JP2001093330A - Through-hole conductor forming conductive paste and its manufacturing method as well as both-side printed wiring board using through-hole conductor forming conductive paste - Google Patents

Through-hole conductor forming conductive paste and its manufacturing method as well as both-side printed wiring board using through-hole conductor forming conductive paste

Info

Publication number
JP2001093330A
JP2001093330A JP27030299A JP27030299A JP2001093330A JP 2001093330 A JP2001093330 A JP 2001093330A JP 27030299 A JP27030299 A JP 27030299A JP 27030299 A JP27030299 A JP 27030299A JP 2001093330 A JP2001093330 A JP 2001093330A
Authority
JP
Japan
Prior art keywords
conductive paste
hole conductor
powder
hole
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27030299A
Other languages
Japanese (ja)
Inventor
Junichi Kikuchi
純一 菊池
秀次 ▲桑▼島
Hideji Kuwajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP27030299A priority Critical patent/JP2001093330A/en
Publication of JP2001093330A publication Critical patent/JP2001093330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a through-hole conductor forming conductive paste superior in through- hole passing and soldering performance and its manufacturing method as well as a both-side printed wiring board using the through-hole conductor forming conductive paste. SOLUTION: A through-hole conductor forming conductive paste comprises containing sulfonic acid based hardening agent, binder, conductive powder formed of copper powder or copper alloy powder having almost all surfaces coated with silver while leaving exposed portions, and organic solvent; and a manufacture of the through-hole conductor forming conductive paste comprises coating almost all surfaces of copper powder or copper alloy powder with silver while leaving exposed portions and then uniformly mixing sulfonic acid hardening agent, binder and organic solvent added thereto; as well as a both-side printed wiring board comprises forming through-holes passing through a printed board having electric circuits on both sides, conducting the electric circuits on both sides through the through-holes with the above-described conductive paste or the conductive paste manufactured in the above- described method, and passing a portion of a through-hole conductor therethrough to form pin-insertion holes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気回路、特にス
ルーホール貫通性が良好で、かつはんだ付けが可能なス
ルーホール導体形成用導電ペースト及びその製造法並び
にスルーホール導体形成用導電ペーストを用いた両面プ
リント配線板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste for forming a through-hole conductor which has good through-hole penetrability and can be soldered, a method of manufacturing the same, and a conductive paste for forming a through-hole conductor. Related to a double-sided printed wiring board.

【0002】[0002]

【従来の技術】従来、プリント配線板、電子部品等の電
気回路(配線導体)を形成する方法として、電子材料、
1994年10月号の42〜46頁に記載されているよ
うに金、銀、銅、カーボン等の導電性粉末を用い、それ
にバインダー、有機溶剤及び必要に応じて添加剤を加え
てペースト状に混合した導電ペーストを塗布又は印刷す
る方法が一般的に知られている。特に高導電性が要求さ
れる分野では、金粉又は銀粉が一般的に用いられてい
る。
2. Description of the Related Art Conventionally, as a method of forming an electric circuit (wiring conductor) such as a printed wiring board or an electronic component, electronic materials,
As described on pages 42 to 46 of the October 1994 issue, a conductive powder of gold, silver, copper, carbon, or the like is used, and a binder, an organic solvent, and additives as needed are added thereto to form a paste. A method of applying or printing a mixed conductive paste is generally known. Particularly in a field where high conductivity is required, gold powder or silver powder is generally used.

