JP2004079545A - Compound electroconductive powder, electroconductive paste, electric circuit, and manufacturing method of electric circuit - Google Patents

Compound electroconductive powder, electroconductive paste, electric circuit, and manufacturing method of electric circuit Download PDF

Info

Publication number
JP2004079545A
JP2004079545A JP2003329831A JP2003329831A JP2004079545A JP 2004079545 A JP2004079545 A JP 2004079545A JP 2003329831 A JP2003329831 A JP 2003329831A JP 2003329831 A JP2003329831 A JP 2003329831A JP 2004079545 A JP2004079545 A JP 2004079545A
Authority
JP
Japan
Prior art keywords
powder
silver
electric circuit
conductive powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003329831A
Other languages
Japanese (ja)
Inventor
Shozo Yamana
山名 章三
▲くわ▼島 秀次
Hideji Kuwashima
Junichi Kikuchi
菊池 純一
Riichi Ono
小野 利一
Yoshikatsu Mikami
三上 喜勝
Hisashi Dokochi
堂河内 久司
Hiroshi Wada
和田 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003329831A priority Critical patent/JP2004079545A/en
Publication of JP2004079545A publication Critical patent/JP2004079545A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound electroconductive powder of which specific-resistance is low, which has a high conductivity and with which an electroconductive paste for forming electrical circuits, of which changes of specific-resistane are small even after a cold impact test and a humid load test, is obtained, an electroconductive paste for forming the electric circuits of which specific-resistance is low, which has a high conductivity and of which changes of specific-resistance are small even after the cold impact test and humid load test, an electric circuit having a low specific-resistance, high conductivity, and superior anti-migration property, and a manufacturing method of the electric circuit having a low specific-resistance, high conductivity, and superior anti-migration property. <P>SOLUTION: The device comprises a flat silver-covered copper powder in which a covered conductor is exposed, a compound electroconductive powder containing an indefinite shaped electroconductive powder, a compound paste containing the above compound electroconductive powder, a binder , and a solvent, and an electric circuit formed on the surface of the substrate using this electroconductive paste. After the circuit patterns are formed by this electroconductive paste on the substrate, they are pressurized and cured. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は複合導電粉、導電ペースト、電気回路及び電気回路の製造法に関する。 The present invention relates to a composite conductive powder, a conductive paste, an electric circuit, and a method for producing an electric circuit.

 従来、プリント配線板、電子部品等の電気回路(配線導体)を形成する方法として、非特許文献1に記載されているように導電性に優れた銀粉を含有する導電ペーストを塗布又は印刷する方法が一般的に知られている。
電子材料、1994年10月号の42〜46頁
BACKGROUND ART Conventionally, as a method for forming an electric circuit (wiring conductor) such as a printed wiring board or an electronic component, a method of applying or printing a conductive paste containing silver powder having excellent conductivity as described in Non-Patent Document 1. Is generally known.
Electronic Materials, October 1994, pp. 42-46

 銀粉を含有する導電ペーストは、導電性が良好なことから印刷配線板、電子部品等の電気回路や電極の形成に用いられているが、このような導電ペーストを用いて形成される電気回路の体積固有抵抗(比抵抗)は、通常は50〜100μΩ・cmであり、優れているものでも30〜40μΩ・cmにすぎず、印刷回路の長さが数cmと短い場合には障害になることは少ないが、10cm以上になると導通抵抗が高くなり不具合が生じ易かった。 The conductive paste containing silver powder is used for forming electric circuits and electrodes of printed wiring boards, electronic components, etc. because of its good conductivity. The volume resistivity (specific resistance) is usually 50 to 100 μΩ · cm. Even if it is excellent, it is only 30 to 40 μΩ · cm. If the length of the printed circuit is as short as several cm, it may be an obstacle. However, when it was 10 cm or more, the conduction resistance was increased, and problems were likely to occur.

 導通抵抗の良好な導体を得るには銀粉の配合量を増加させればよいが、25μΩ・cm以下の比抵抗を安定して得ることはできない。また銀粉の配合量を単純に増加させると他の特性、例えば接着性とのバランスが悪くなるなどの欠点が生じる。 導体 In order to obtain a conductor having good conduction resistance, it is sufficient to increase the amount of the silver powder, but it is not possible to stably obtain a specific resistance of 25 μΩ · cm or less. Further, if the amount of silver powder is simply increased, disadvantages such as poor balance with other properties, for example, adhesion, occur.

 また、銀、銅等の金属箔をエッチングする方法では、高導電性で比抵抗は数μΩ・cm
と低いが工程が複雑であるため高価になるという欠点があった。さらに、銀粉を用いた導電ペーストは、高温多湿の雰囲気下電界が印加されると、配線導体や電極にマイグレーションと称する銀の電析が生じ電極間又は配線間が短絡するという欠点が生じる。このマイグレーションを防止するための方策はいくつか行われており、導体の表面に防湿塗料を塗布するか又は導電ペーストに含窒素化合物などの腐食抑制剤を添加するなどの方策が検討されているが十分な効果が得られるものではなかった。
Further, in the method of etching a metal foil such as silver or copper, the specific resistance is several μΩ · cm with high conductivity.
However, there is a disadvantage that the cost is high due to the complicated process. Further, the conductive paste using silver powder has a drawback that when an electric field is applied in a high-temperature and high-humidity atmosphere, silver deposition called migration occurs on a wiring conductor or an electrode and a short circuit occurs between the electrodes or between the wirings. Several measures have been taken to prevent this migration, and measures such as applying a moisture-proof paint to the surface of the conductor or adding a corrosion inhibitor such as a nitrogen-containing compound to the conductive paste have been studied. A sufficient effect was not obtained.

 さらに、マイグレーションを防止するためには、銀粉の代わりに銀−パラジウムの合金粉末を使用すれば良いが、このような合金粉末は銀粉末に比べて高価でありハイブリッドICのような小型の配線板では実用化されているが、配線板が大型である紙フェノール基板、ガラスエポキシ基板、ポリエチレンテレフタレート等のような基材ではいまだ実用化されていない。銀被覆銅粉を使用すればマイグレーションを改善でき、これを用いれば安価な導電ペーストが得られるが、銀被覆を均一に、かつ厚く被覆するとマイグレーションの改善効果はない。また被覆法としてめっき法は安価な方法であり、例えば安価な球状銅粉に対して銀めっきするのは凝集も少なく容易に行えるが、これを用いた導電ペーストは抵抗が高くなるという欠点があった。 Furthermore, in order to prevent migration, silver-palladium alloy powder may be used instead of silver powder, but such an alloy powder is more expensive than silver powder and is small in a wiring board such as a hybrid IC. However, the wiring board has not been put to practical use yet with a large-sized substrate such as a paper phenol substrate, a glass epoxy substrate, and polyethylene terephthalate. The use of silver-coated copper powder can improve migration, and if it is used, an inexpensive conductive paste can be obtained. However, if the silver coating is coated uniformly and thickly, there is no effect of improving migration. In addition, plating is an inexpensive method of coating. For example, silver plating of inexpensive spherical copper powder can be easily performed with less aggregation, but the conductive paste using this has a drawback of increasing resistance. Was.

 請求項1記載の発明は、比抵抗が低く、高導電性で、かつ冷熱衝撃試験や湿中負荷試験後も比抵抗の変化の小さい電気回路形成用の導電ペーストが得られる複合導電粉を提供する。
 請求項2〜3記載の発明は、請求項1記載の発明のうち特に導電性に優れ、さらに請求項1記載の発明に加えて耐酸化性及び耐熱性に優れる導電ペーストが得られる複合導電粉を提供する。
 請求項4〜6記載の発明は、加圧してアンカー効果を有する導電ペーストが得られる複合導電粉を提供する。
 請求項7記載の発明は、比抵抗が低く、高導電性で、かつ耐マイグレーション性に優れる電気回路形成用の導電ペーストが得られる複合導電粉を提供する。
The first aspect of the present invention provides a composite conductive powder having a low specific resistance, high conductivity, and a conductive paste for forming an electric circuit having a small change in specific resistance even after a thermal shock test or a wet and medium load test. I do.
The invention according to claims 2 and 3 is a composite conductive powder which is particularly excellent in conductivity among the inventions according to claim 1 and further provides a conductive paste having excellent oxidation resistance and heat resistance in addition to the invention according to claim 1. I will provide a.
The invention according to claims 4 to 6 provides a composite conductive powder from which a conductive paste having an anchor effect can be obtained by applying pressure.
The invention according to claim 7 provides a composite conductive powder from which a conductive paste for forming an electric circuit having a low specific resistance, high conductivity and excellent migration resistance is obtained.

