で分析した結果、銅のピ
ークと銀のピークの強度比の平均値は、銅のピーク:銀
のピークが3:100であった。
Example 2 A copper powder having an average particle diameter of 2 μm was obtained by classifying the copper powder used in Example 1, and silver plating was performed with a theoretical silver plating amount of 20% by weight. Through the same steps as in Step 1, silver-plated copper powder was obtained. The silver coating amount (actual value) of the obtained silver-plated copper powder was 19% by weight. The silver coating area was in the range of 60 to 75% of the total surface area, and the average was 65%. Furthermore, as a result of randomly selecting ten silver-plated copper powder particles and analyzing the surface with an Auger spectroscopic analyzer, the average value of the intensity ratio between the copper peak and the silver peak was as follows: copper peak: silver peak: 3: It was 100.

【0024】上記の銀めっき銅粉を70重量部及び平均
粒径が8.5μmのフレーク状銀粉(徳力化学研究所
製、商品名TCG−1)30重量部に、ノボラック型フ
ェノール樹脂(群栄化学工業(株)製、商品名PS−26
07)15重量部及びブチルセロソルブ15重量部を加
えて均一に混合して導電性ペーストを得た。次いで該導
電性ペーストを実施例1と同様の工程を経て電気回路及
び電極を得、特性を評価した結果、得られた電気回路に
おける導電性ペースト硬化物の比抵抗は80μΩcm及び
200μAの漏洩電流が流れるまでに要した時間は平均
35分であり、耐マイグレーション性に優れていた。
A novolak-type phenol resin (Gunei) was added to 70 parts by weight of the silver-plated copper powder and 30 parts by weight of a flaky silver powder having an average particle size of 8.5 μm (trade name: TCG-1 manufactured by Tokuri Chemical Laboratory). Chemical Industry Co., Ltd., trade name PS-26
07) 15 parts by weight and 15 parts by weight of butyl cellosolve were added and uniformly mixed to obtain a conductive paste. Then, the conductive paste was subjected to the same steps as in Example 1 to obtain an electric circuit and electrodes, and as a result of evaluating the characteristics, the specific resistance of the cured conductive paste in the obtained electric circuit was 80 μΩcm and the leakage current was 200 μA. The time required to flow was an average of 35 minutes, and was excellent in migration resistance.

【0025】実施例3 実施例1の銅粉末を用い、銀めっき量の理論値を10重
量%として銀めっきを行った以外は、実施例1と同様の
工程を経て銀めっき銅粉を得た。得られた銀めっき銅粉
の銀の被覆量(実測値)は10重量%であった。また銀
被覆面積は全表面積に対して35〜50%の範囲で、平
均が40%であった。さらに無作為に銀めっき銅粉の粒
子を10個選び表面をオージェ分光分析装置で分析した
結果、銅のピークと銀のピークの強度比の平均値は、銅
のピーク:銀のピークが25:100であった。
Example 3 A silver-plated copper powder was obtained through the same process as in Example 1 except that silver plating was performed using the copper powder of Example 1 with a theoretical silver plating amount of 10% by weight. . The silver coating amount (actually measured value) of the obtained silver-plated copper powder was 10% by weight. The silver coating area was in the range of 35 to 50% of the total surface area, and the average was 40%. Further, as a result of randomly selecting ten silver-plated copper powder particles and analyzing the surface with an Auger spectrometer, the average value of the intensity ratio between the copper peak and the silver peak is 25: It was 100.