【0003】配線板基材の表面と裏面の両面における電
気回路の導通は、図1に示すように、スルーホール1内
にめっき2を施すか又は導電ペースト3を充填する方法
があるが、このうちピン4を挿入するためにはスルーホ
ール1内にめっき2を施して導通するのが一般的であ
る。しかし、めっき2はスルーホール1の内壁に施さな
ければならないため工程数、時間及びライニグコストが
かかるという欠点がある。一方、導電ペースト3を用い
る場合は、充填、乾燥、硬化工程終了後、スルーホール
1内を塞いでしまう可能性があり、またはんだ5を用い
てはんだ付けを行うに際してはんだ付け性が悪いという
欠点がある。もしスルーホール1が塞がっている場合、
ピン4を無理に挿入すると図2に示すようにピン4がス
ルーホール1を塞いでいる部分の導電ペースト3に突き
刺さり、クラック6が発生し、表面と裏面が導通しなく
なる可能性がある。
As shown in FIG. 1, conduction of an electric circuit on both the front surface and the back surface of a wiring board substrate is achieved by plating 2 in a through hole 1 or filling a conductive paste 3 in this method. In order to insert the pin 4, the plating 2 is generally applied to the inside of the through hole 1 to conduct electricity. However, the plating 2 has to be applied to the inner wall of the through hole 1 and thus has the disadvantage that the number of steps, time and lining cost are increased. On the other hand, when the conductive paste 3 is used, there is a possibility that the through hole 1 may be closed after the filling, drying and curing steps, or the solderability is poor when soldering with the solder 5. There is. If through hole 1 is closed,
If the pin 4 is forcibly inserted, as shown in FIG. 2, the pin 4 may pierce the conductive paste 3 in the portion blocking the through hole 1, causing a crack 6 to occur, and the front surface and the back surface may not be conductive.

【0004】上記の欠点を解決するために、バインダー
及びその硬化剤又は導電粉の形状の検討が行われている
が、初期特性、スルーホール貫通性及びはんだ付け性の
バランスが悪く、十分な効果の得られるものではなかっ
た。なお図1及び図2において7は配線板基材である。
In order to solve the above-mentioned drawbacks, studies have been made on the shape of the binder and its hardener or conductive powder. However, the initial properties, through-hole penetration and solderability are poorly balanced and sufficient effects are obtained. Was not what you get. In FIGS. 1 and 2, reference numeral 7 denotes a wiring board base material.

【0005】[0005]

【発明が解決しようとする課題】請求項1記載の発明
は、スルーホール貫通性とはんだ付け性に優れるスルー
ホール導体形成用導電ペーストを提供するものである。
請求項2及び3記載の発明は、請求項1記載の発明のう
ち、特にスルーホール貫通性の向上効果に優れるスルー
ホール導体形成用導電ペーストを提供するものである。
請求項4及び5記載の発明は、請求項1記載の発明のう
ち、特にはんだ付け性の向上効果に優れ、また請求項1
の発明に加えて導電性の向上効果に優れるスルーホール
導体形成用導電ペーストを提供するものである。
SUMMARY OF THE INVENTION The first aspect of the present invention is to provide a conductive paste for forming a through-hole conductor which has excellent through-hole penetration and solderability.
The inventions according to claims 2 and 3 provide a conductive paste for forming a through-hole conductor, which is particularly excellent in the effect of improving the through-hole penetration property.
The inventions according to Claims 4 and 5 are particularly excellent in the effect of improving solderability among the inventions according to Claim 1, and Claim 1
Another object of the present invention is to provide a conductive paste for forming a through-hole conductor, which is excellent in the effect of improving conductivity in addition to the invention of (1).

【0006】請求項6記載の発明は、スルーホール貫通
性とはんだ付け性に優れるスルーホール導体形成用導電
ペーストの製造法を提供するものである。請求項7記載
の発明は、前記のスルーホール導体形成用導電ペースト
を用いることにより、表面と裏面の両面における電気回
路が導通すると共にスルーホール導通部分を貫通させて
ピン挿入孔が形成される両面プリント配線板を提供する
ものである。
The invention according to claim 6 provides a method for producing a conductive paste for forming a through-hole conductor, which is excellent in through-hole penetration and solderability. According to a seventh aspect of the present invention, by using the conductive paste for forming a through-hole conductor, the electric circuit on both the front and back surfaces is conducted, and the pin insertion hole is formed through the through-hole conducting portion. A printed wiring board is provided.