 請求項8〜10記載の発明は、比抵抗が低く、高導電性で、かつ冷熱衝撃試験や湿中負荷試験後も比抵抗の変化が小さい電気回路形成用の導電ペーストを提供する。
 請求項11記載の発明は、比抵抗が低く、高導電性で、かつ耐マイグレーション性に優れる電気回路を提供する。
 請求項12記載の発明は、請求項11記載の発明に加えて微細な回路を形成するのに優れる電気回路を提供する。
 請求項13記載の発明は、比抵抗が低く、高導電性で、かつ耐マイグレーション性に優れる電気回路の製造法を提供する。
 請求項14記載の発明は、請求項13記載の発明に加えて微細な回路を形成するのに優れる電気回路の製造法を提供する。
The invention according to claims 8 to 10 provides a conductive paste for forming an electric circuit, which has a low specific resistance, a high conductivity, and a small change in the specific resistance even after a thermal shock test or a wet and medium load test.
An eleventh aspect of the present invention provides an electric circuit having a low specific resistance, high conductivity, and excellent migration resistance.
According to a twelfth aspect of the present invention, there is provided an electric circuit which is excellent in forming a fine circuit in addition to the eleventh aspect.
The invention according to claim 13 provides a method of manufacturing an electric circuit having low specific resistance, high conductivity, and excellent migration resistance.
According to a fourteenth aspect of the present invention, in addition to the thirteenth aspect, a method of manufacturing an electric circuit which is excellent in forming a fine circuit is provided.

 本発明は、次の事項に関する。
(1)被覆されている導電体が露出している扁平状の銀被覆銅粉(以下扁平状銀被覆銅粉と略す)及び不定形状導電粉を含む複合導電粉。
(2)不定形状導電粉の材質が、銀又は銀合金である上記(1)記載の複合導電粉。
(3)不定形状導電粉が、還元銀粉である上記(2)記載の複合導電粉。
(4)不定形状導電粉が、銀又は銀合金より硬度が高い導電体が銀で被覆されたものである上記(2)記載の複合導電粉。
(5)銀又は銀合金より硬度が高い導電体が、Co、Ni、Cr、Cu、W粉又はこれらの合金粉である上記(4)記載の複合導電粉。
(6)銀又は銀合金より硬度が高い導電体が、銅粉又は銅合金粉である上記(5)記載の複合導電粉。
(7)不定形状導電粉が、被覆された導電体が露出している銀被覆銅粉又は銀被覆銅合金粉である上記(4)〜(6)のいずれかに記載の複合導電粉。
The present invention relates to the following items.
(1) A composite conductive powder containing a flat silver-coated copper powder (hereinafter, abbreviated as a flat silver-coated copper powder) having an exposed conductor, and an irregular-shaped conductive powder.
(2) The composite conductive powder according to the above (1), wherein the material of the irregular-shaped conductive powder is silver or a silver alloy.
(3) The composite conductive powder according to the above (2), wherein the irregular-shaped conductive powder is reduced silver powder.
(4) The composite conductive powder according to the above (2), wherein the irregular-shaped conductive powder is obtained by coating a conductor having a hardness higher than silver or a silver alloy with silver.
(5) The composite conductive powder according to the above (4), wherein the conductor having a higher hardness than silver or a silver alloy is a powder of Co, Ni, Cr, Cu, W or an alloy thereof.
(6) The composite conductive powder according to the above (5), wherein the conductor having a higher hardness than silver or silver alloy is copper powder or copper alloy powder.
(7) The composite conductive powder according to any one of the above (4) to (6), wherein the irregular-shaped conductive powder is a silver-coated copper powder or a silver-coated copper alloy powder in which the coated conductor is exposed.

(8)上記(1)〜(7)のいずれかに記載の複合導電粉、結合剤及び溶剤を含有してなる導電ペースト。
(9)複合導電粉が、導電ペーストの固形分に対して85〜93重量%含有される上記(8)記載の導電ペースト。
(10)上記(1)〜(7)のいずれかに記載の複合導電粉、結合剤及び溶剤を含有してなり、扁平状銀被覆銅粉95〜50重量%に対し、不定形状導電粉5〜50重量%を含有してなる上記(8)又は(9)記載の導電ペースト。
(11)上記(8)〜(10)のいずれかに記載の導電ペーストを用いて基材の表面に形成された電気回路。
(12)基材の表面に形成された電気回路の比抵抗が25μΩ・cm以下である上記(11)記載の電気回路。
(13)基材の表面に上記(8)〜(10)のいずれかに記載の導電ペーストで回路パターンを形成した後、加圧、硬化することを特徴とする電気回路の製造法。
(14)基材の表面に形成された電気回路の比抵抗が25μΩ・cm以下であることを特徴とする上記(13)記載の電気回路の製造法。
(8) A conductive paste containing the composite conductive powder according to any one of (1) to (7), a binder, and a solvent.
(9) The conductive paste according to (8), wherein the composite conductive powder is contained in an amount of 85 to 93% by weight based on the solid content of the conductive paste.
(10) The composite conductive powder according to any one of (1) to (7), a binder and a solvent are contained, and the irregular shaped conductive powder 5 is contained in 95 to 50% by weight of the flat silver-coated copper powder. The conductive paste according to the above (8) or (9), comprising about 50% by weight.
(11) An electric circuit formed on the surface of the substrate using the conductive paste according to any one of (8) to (10).
(12) The electric circuit according to (11), wherein the electric circuit formed on the surface of the substrate has a specific resistance of 25 μΩ · cm or less.
(13) A method for producing an electric circuit, comprising forming a circuit pattern on the surface of a base material with the conductive paste according to any one of the above (8) to (10), followed by pressing and curing.
(14) The method for producing an electric circuit according to the above (13), wherein the electric circuit formed on the surface of the substrate has a specific resistance of 25 μΩ · cm or less.

 請求項1記載の複合導電粉は、比抵抗が低く、高導電性で、かつ冷熱衝撃試験や湿中負荷試験後も比抵抗の変化の小さい電気回路形成用の導電ペーストが得られる。
 請求項2〜3記載の複合導電粉は、請求項1記載の複合導電粉のうち特に導電性に優れ
、さらに請求項1記載の複合導電粉に加えて耐酸化性及び耐熱性に優れる導電ペーストが得られる。
 請求項4〜6記載の複合導電粉は、加圧してアンカー効果を有する導電ペーストが得られる。
 請求項7記載の複合導電粉は、比抵抗が低く、高導電性で、かつ耐マイグレーション性に優れる電気回路形成用の導電ペーストが得られる。
The composite conductive powder according to the first aspect provides a conductive paste for forming an electric circuit having a low specific resistance, a high conductivity, and a small change in the specific resistance even after a thermal shock test or a wet and medium load test.
The composite conductive powder according to claims 2 and 3 is a conductive paste which is particularly excellent in conductivity among the composite conductive powders according to claim 1 and further has excellent oxidation resistance and heat resistance in addition to the composite conductive powder according to claim 1. Is obtained.
The composite conductive powder according to claims 4 to 6 is pressurized to obtain a conductive paste having an anchor effect.
According to the composite conductive powder of the present invention, a conductive paste for forming an electric circuit having low specific resistance, high conductivity and excellent migration resistance can be obtained.