【0026】上記の銀めっき銅粉を70重量部及び平均
粒径が8.5μmのフレーク状銀粉(徳力化学研究所
製、商品名TCG−1)30重量部に、ノボラック型フ
ェノール樹脂(群栄化学工業(株)製、商品名PS−26
07)13重量部及びブチルセロソルブ13重量部を加
えて均一に混合して導電性ペーストを得た。次いで該導
電性ペーストを実施例1と同様の工程を経て電気回路及
び電極を得、特性を評価した結果、得られた電気回路に
おける導電性ペースト硬化物の比抵抗は130μΩcm及
び200μAの漏洩電流が流れるまでに要した時間は平
均60分であり、耐マイグレーション性に優れていた。
70 parts by weight of the silver-plated copper powder and 30 parts by weight of flaky silver powder having an average particle diameter of 8.5 μm (trade name: TCG-1 manufactured by Tokuri Chemical Laboratories) are mixed with a novolak-type phenol resin (Gunei). Chemical Industry Co., Ltd., trade name PS-26
07) 13 parts by weight and 13 parts by weight of butyl cellosolve were added and uniformly mixed to obtain a conductive paste. Next, the conductive paste was subjected to the same process as in Example 1 to obtain an electric circuit and electrodes, and as a result of evaluating the characteristics, the specific resistance of the cured conductive paste in the obtained electric circuit was 130 μΩcm and the leakage current was 200 μA. The time required to flow was an average of 60 minutes and was excellent in migration resistance.

【0027】比較例1 実施例1で用いたフレーク状銀粉100重量部に、ノボ
ラック型フェノール樹脂(群栄化学工業(株)製、商品名
PS−2607)13重量部及びブチルセロソルブ13
重量部を加えて均一に混合して導電性ペーストを得た。
次いで該導電性ペーストを実施例1と同様の工程を経て
電気回路及び電極を得、特性を評価した結果、得られた
電気回路における導電性ペースト硬化物の比抵抗は75
μΩcmであったが、200μAの漏洩電流が流れるまで
に要した時間は平均30秒と極めて短く、耐マイグレー
ション性に劣っていた。
Comparative Example 1 13 parts by weight of a novolak type phenol resin (trade name: PS-2607, manufactured by Gunei Chemical Industry Co., Ltd.) and 100 parts by weight of flake silver powder used in Example 1 and butyl cellosolve 13
A part by weight was added and mixed uniformly to obtain a conductive paste.
Next, an electric circuit and an electrode were obtained from the conductive paste through the same steps as in Example 1, and the characteristics were evaluated. As a result, the specific resistance of the cured conductive paste in the obtained electric circuit was 75.
Although it was μΩcm, the time required for a leakage current of 200 μA to flow was extremely short, averaging 30 seconds, and was poor in migration resistance.

【0028】[0028]

【発明の効果】請求項1記載の導電性粉体は、導電性及
び耐マイグレーション性に優れる。請求項2記載の導電
性ペーストは、導電性及び耐マイグレーション性に優れ
る。請求項3記載の電気回路は、導電性及び耐マイグレ
ーション性に優れる。
According to the present invention, the conductive powder has excellent conductivity and migration resistance. The conductive paste according to claim 2 has excellent conductivity and migration resistance. The electric circuit according to claim 3 is excellent in conductivity and migration resistance.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 銅粉末の表面が、該銅粉末に対して5〜
30重量%の銀で被覆され、かつオージェ分光分析によ
る銅のピークと銀のピークとの強度比で、銅のピーク:
銀のピークが1:100〜30:100である銀被覆銅
粉を含有してなる導電性粉体。
1. The surface of the copper powder is 5 to 5 with respect to the copper powder.
The copper peak coated with 30% by weight of silver and having the intensity ratio of the copper peak to the silver peak determined by Auger spectroscopy:
A conductive powder containing silver-coated copper powder having a silver peak of 1: 100 to 30: 100.
【請求項2】 請求項1記載の導電性粉体に結合剤及び
溶剤を含有してなる導電性ペースト。
2. A conductive paste comprising the conductive powder according to claim 1 and a binder and a solvent.
【請求項3】 請求項2記載の導電性ペーストを用いて
基板の表面に形成された電気回路。
3. An electric circuit formed on the surface of a substrate using the conductive paste according to claim 2.
JP28810896A 1996-10-30 1996-10-30 Conductive powder, conductive paste, and electric circuit using conductive paste Pending JPH10134636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28810896A JPH10134636A (en) 1996-10-30 1996-10-30 Conductive powder, conductive paste, and electric circuit using conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28810896A JPH10134636A (en) 1996-10-30 1996-10-30 Conductive powder, conductive paste, and electric circuit using conductive paste