 請求項8〜10記載の導電ペーストは、比抵抗が低く、高導電性で、かつ冷熱衝撃試験や湿中負荷試験後も比抵抗の変化が小さい電気回路形成用に好適である。
 請求項11記載の電気回路は、比抵抗が低く、高導電性で、かつ耐マイグレーション性に優れる。
 請求項12記載の電気回路は、請求項11記載の電気回路に加えて微細な回路を形成するのに優れる。
 請求項13記載の電気回路の製造法は、比抵抗が低く、高導電性で、かつ耐マイグレーション性に優れる。
 請求項14記載の電気回路の製造法は、請求項13記載の電気回路の製造法に加えて微細な回路を形成するのに優れる電気回路が製造できる。
The conductive paste according to claims 8 to 10 is suitable for forming an electric circuit having a low specific resistance, high conductivity, and a small change in specific resistance even after a thermal shock test or a wet and medium load test.
The electric circuit according to claim 11 has low specific resistance, high conductivity, and excellent migration resistance.
The electric circuit according to the twelfth aspect is excellent in forming a fine circuit in addition to the electric circuit according to the eleventh aspect.
The method for manufacturing an electric circuit according to claim 13 has low specific resistance, high conductivity, and excellent migration resistance.
According to the method of manufacturing an electric circuit described in claim 14, in addition to the method of manufacturing an electric circuit described in claim 13, an electric circuit excellent in forming a fine circuit can be manufactured.

 本発明において、扁平状銀被覆銅粉と不定形状導電粉を組み合わせて用いると、扁平状銀被覆銅粉と不定形状導電粉の接触確率が改善でき、電気回路の導電性が高くなり、特にシート状の基材に回路を印刷し、印刷回路をプレス加工する場合の導電性を高めることができる。 In the present invention, when the flat silver-coated copper powder and the irregular-shaped conductive powder are used in combination, the contact probability of the flat silver-coated copper powder and the irregular-shaped conductive powder can be improved, and the conductivity of the electric circuit is increased. When a circuit is printed on a substrate in a shape of a circle and the printed circuit is pressed, the conductivity can be increased.

 扁平状銀被覆銅粉とは、形状としてほぼ平坦で微細な小片からなる銀被覆銅粉で、例えば、りん片状銀被覆銅粉がある。不定形状導電粉とは、扁平状以外の形状の導電粉で、球状、立方体状、四面体状、塊状、略球状等と呼ばれる粉体、こんぺい糖のように表面に突起のある形状の粉体、これらの混合物等種々の導電粉のことである。種々の形状の導電粉を含むものとしては、例えば還元銀粉がある。 Flat silver-coated copper powder is a silver-coated copper powder composed of fine particles that are almost flat in shape, for example, flaky silver-coated copper powder. Irregular shaped conductive powders are conductive powders having shapes other than flat, such as powders called spherical, cubic, tetrahedral, massive, and generally spherical, and powders with protrusions on the surface, such as sugary sugar. It refers to various conductive powders such as a body and a mixture thereof. Examples of the conductive powder containing various shapes of conductive powder include reduced silver powder.

 扁平状銀被覆銅粉としては多くの場合、アスペクト比が6以上、好ましくは6〜11程度の扁平状銀被覆銅粉が該当し、この他に樹枝状(デンドライト状とも呼ばれる)などと呼ばれる形状のものがあり、このものも併用して用いることができる。アスペクト比が6以上、好ましくは6〜11の扁平状銀被覆銅粉としては、高導電性のペーストが得られるという点で、アスペクト比が7〜11が好ましく、アスペクト比が8〜11がより好ましく、アスペクト比が10〜11がさらに好ましい。よって、形状とアスペクト比の両面から述べると、高導電性、導電ペーストの粘度等の面からアスペクト比が7〜11の扁平状銀被覆銅粉がより好ましく、アスペクト比が8〜11の扁平状銀被覆銅粉がさらに好ましく、アスペクト比が10〜11の扁平状銀被覆銅粉が最も好ましい。 In many cases, the flat silver-coated copper powder corresponds to a flat silver-coated copper powder having an aspect ratio of 6 or more, preferably about 6 to 11, and other shapes such as dendrites (also called dendrites). And these can also be used in combination. As the flat silver-coated copper powder having an aspect ratio of 6 or more, preferably 6 to 11, the aspect ratio is preferably 7 to 11, and the aspect ratio is more preferably 8 to 11 in that a highly conductive paste is obtained. Preferably, the aspect ratio is more preferably from 10 to 11. Therefore, in terms of shape and aspect ratio, flat silver-coated copper powder having an aspect ratio of 7 to 11 is more preferable in terms of high conductivity, viscosity of the conductive paste, and the like, and a flat shape having an aspect ratio of 8 to 11 is preferred. Silver-coated copper powder is more preferable, and flat silver-coated copper powder having an aspect ratio of 10 to 11 is most preferable.

 扁平状銀被覆銅粉の粒子の平均粒子径としては、印刷性を低下させないという観点から、25μm以下のものが好ましく、20μm以下のものがより好ましく、10μm以下のものがさらに好ましい。なお、ここでいう平均粒子径は、レーザー散乱型粒度分布測定装置により測定することができる。本発明においては、前記装置としてマスターサイザー(マルバン社製)を用いて測定した。 か ら The average particle size of the particles of the flat silver-coated copper powder is preferably 25 μm or less, more preferably 20 μm or less, and even more preferably 10 μm or less, from the viewpoint of not deteriorating printability. Here, the average particle size can be measured by a laser scattering type particle size distribution measuring device. In the present invention, the measurement was performed using a master sizer (manufactured by Malvern) as the device.

 不定形状導電粉としては、アスペクト比が5以下の導電粉の多くが該当する。アスペクト比が5以下の導電粉としては、高導電性のペーストが得られるという点で、アスペクト比が4以下が好ましく、アスペクト比が3以下がより好ましく、アスペクト比が2.5以下がさらに好ましい。 多 く As the irregularly shaped conductive powder, most conductive powders having an aspect ratio of 5 or less correspond. As the conductive powder having an aspect ratio of 5 or less, an aspect ratio of 4 or less is preferable, an aspect ratio of 3 or less is more preferable, and an aspect ratio of 2.5 or less is more preferable in that a highly conductive paste is obtained. .

 不定形状導電粉の平均粒子径は、印刷性に優れる点で、3〜20μmの範囲が好ましく、3〜10μmの範囲がより好ましい。なお、ここでいう平均粒子径は、前記と同様に、レーザー散乱型粒度分布測定装置により測定することができる。本発明においては、前記装置としてマスターサイザー(マルバン社製)を用いて測定した。 で The average particle size of the irregularly shaped conductive powder is preferably in the range of 3 to 20 μm, more preferably 3 to 10 μm, from the viewpoint of excellent printability. In addition, the average particle diameter here can be measured by a laser scattering type particle size distribution measuring device in the same manner as described above. In the present invention, the measurement was performed using a master sizer (manufactured by Malvern) as the device.

 上記に示す、アスペクト比とは、扁平状銀被覆銅粉又は導電粉の粒子の長径と短径の比率(長径/短径)をいう。本発明においては、粘度の低い硬化性樹脂中に扁平状銀被覆銅粉又は導電粉の粒子をよく混合し、静置して粒子を沈降させるとともにそのまま樹脂を硬化させ、得られた硬化物を垂直方向に切断し、その切断面に現れる粒子の形状を電子顕微鏡で拡大して観察し、少なくとも100の粒子について一つ一つの粒子の長径/短径を求め、それらの平均値をもってアスペクト比とする。 ア ス ペ ク ト The aspect ratio described above refers to the ratio of the major axis to the minor axis (major axis / minor axis) of the particles of the flat silver-coated copper powder or conductive powder. In the present invention, the particles of the flaky silver-coated copper powder or conductive powder are mixed well in a low-viscosity curable resin, and the resin is cured as it is, allowing the particles to settle by standing, and the resulting cured product is cured. It is cut in the vertical direction, the shape of the particles appearing on the cut surface is enlarged and observed with an electron microscope, and the major axis / minor axis of each particle is obtained for at least 100 particles. I do.

 ここで、短径とは、前記切断面に現れる粒子について、その粒子の外側に接する二つの平行線の組合せを粒子を挾むように選択し、それらの組合せのうち最短間隔になる二つの平行線の距離である。一方、長径とは、前記短径を決する平行線に直角方向の二つの平行線であって、粒子の外側に接する二つの平行線の組合せのうち、最長間隔になる二つの平行線の距離である。これらの四つの線で形成される長方形は、粒子がちょうどその中に納まる大きさとなる。
 なお、本発明において行った具体的方法については後述する。
Here, the minor axis is defined as a combination of two parallel lines that are in contact with the outside of the particle so that the particle appears on the cut surface so as to sandwich the particle. Distance. On the other hand, the major axis is two parallel lines perpendicular to the parallel line that determines the minor axis, and is the distance between the two parallel lines that are the longest among the combinations of the two parallel lines that contact the outside of the particle. is there. The rectangle formed by these four lines is sized to fit the particle exactly inside it.
The specific method used in the present invention will be described later.

 不定形状導電粉の材質は、銀又は銀合金が導電性並びに耐酸化性の点で好ましい。
 上記の銀合金としては、パラジウム(例えば銀合金中に1〜5重量%程度)、白金(例えば銀合金中に1重量%程度)等との合金を用いることが好ましい。
 また上記の銀粉を作製する方法の1つに液中還元法があり、この方法によって作製される銀粉は平均粒径が数μmの微粉末であることから工業的な生産方法として広く利用されている。この液中還元法とは、銀を酸で溶解した後、これをアルカリで中和し、次いでこれにホルマリン、デンプン等の還元剤を添加して液中で還元して微粉末とする方法であり、これによって得られる粉末を還元銀粉といい、その形状は、塊状に近いが一定の形状ではなく不規則な形状をしている。この還元銀粉は本発明において不定形状導電粉として使用できる。
 不定形状導電粉としては、銀又は銀合金以外の導電体が銀又は銀合金で被覆されている銀被覆導電体粉であってもよい。
As the material of the irregularly shaped conductive powder, silver or a silver alloy is preferable in terms of conductivity and oxidation resistance.
As the silver alloy, it is preferable to use an alloy with palladium (for example, about 1 to 5% by weight in a silver alloy), platinum (for example, about 1% by weight in a silver alloy), or the like.
One of the methods for producing the silver powder is a submerged reduction method. The silver powder produced by this method is a fine powder having an average particle size of several μm, and is widely used as an industrial production method. I have. The in-liquid reduction method is a method in which silver is dissolved in an acid, then neutralized with an alkali, and then a reducing agent such as formalin or starch is added thereto and reduced in the liquid to form a fine powder. The resulting powder is called reduced silver powder, and its shape is close to a lump but is not a fixed shape but an irregular shape. This reduced silver powder can be used as an irregularly shaped conductive powder in the present invention.
The irregular-shaped conductive powder may be a silver-coated conductive powder in which a conductor other than silver or a silver alloy is coated with silver or a silver alloy.

 不定形状導電粉としては、上記したように銀被覆導電体粉であってもよいが、被覆される導電体としては、銀又は銀合金より硬度の高い導電体が好ましい。このような導電体としては、例えばCo、Ni、Cr、Cu、W等の金属粉又はこれらの合金粉を用いることができるが、この中で銅粉又は銅合金粉を用いることが好ましい。
 これを使用することにより、電気回路を加圧したとき、扁平状銀被覆銅粉に不定形状導電粉がくい込み電気回路の導電性が高くなるので好ましい。
 上記の銅合金粉としては、例えば銅とスズ、銅と亜鉛等との合金粉が用いられる。
As described above, the irregular-shaped conductive powder may be a silver-coated conductive powder, but the conductive material to be coated is preferably a conductive material having a higher hardness than silver or a silver alloy. As such a conductor, for example, metal powder of Co, Ni, Cr, Cu, W or the like or an alloy powder thereof can be used, and among them, copper powder or copper alloy powder is preferably used.
The use of this is preferable because when the electric circuit is pressurized, the conductive powder of the irregular shape is embedded in the flat silver-coated copper powder to increase the conductivity of the electric circuit.
As the copper alloy powder, for example, an alloy powder of copper and tin, copper and zinc, or the like is used.

 銅粉又は不定形状導電粉の表面に銀を被覆するには、置換めっき、電気めっき、無電解めっき等の方法があり、銅粉又は不定形状導電粉と銀との付着力が高いこと及びランニングコストが安価であることから、置換めっき法で被覆することが好ましい。銅粉又は不定形状導電粉の表面への銀の被覆量は、コスト、電食性の抑制効果などの点から銅粉又は不定形状導電粉に対して3〜50重量%の範囲が好ましく、3〜20重量%の範囲がさらに好ましい。 There are methods such as displacement plating, electroplating, and electroless plating to cover the surface of copper powder or irregular-shaped conductive powder with silver. The adhesion between copper powder or irregular-shaped conductive powder and silver is high and running. Since the cost is low, it is preferable to coat by a displacement plating method. The amount of silver coated on the surface of the copper powder or the irregularly shaped conductive powder is preferably in the range of 3 to 50% by weight based on the copper powder or the irregularly shaped conductive powder from the viewpoints of cost, effect of suppressing electrolytic corrosion, and the like. A range of 20% by weight is more preferred.

 前記したいずれの銀被覆銅粉又は銀被覆導電体粉を用いれば、耐マイグレーション性に優れるので好ましい。銀被覆銅粉又は銀被覆導電体粉は、銅粉又は導電体の一部が露出したものを用いることができる。これらは、扁平状銀被覆銅粉と不定形状導電粉のそれぞれに使用することができる。
 銅粉又は導電粉の露出面積は、良好な導電性を得る点で50%以下が好ましく、20%以下がさらに好ましい。
It is preferable to use any of the above-described silver-coated copper powder or silver-coated conductor powder because of excellent migration resistance. As the silver-coated copper powder or the silver-coated conductor powder, a powder in which a part of the copper powder or the conductor is exposed can be used. These can be used for each of the flat silver-coated copper powder and the irregular-shaped conductive powder.
The exposed area of the copper powder or conductive powder is preferably 50% or less, more preferably 20% or less, in order to obtain good conductivity.

 置換めっき後の球状の銀被覆銅粉は接触点が少ないため抵抗が高くなりやすい。そのため、置換めっき後の球状の銀被覆銅粉に衝撃を与え粒子の形状を扁平状に変形させればよい。具体的にはボールミル、振動ミル等の方法で変形させることができる。 抵抗 The resistance of the spherical silver-coated copper powder after displacement plating is likely to be high because of few contact points. Therefore, the spherical silver-coated copper powder after the displacement plating may be impacted to deform the particles into a flat shape. Specifically, it can be deformed by a method such as a ball mill and a vibration mill.

 扁平状銀被覆銅粉と不定形状導電粉との配合割合は、扁平状銀被覆銅粉95〜50重量%に対し不定形状導電粉が5〜50重量%の範囲であることが導電性を高める点で好ましく、扁平状銀被覆銅粉が80〜60重量%に対し不定形状導電粉が20〜40重量%の範囲であればさらに好ましい。 The mixing ratio of the flat silver-coated copper powder and the irregular-shaped conductive powder is such that the irregular-shaped conductive powder is in the range of 5 to 50% by weight with respect to the flat silver-coated copper powder of 95 to 50% by weight to enhance the conductivity. It is more preferable if the flat silver-coated copper powder is in the range of 80 to 60% by weight and the irregularly shaped conductive powder is in the range of 20 to 40% by weight.