Publications (1)

Publication Number Publication Date
JPH10134636A true JPH10134636A (en) 1998-05-22

Family

ID=17725914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28810896A Pending JPH10134636A (en) 1996-10-30 1996-10-30 Conductive powder, conductive paste, and electric circuit using conductive paste

Country Status (1)

Country Link
JP (1) JPH10134636A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019006A (en) * 2005-06-08 2007-01-25 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using the same
US7169330B2 (en) 2004-02-25 2007-01-30 E. I. Du Pont De Nemours And Company Composition of conductive paste
JP2008166590A (en) * 2006-12-28 2008-07-17 Japan Aviation Electronics Industry Ltd Manufacturing method of wiring and conductive ink for use therein
JP2010539650A (en) * 2007-09-13 2010-12-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Conductive composition
US8217403B1 (en) 2011-03-08 2012-07-10 Napra Co., Ltd. Electronic device
EP2657962A1 (en) 2012-04-24 2013-10-30 Napra Co., Ltd. Electronic device with a metallisation layer having a high- and a low-melting-point component diffusion-bonded together and a synthetic resin layer covering the metallisation layer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169330B2 (en) 2004-02-25 2007-01-30 E. I. Du Pont De Nemours And Company Composition of conductive paste
JP2007019006A (en) * 2005-06-08 2007-01-25 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using the same
JP2008166590A (en) * 2006-12-28 2008-07-17 Japan Aviation Electronics Industry Ltd Manufacturing method of wiring and conductive ink for use therein
JP2010539650A (en) * 2007-09-13 2010-12-16 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン Conductive composition
KR101399920B1 (en) * 2007-09-13 2014-05-28 헨켈 아게 운트 코. 카게아아 Electrically conductive composition
US10388423B2 (en) 2007-09-13 2019-08-20 Henkel Ag & Co. Kgaa Electrically conductive composition
US8217403B1 (en) 2011-03-08 2012-07-10 Napra Co., Ltd. Electronic device
KR101184121B1 (en) 2011-03-08 2012-09-18 유겐가이샤 나프라 Electronic device
EP2657962A1 (en) 2012-04-24 2013-10-30 Napra Co., Ltd. Electronic device with a metallisation layer having a high- and a low-melting-point component diffusion-bonded together and a synthetic resin layer covering the metallisation layer

Similar Documents

Publication Publication Date Title
US5840432A (en) Electroconductive paste
US5951918A (en) Composite electroconductive powder, electroconductive paste, process for producing electroconductive paste, electric circuit and process for producing electric circuit
EP1560227B1 (en) Conductive paste
JPH01214100A (en) Electromagnetic wave shield circuit and manufacture of the same
JP2007184143A (en) Surface treatment method of conductive powder, and conductive powder and conductive paste
EP0455019A1 (en) Conductive paste composition
KR101398706B1 (en) Conductive paste
JPH10134636A (en) Conductive powder, conductive paste, and electric circuit using conductive paste
JP3598631B2 (en) Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same
JP3618441B2 (en) Conductive metal composite powder and manufacturing method thereof
JP2002025345A (en) Conductive particle with excellent migration resistance property
JPH10152630A (en) Conductive paste and composite conductive powder
JPH09282935A (en) Silver-plated copper powder
JP2000322933A (en) Conductive paste and its manufacture
JPH08148035A (en) Conductive material and conductive paste using this conductive material
JPH01201486A (en) Ag plated powder for electrically conductive paint having superior migration resistance
JPS6345702A (en) Paste containing metal
JP3596563B2 (en) Conductive paste
JPH06333417A (en) Conductive paste
JPH03152803A (en) Solderable conductive paste
KR102560073B1 (en) conductive paste
GB1574438A (en) Printed circuits
JPH0935530A (en) Manufacture of conductive paste and electric circuit forming substrate
JPH06338216A (en) Conductive paste
JPH01259591A (en) Covering material for electronic circuit and electronic circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051101

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051110

A02 Decision of refusal

Effective date: 20060316

Free format text: JAPANESE INTERMEDIATE CODE: A02