 導電ペーストは、これらの複合導電粉、結合剤及び溶剤を含有してなるものである。この導電ペーストにおいて複合導電粉の含有量は導電ペーストの固形分に対して導体の抵抗、経済性及び接着性の点で85〜93重量%であることが好ましく、87〜90重量%であることがさらに好ましい。 The conductive paste contains these composite conductive powder, binder and solvent. In this conductive paste, the content of the composite conductive powder is preferably 85 to 93% by weight, and more preferably 87 to 90% by weight with respect to the solid content of the conductive paste in view of the resistance, economy and adhesiveness of the conductor. Is more preferred.

 結合剤としては、液状のエポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂等の有機質の接着剤成分が用いられ、また溶剤としては、テルピネオール、エチルカルビトール、カルビトールアセテート、ブチルセロソルブ等が用いられる。導電ペーストは上記の材料以外に2エチルメチルイミダゾールなどの有機質の接着剤成分の硬化剤及び必要に応じてベンゾチアゾール、ベンゾイミダゾール等の腐食抑制剤、微小黒鉛粉末などを添加して均一に混合して得られる。 有機 As the binder, an organic adhesive component such as a liquid epoxy resin, a phenol resin, or an unsaturated polyester resin is used. As the solvent, terpineol, ethyl carbitol, carbitol acetate, butyl cellosolve, or the like is used. In addition to the above-mentioned materials, the conductive paste is added with a curing agent of an organic adhesive component such as 2-ethylmethylimidazole, a corrosion inhibitor such as benzothiazole and benzimidazole as required, and fine graphite powder, and uniformly mixed. Obtained.

 結合剤及び溶剤の含有量は、導電性、接着性及び印刷性の点で導電ペーストに対して結合剤が7〜15重量%及び溶剤が10〜35重量%の範囲であることが好ましく、結合剤が7〜12重量%及び溶剤が15〜25重量%の範囲であることがさらに好ましい。また硬化剤の含有量は、作業性の点で結合剤100重量部に対して0.5〜10重量部の範囲であることが好ましく、1〜8重量部の範囲であることがさらに好ましい。腐食抑制剤及び微小黒鉛粉末は必要に応じて添加されるが、もし添加する場合その含有量は、腐食抑制剤は結合剤100重量部に対して0.1〜3重量部の範囲であることが好ましい。微小黒鉛粉末は導電ペーストに対して1〜10重量%の範囲であることが好ましい。 The content of the binder and the solvent is preferably in the range of 7 to 15% by weight of the binder and 10 to 35% by weight of the solvent with respect to the conductive paste in view of conductivity, adhesiveness and printability. More preferably, the agent is in the range of 7 to 12% by weight and the solvent is in the range of 15 to 25% by weight. The content of the curing agent is preferably in the range of 0.5 to 10 parts by weight, more preferably in the range of 1 to 8 parts by weight, based on 100 parts by weight of the binder from the viewpoint of workability. The corrosion inhibitor and the fine graphite powder are added as necessary, but if added, the content should be in the range of 0.1 to 3 parts by weight of the corrosion inhibitor with respect to 100 parts by weight of the binder. Is preferred. The fine graphite powder is preferably in the range of 1 to 10% by weight based on the conductive paste.

 電気回路の形成方法については特に制限はなく、公知の方法、例えば導電ペーストをスクリーン印刷、コンピュータでコントロールした描画機で形成することができる。
 基材としては、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、紙フェノール積層板、エポキシ樹脂ガラス布基材積層板、ポリイミド樹脂ガラス布基材積層板等が用いられる。
The method for forming the electric circuit is not particularly limited, and the electric circuit can be formed by a known method, for example, screen printing of a conductive paste or a drawing machine controlled by a computer.
As the substrate, a polyethylene terephthalate film, a polyimide film, a polyamideimide film, a paper phenol laminate, an epoxy resin glass cloth substrate laminate, a polyimide resin glass cloth substrate laminate, or the like is used.

 本発明において、電気回路の比抵抗は、好ましくは25μΩ・cm以下、より好ましくは15μΩ・cm以下とされ、25μΩ・cmを超えると導電性が低下する傾向があるため、電気回路の電圧降下が大きくなり、微細な電気回路にはしにくくなる。なお電気回路の比抵抗が10μΩ・cm以下であれば、微細で、かつコイル状の平面アンテナなどのような線の長さが長い電気回路に用いることができるので特に好ましい。 In the present invention, the specific resistance of the electric circuit is preferably 25 μΩcm or less, more preferably 15 μΩcm or less, and if it exceeds 25 μΩcm, the conductivity tends to decrease. It becomes difficult to make a fine electric circuit. Note that it is particularly preferable that the specific resistance of the electric circuit be 10 μΩ · cm or less, since the electric circuit can be used for a fine electric circuit having a long wire such as a coiled planar antenna.

 電気回路の比抵抗を25μΩ・cm以下にするには、基材の表面に上記の導電ペーストで回路パターンを形成した後、例えばプレスで加圧して回路パターンを緻密化することにより達成できる。プレスの方法は、定盤を用いて圧力をかける方法、ロールでプレスする方法等が適用され、導電ペーストで形成した導電層中の粉末同士の接触効率を高めることができればよい。なおプレスするときに導電層中の結合剤は軟化していることが好ましく、もし結合剤が半硬化状態又は硬化している場合は加熱して軟化させてから用いることが好ましい。結合剤の硬化はプレス後に硬化させてもよく、プレス中に硬化させてもよい。
 以下、本発明の実施例を説明する。
The specific resistance of the electric circuit can be reduced to 25 μΩ · cm or less by forming a circuit pattern on the surface of the base material using the above-mentioned conductive paste and then pressurizing the circuit pattern with a press, for example, to densify the circuit pattern. As a pressing method, a method of applying pressure using a surface plate, a method of pressing with a roll, or the like is applied, as long as the contact efficiency between powders in a conductive layer formed of a conductive paste can be increased. Note that the binder in the conductive layer is preferably softened during pressing, and if the binder is in a semi-cured state or is cured, it is preferably used after being softened by heating. The binder may be cured after pressing or may be cured during pressing.
Hereinafter, examples of the present invention will be described.

 ビスフェノールA型エポキシ樹脂(油化シェルエポキシ(株)製、商品名エピコート834)60重量部及びビスフェノールA型エポキシ樹脂(油化シェルエポキシ(株)製、商品名エピコート828)40重量部を予め加温溶解させ、次いで室温に冷却した後、2エチル4メチルイミダゾール(四国化成工業(株)製)5重量部、エチルカルビトール20重量部及びブチルセロソルブ20重量部を加えて均一に混合して樹脂組成物とした。 60 parts by weight of a bisphenol A type epoxy resin (trade name: Epicoat 834, manufactured by Yuka Shell Epoxy Co., Ltd.) and 40 parts by weight of bisphenol A type epoxy resin (trade name: Epicoat 828, manufactured by Yuka Shell Epoxy Co., Ltd.) are added in advance. After dissolving in warm water and then cooling to room temperature, 5 parts by weight of 2-ethyl 4-methylimidazole (manufactured by Shikoku Chemicals Co., Ltd.), 20 parts by weight of ethyl carbitol and 20 parts by weight of butyl cellosolve were added and uniformly mixed to obtain a resin composition. Things.

 次に、平均粒径が6.2μmの球状銅粉(日本アトマイズ加工(株)製、SF−Cu)に置換めっき法で銀を25重量%被覆した後、ジルコニアボールと共にボールミルで毎分60回転の条件で30分間回転させて形状を変形させ、長径の平均粒径が10.3μm、アスペクト比が6及び銅の露出面積が3〜18%の範囲で平均が7%のりん片状の銀被覆銅粉を得た。 Next, after coating 25% by weight of silver on a spherical copper powder (SF-Cu, manufactured by Nippon Atomize Processing Co., Ltd.) having an average particle diameter of 6.2 μm, the zirconia ball and the ball mill were rotated 60 times per minute after being coated with 25% by weight of silver. Is rotated for 30 minutes under the conditions described above to deform the shape, and the average particle diameter of the major axis is 10.3 μm, the aspect ratio is 6, and the exposed area of copper is in the range of 3 to 18%. A coated copper powder was obtained.

 また、上記とは別に、上記と同様の銅粉に置換めっき法で銀を25重量%被覆した後、ガラスボールと共にボールミルで毎分60回転の条件で20分間回転させて形状を変形させ、長径の平均粒径が7.5μm、アスペクト比が2及び銅の露出面積が2〜7%の範囲で平均が3%の不定形状の銀被覆銅粉を得た。 Separately from the above, the same copper powder as described above was coated with 25% by weight of silver by displacement plating, and then rotated together with a glass ball by a ball mill at a rate of 60 rotations per minute for 20 minutes to deform the shape. The average particle size was 7.5 μm, the aspect ratio was 2, and the exposed area of copper was in the range of 2 to 7% to obtain an irregularly shaped silver-coated copper powder having an average of 3%.

 次いで、りん片状の銀被覆銅粉410重量部(66.7重量%)及び不定形状の銀被覆銅粉205重量部(33.3重量%)を上記で得た樹脂組成物145重量部に添加し、撹拌らいかい機及び三本ロールで均一に混合分散して導電ペーストを得た。なおりん片状の銀被覆銅粉と不定形状の銀被覆銅粉の含有量は導電ペーストの固形分に対して86重量%であった。 Next, 410 parts by weight (66.7% by weight) of flaky silver-coated copper powder and 205 parts by weight (33.3% by weight) of irregularly shaped silver-coated copper powder were added to 145 parts by weight of the resin composition obtained above. The resulting mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill to obtain a conductive paste. The content of the flaky silver-coated copper powder and the irregular-shaped silver-coated copper powder was 86% by weight based on the solid content of the conductive paste.

 上記の銅の露出面積は、次のようにして求めた。すなわち、走査型電子顕微鏡(SEM)で銀被覆銅粉のSEM写真をとり、ここから無作為に銀被覆銅粉の粒子を20個選択して、X線マイクロアナライザーで銀及び銅の面分析を行って、銀で覆われている部分と銅が露出している部分の面積割合から銅の露出している割合を算出し、その平均値を求め、この平均値を被覆面積とした。以下の実施例及び比較例においても上記と同様の方法で銅の被覆面積を算出した。 露出 The above exposed copper area was determined as follows. That is, a SEM photograph of the silver-coated copper powder is taken with a scanning electron microscope (SEM), and 20 particles of the silver-coated copper powder are randomly selected from the SEM photograph, and the surface analysis of silver and copper is performed using an X-ray microanalyzer. Then, the ratio of exposed copper was calculated from the area ratio of the portion covered with silver and the portion where copper was exposed, and the average value was obtained. The average value was defined as the coating area. In the following Examples and Comparative Examples, the copper covering area was calculated in the same manner as described above.

 この後、上記で得た導電ペーストを用いて、厚さが125μmのポリエチレンテレフタレートフィルム上に図1及び図2に示す銀導電体回路1を印刷したものを大気中で80℃30分さらに100℃に加熱したプレスを用いて5MPaの圧力で2分間加熱加圧し、次いで145℃30分の条件で加熱処理して電気回路を得た。なお、図1及び図2において、2はポリエチレンテレフタレートフィルムであり、また図2おけるAの寸法は100μmである。 Thereafter, using the conductive paste obtained above, a silver conductor circuit 1 shown in FIGS. 1 and 2 was printed on a 125 μm-thick polyethylene terephthalate film at 80 ° C. for 30 minutes in the air and at 100 ° C. Using a press heated at a pressure of 5 MPa for 2 minutes, a heat treatment was performed at 145 ° C. for 30 minutes to obtain an electric circuit. 1 and 2, reference numeral 2 denotes a polyethylene terephthalate film, and the dimension of A in FIG. 2 is 100 μm.

 次に、得られた図1に示す電気回路の比抵抗を測定したところ11.5μΩ・cmであった。また電気回路の冷熱衝撃試験を実施した結果、比抵抗の変化率は5%であった。さらに図2に示すくし型電気回路の湿中負荷試験を実施した結果、配線間の絶縁抵抗は108Ω以上であった。なお冷熱試験条件は125℃30分〜−65℃30分を100サイクル行い、湿中負荷試験は40℃90%RH中で隣あうライン間に50Vの電圧を印加して2000時間保持した。 Next, when the specific resistance of the obtained electric circuit shown in FIG. 1 was measured, it was 11.5 μΩ · cm. In addition, as a result of performing a thermal shock test on the electric circuit, the rate of change in specific resistance was 5%. Further result of the medium load test wet comb the electric circuit shown in FIG. 2, the insulation resistance between wires was at least 10 8 Omega. The cooling / heating test conditions were 100 cycles of 125 ° C. for 30 minutes to −65 ° C. for 30 minutes, and the humidity and load test was carried out by applying a voltage of 50 V between adjacent lines at 40 ° C. and 90% RH for 2000 hours.

 なお、本実施例におけるアスペクト比の具体的測定法を以下に示す。低粘度のエポキシ樹脂(ビューラー社製)の主剤(No.20-8130)8gと硬化剤(No.20-8132)2gを混合し、ここへ導電粉2gを混合して良く分散させ、そのまま30℃で真空脱泡した後、6〜8時間30℃で静置して粒子を沈降させ硬化させた。その後、得られた硬化物を垂直方向に切断し、切断面を電子顕微鏡で2000倍に拡大して切断面に現われた100個の粒子について長径/短径を求め、それらの平均値をもって、アスペクト比とした。 Note that a specific method of measuring the aspect ratio in this example is described below. 8 g of a base material (No. 20-8130) of a low-viscosity epoxy resin (manufactured by Buehler Co.) and 2 g of a curing agent (No. 20-8132) are mixed, and 2 g of conductive powder is mixed and dispersed well, and the mixture is left as it is. After degassing in vacuo at ℃, the particles were allowed to stand at 30 ℃ for 6 to 8 hours to settle and harden the particles. Thereafter, the obtained cured product was cut in the vertical direction, and the cut surface was magnified 2000 times with an electron microscope to determine the major axis / minor axis for 100 particles appearing on the cut surface. Ratio.

 実施例1で得たりん片状の銀被覆銅粉700重量部(87.5重量%)及び実施例1で得た不定形状の銀被覆銅粉100重量部(12.5重量%)を実施例1で得た樹脂組成物145重量部に添加し、撹拌らいかい機及び三本ロールで均一に混合分散して導電ペーストを得た。なおりん片状の銀被覆銅粉と不定形状の銀被覆銅粉の含有量は導電ペーストの固形分に対して89重量%であった。以下実施例1と同様の工程を経て電気回路を作製してその特性を評価した。その結果、電気回路の比抵抗は9.5μΩ・cmであった。また電気回路の冷熱衝撃試験を実施した結果、比抵抗の変化率は4%であり、くし型電気回路の湿中負荷試験では配線間の絶縁抵抗は108Ω以上であった。 700 parts by weight (87.5% by weight) of the flaky silver-coated copper powder obtained in Example 1 and 100 parts by weight (12.5% by weight) of the irregularly shaped silver-coated copper powder obtained in Example 1 were used. The mixture was added to 145 parts by weight of the resin composition obtained in Example 1, and uniformly mixed and dispersed with a stirrer and a three-roll mill to obtain a conductive paste. The content of the flaky silver-coated copper powder and the irregular-shaped silver-coated copper powder was 89% by weight based on the solid content of the conductive paste. Hereinafter, an electric circuit was manufactured through the same steps as in Example 1, and its characteristics were evaluated. As a result, the specific resistance of the electric circuit was 9.5 μΩ · cm. As a result of performing a thermal shock test on the electric circuit, the rate of change in specific resistance was 4%, and the insulation resistance between the wirings was 10 8 Ω or more in a wet / medium load test on the comb-type electric circuit.

 実施例1で得たりん片状の銀被覆銅粉750重量部(83.3重量%)及び実施例1で用いた銅粉の表面に置換めっき法で銀を10重量%被覆した後、実施例1と同様の工程を経て得た長径の平均粒径が6.0μm、アスペクト比が2及び銅の露出面積が3〜13%の範囲で平均が7%の不定形状銀被覆銅粉150重量部(16.7重量%)を実施例1で得た樹脂組成物145重量部に添加し、撹拌らいかい機及び三本ロールで均一に混合分散して導電ペーストを得た。なおりん片状の銀被覆銅粉と不定形状の銀被覆銅粉の含有量は導電ペーストの固形分に対して89重量%であった。以下プレスの圧力を20MPaの条件で行った以外は実施例33と同様の工程を経て電気回路を作製してその特性を評価した。その結果、電気回路の比抵抗は8.3μΩ・cmであった。また電気回路の冷熱衝撃試験を実施した結果、比抵抗の変化率は5%であり、くし型電気回路の湿中負荷試験では、配線間の絶縁抵抗は108Ω以上であった。 750 parts by weight (83.3% by weight) of the flaky silver-coated copper powder obtained in Example 1 and 10% by weight of silver were coated on the surface of the copper powder used in Example 1 by displacement plating. Amorphous silver-coated copper powder having an average major particle diameter of 6.0 μm, an aspect ratio of 2 and an exposed area of copper of 3 to 13%, and an average of 7%, and having an average of 7%, obtained by the same process as in Example 1 150 weight Parts (16.7% by weight) was added to 145 parts by weight of the resin composition obtained in Example 1, and the mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill to obtain a conductive paste. The content of the flaky silver-coated copper powder and the irregular-shaped silver-coated copper powder was 89% by weight based on the solid content of the conductive paste. Hereinafter, an electric circuit was produced through the same steps as in Example 33 except that the pressing pressure was set to 20 MPa, and its characteristics were evaluated. As a result, the specific resistance of the electric circuit was 8.3 μΩ · cm. In addition, as a result of performing a thermal shock test of the electric circuit, the rate of change of the specific resistance was 5%, and the insulation resistance between the wirings was 10 8 Ω or more in the wet and medium load test of the comb-type electric circuit.

 実施例3で得た導電ペーストを用いて実施例1と同様の工程を経て電気回路を作製し、次いで熱ロール、温度100℃及び圧力10MPaの条件で加熱加圧して印刷回路を緻密化してその特性を評価した。その結果、緻密化した電気回路の比抵抗は8.4μΩ・cmであった。また緻密化した電気回路の冷熱衝撃試験を実施した結果、比抵抗の変化率は4%であり、くし型電気回路の湿中負荷試験では、配線間の絶縁抵抗は108Ω以上であった。 Using the conductive paste obtained in Example 3, an electric circuit was manufactured through the same steps as in Example 1, and then the printed circuit was densified by heating and pressing under the conditions of a hot roll, a temperature of 100 ° C. and a pressure of 10 MPa. The properties were evaluated. As a result, the specific resistance of the densified electric circuit was 8.4 μΩ · cm. In addition, as a result of performing a thermal shock test on the densified electric circuit, the rate of change in specific resistance was 4%, and the insulation resistance between the wirings was 10 8 Ω or more in a wet / medium load test of the comb-type electric circuit. .

比較例1
 実施例1で得た樹脂組成物145重量部に実施例1で得たりん片状の銀被覆銅粉を400重量部添加し、撹拌らいかい機及び三本ロールで均一に混合分散して導電ペーストを得た。次にプレスでの加熱加圧工程を除いた以外は実施例1と同様の工程を経て電気回路を作製してその特性を評価した。その結果、電気回路の比抵抗は62μΩ・cmであった。また電気回路の冷熱衝撃試験を実施した結果、比抵抗の変化率は10%であり、くし型電気回路の湿中負荷試験では、配線間の絶縁抵抗は108Ω以上であった。
Comparative Example 1
400 parts by weight of the flaky silver-coated copper powder obtained in Example 1 was added to 145 parts by weight of the resin composition obtained in Example 1, and the mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill. A paste was obtained. Next, an electric circuit was manufactured through the same steps as in Example 1 except for the step of heating and pressing with a press, and its characteristics were evaluated. As a result, the specific resistance of the electric circuit was 62 μΩ · cm. In addition, as a result of performing a thermal shock test on the electric circuit, the rate of change of the specific resistance was 10%, and the insulation resistance between the wirings was 10 8 Ω or more in the wet and medium load test of the comb-type electric circuit.

比較例2
 実施例1で得た樹脂組成物145重量部にアスペクト比が8で長径の平均粒径が8μmのりん片状の銀粉(徳力化学研究所製、商品名TCG−1)を400重量部添加し、撹拌らいかい機及び三本ロールで均一に混合分散して導電ペーストを得た。次にプレスでの加熱加圧工程を除いた以外は実施例1と同様の工程を経て電気回路を作製してその特性を評価した。その結果、電気回路の比抵抗は62μΩ・cmであった。また電気回路の冷熱衝撃試験を実施した結果、比抵抗の変化率は10%であり、くし型電気回路の湿中負荷試験では、試験時間370時間で配線間の絶縁抵抗は108Ω以下に低下し、配線間に銀のマイグレーションが発生していた。
Comparative Example 2
To 145 parts by weight of the resin composition obtained in Example 1, 400 parts by weight of flaky silver powder (manufactured by Tokurika Chemical Laboratory, trade name: TCG-1) having an aspect ratio of 8 and a long average particle diameter of 8 μm were added. The mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill to obtain a conductive paste. Next, an electric circuit was manufactured through the same steps as in Example 1 except for the step of heating and pressing with a press, and its characteristics were evaluated. As a result, the specific resistance of the electric circuit was 62 μΩ · cm. In addition, as a result of performing a thermal shock test on the electric circuit, the rate of change of the specific resistance was 10%. In a wet and medium load test of the comb-type electric circuit, the insulation resistance between the wirings was reduced to 10 8 Ω or less in a test time of 370 hours. And migration of silver occurred between wirings.

比較例3
 実施例1で得た樹脂組成物145重量部に実施例1で得たりん片状に変形する前の表面を銀で被覆した銅粉(銅の露出面積が1%未満で、ほぼ0%)を400重量部を添加し、撹拌らいかい機及び三本ロールで均一に混合分散して導電ペーストを得た。次にプレスでの加熱加圧工程を除いた以外は実施例1と同様の工程を経て電気回路を作製してその特性を評価した。その結果、電気回路の比抵抗は65μΩ・cmであった。また電気回路の冷熱衝撃試験を実施した結果、比抵抗の変化率は12%であり、くし型電気回路の湿中負荷試験では、試験時間530時間で配線間の絶縁抵抗は108Ω以下に低下し、配線間に銀のマイグレーションが発生していた。
Comparative Example 3
Copper powder coated with 145 parts by weight of the resin composition obtained in Example 1 and coated with silver before the scaly shape obtained in Example 1 (exposed area of copper is less than 1%, almost 0%) Was added, and the mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill to obtain a conductive paste. Next, an electric circuit was manufactured through the same steps as in Example 1 except for the step of heating and pressing with a press, and its characteristics were evaluated. As a result, the specific resistance of the electric circuit was 65 μΩ · cm. In addition, as a result of performing a thermal shock test of the electric circuit, the rate of change of the specific resistance was 12%. In a wet and medium load test of the comb-type electric circuit, the insulation resistance between the wirings was reduced to 10 8 Ω or less in a test time of 530 hours. And migration of silver occurred between wirings.

ポリエチレンテレフタレートフィルムに銀導電体回路を印刷した状態を示す平面図である。It is a top view showing the state where a silver conductor circuit was printed on a polyethylene terephthalate film. ポリエチレンテレフタレートフィルムに銀導電体回路をくし型状に印刷した状態を示す平面図である。FIG. 3 is a plan view showing a state in which silver conductor circuits are printed in a comb shape on a polyethylene terephthalate film.

符号の説明Explanation of reference numerals

1 銀導電体回路
2 ポリエチレンテレフタレートフィルム
1 silver conductor circuit 2 polyethylene terephthalate film

Claims (14)

 被覆されている導電体が露出している扁平状の銀被覆銅粉及び不定形状導電粉を含む複合導電粉。 複合 Composite conductive powder containing flat silver-coated copper powder with exposed conductors and irregular-shaped conductive powder.  不定形状導電粉の材質が、銀又は銀合金である請求項1記載の複合導電粉。 The composite conductive powder according to claim 1, wherein the material of the irregularly shaped conductive powder is silver or a silver alloy.  不定形状導電粉が、還元銀粉である請求項2記載の複合導電粉。 3. The composite conductive powder according to claim 2, wherein the irregular-shaped conductive powder is a reduced silver powder.  不定形状導電粉が、銀又は銀合金より硬度が高い導電体が銀で被覆されたものである請求項2記載の複合導電粉。 (3) The composite conductive powder according to (2), wherein the irregular-shaped conductive powder is obtained by coating a conductor having a hardness higher than silver or a silver alloy with silver.  銀又は銀合金より硬度が高い導電体が、Co、Ni、Cr、Cu、W粉又はこれらの合金粉である請求項4記載の複合導電粉。 5. The composite conductive powder according to claim 4, wherein the conductor having a higher hardness than silver or a silver alloy is a powder of Co, Ni, Cr, Cu, W or an alloy thereof.  銀又は銀合金より硬度が高い導電体が、銅粉又は銅合金粉である請求項5記載の複合導電粉。 6. The composite conductive powder according to claim 5, wherein the conductor having a higher hardness than silver or a silver alloy is copper powder or copper alloy powder.  不定形状導電粉が、被覆された導電体が露出している銀被覆銅粉又は銀被覆銅合金粉である請求項4〜6のいずれかに記載の複合導電粉。 The composite conductive powder according to any one of claims 4 to 6, wherein the irregular-shaped conductive powder is a silver-coated copper powder or a silver-coated copper alloy powder from which the coated conductor is exposed.  請求項1〜7のいずれかに記載の複合導電粉、結合剤及び溶剤を含有してなる導電ペースト。 A conductive paste comprising the composite conductive powder according to claim 1, a binder, and a solvent.  複合導電粉が、導電ペーストの固形分に対して85〜93重量%含有される請求項8記載の導電ペースト。 The conductive paste according to claim 8, wherein the composite conductive powder is contained in an amount of 85 to 93% by weight based on the solid content of the conductive paste.  請求項1〜7のいずれかに記載の複合導電粉、結合剤及び溶剤を含有してなり、被覆されている導電体が露出している扁平状の銀被覆銅粉95〜50重量%に対し、不定形状導電粉5〜50重量%を含有してなる請求項8又は9記載の導電ペースト。 A flat silver-coated copper powder containing the composite conductive powder according to any one of claims 1 to 7, a binder, and a solvent and exposing the coated conductor, based on 95 to 50% by weight. 10. The conductive paste according to claim 8, comprising 5 to 50% by weight of the irregularly shaped conductive powder.  請求項8〜10のいずれかに記載の導電ペーストを用いて基材の表面に形成された電気回路。 An electric circuit formed on the surface of a substrate using the conductive paste according to any one of claims 8 to 10.  基材の表面に形成された電気回路の比抵抗が25μΩ・cm以下である請求項11記載の電気回路。 12. The electric circuit according to claim 11, wherein a specific resistance of the electric circuit formed on the surface of the base material is 25 μΩ · cm or less.  基材の表面に請求項8〜10のいずれかに記載の導電ペーストで回路パターンを形成した後、加圧、硬化することを特徴とする電気回路の製造法。 (11) A method for producing an electric circuit, comprising: forming a circuit pattern on the surface of a substrate with the conductive paste according to any one of claims 8 to 10;  基材の表面に形成された電気回路の比抵抗が25μΩ・cm以下であることを特徴とする請求項13記載の電気回路の製造法。 14. The method for manufacturing an electric circuit according to claim 13, wherein the specific resistance of the electric circuit formed on the surface of the base material is 25 μΩ · cm or less.
JP2003329831A 1995-02-08 2003-09-22 Compound electroconductive powder, electroconductive paste, electric circuit, and manufacturing method of electric circuit Pending JP2004079545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003329831A JP2004079545A (en) 1995-02-08 2003-09-22 Compound electroconductive powder, electroconductive paste, electric circuit, and manufacturing method of electric circuit

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2026995 1995-02-08
JP2026895 1995-02-08
JP4695395 1995-03-07
JP14049595 1995-06-07
JP18147395 1995-07-18
JP2003329831A JP2004079545A (en) 1995-02-08 2003-09-22 Compound electroconductive powder, electroconductive paste, electric circuit, and manufacturing method of electric circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP01991496A Division JP3513636B2 (en) 1995-02-08 1996-02-06 Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003367260A Division JP3952004B2 (en) 1995-02-08 2003-10-28 Conductive paste

Publications (1)

Publication Number Publication Date
JP2004079545A true JP2004079545A (en) 2004-03-11

Family

ID=32034491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329831A Pending JP2004079545A (en) 1995-02-08 2003-09-22 Compound electroconductive powder, electroconductive paste, electric circuit, and manufacturing method of electric circuit

Country Status (1)

Country Link
JP (1) JP2004079545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156438A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Manufacturing method of electronic component loading device and electronic component loading device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315903A (en) * 1988-06-14 1989-12-20 Tdk Corp Electricaly conductive paste and chip parts
JPH0367402A (en) * 1989-08-03 1991-03-22 Toagosei Chem Ind Co Ltd Conducting composition material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315903A (en) * 1988-06-14 1989-12-20 Tdk Corp Electricaly conductive paste and chip parts
JPH0367402A (en) * 1989-08-03 1991-03-22 Toagosei Chem Ind Co Ltd Conducting composition material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156438A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Manufacturing method of electronic component loading device and electronic component loading device

Similar Documents

Publication Publication Date Title
US5951918A (en) Composite electroconductive powder, electroconductive paste, process for producing electroconductive paste, electric circuit and process for producing electric circuit
JP4677900B2 (en) Mixed conductive powder and its use
US6515237B2 (en) Through-hole wiring board
EP0965997B1 (en) Via-filling conductive paste composition
JP3599149B2 (en) Conductive paste, electric circuit using conductive paste, and method of manufacturing electric circuit
JP3879749B2 (en) Conductive powder and method for producing the same
JP3513636B2 (en) Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit
JP2001297627A (en) Conductive material
JP2004165357A (en) Film-laced heat-conducting sheet
JP3952004B2 (en) Conductive paste
JP2004079545A (en) Compound electroconductive powder, electroconductive paste, electric circuit, and manufacturing method of electric circuit
JPH10152630A (en) Conductive paste and composite conductive powder
JP2000322933A (en) Conductive paste and its manufacture
JP3618441B2 (en) Conductive metal composite powder and manufacturing method thereof
JPH0969313A (en) Conductive paste and its manufacture, and electric circuit device using conductive paste and its manufacture
JP3596563B2 (en) Conductive paste
JP2001093330A (en) Through-hole conductor forming conductive paste and its manufacturing method as well as both-side printed wiring board using through-hole conductor forming conductive paste
JPH06333417A (en) Conductive paste
JPH10188670A (en) Flat conductive metal powder, its manufacture, and conductive paste with flat conductive metal powder
JPH0714427A (en) Conductive paste
JP4189792B2 (en) Conductive composition
JP2003068139A (en) Conductive paste
WO2016009873A1 (en) Method for producing conductive coating film, and conductive coating film
JPH07307110A (en) Conductive paste
JPH07307112A (en) Conductive paste

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017