【0007】[0007]

【課題を解決するための手段】本発明は、スルホン酸系
の硬化剤、バインダー、銅粉又は銅合金粉の一部を露出
して表面が大略銀で被覆された導電粉及び有機溶剤を含
有してなるスルーホール導体形成用導電ペーストに関す
る。また、本発明は、バインダーが、エポキシ樹脂及び
フェノール樹脂である前記のスルーホール導体形成用導
電ペーストに関する。また、本発明は、スルホン酸系の
硬化剤が、固形分のフェノール樹脂90〜99.95重
量%に対して0.05〜10重量%である前記のスルー
ホール導体形成用導電ペーストに関する。また、本発明
は、バインダーと導電粉の配合割合が、導電ペーストの
固形分に対してバインダーが5〜15重量%及び導電粉
が85〜95重量%である前記のスルーホール導体形成
用導電ペーストに関する。
The present invention comprises a sulfonic acid-based curing agent, a binder, a conductive powder whose surface is substantially covered with silver by exposing a part of copper powder or copper alloy powder, and an organic solvent. And a conductive paste for forming a through-hole conductor. The present invention also relates to the conductive paste for forming a through-hole conductor, wherein the binder is an epoxy resin or a phenol resin. The present invention also relates to the conductive paste for forming a through-hole conductor, wherein the sulfonic acid-based curing agent is 0.05 to 10% by weight based on 90 to 99.95% by weight of the solid phenol resin. In addition, the present invention provides the conductive paste for forming a through-hole conductor, wherein the blending ratio of the binder and the conductive powder is 5 to 15% by weight of the binder and 85 to 95% by weight of the conductive powder based on the solid content of the conductive paste. About.

【0008】また、本発明は、導電粉が、アスペクト比
3〜20及び長径の平均粒径5〜30μmで、かつ銅粉
又は銅合金粉の露出面積が10〜60%の扁平状導電粉
である前記のスルーホール導体形成用導電ペーストに関
する。また、本発明は、銅粉又は銅合金粉の一部を露出
して表面を大略銀で被覆した後、スルホン酸系の硬化
剤、バインダー及び有機溶剤を加えて均一に混合するこ
とを特徴とするスルーホール導体形成用導電ペーストの
製造法に関する。さらに、本発明は、電気回路を両面に
有するプリント配線板に貫通するスルーホールを形成
し、前記のスルーホール導体形成用導電ペースト又は前
記の方法で製造されたスルーホール導体形成用導電ペー
ストで、該スルーホールを通じて両面の電気回路を導通
させると共にスルーホール導体部分を貫通させてピン挿
入孔を形成してなる両面プリント配線板に関する。
Further, the present invention provides a conductive powder which is a flat conductive powder having an aspect ratio of 3 to 20 and an average major particle diameter of 5 to 30 μm and an exposed area of copper powder or copper alloy powder of 10 to 60%. The present invention relates to the conductive paste for forming a through-hole conductor. Further, the present invention is characterized in that after part of the copper powder or copper alloy powder is exposed and the surface is substantially covered with silver, a sulfonic acid-based curing agent, a binder and an organic solvent are added and uniformly mixed. The present invention relates to a method for producing a conductive paste for forming a through-hole conductor. Furthermore, the present invention forms a through hole penetrating a printed wiring board having an electric circuit on both sides, and the conductive paste for forming a through hole conductor or the conductive paste for forming a through hole conductor manufactured by the method described above, The present invention relates to a double-sided printed wiring board having a pin insertion hole formed by conducting electric circuits on both sides through the through hole and penetrating a conductor portion of the through hole.

【0009】[0009]

【発明の実施の形態】スルホン酸系の硬化剤としてはフ
ェノール樹脂の硬化剤としての働きから、水と1:1で
混合した溶液のPHが5〜8.8、解離温度が60〜1
30℃の範囲であるものが好ましく、PHが5.5〜
7.5、解離温度が65〜120℃の範囲であるものが
さらに好ましい。その代表的なものとしては、p−トル
エンスルホン酸〔式(a)〕、ジノニルナフタレンスル
ホン酸〔一般式(b)〕、ジノニルナフタレンジスルホ
ン酸〔一般式(c)〕、ドデシルベンゼンスルホン酸
〔式(d)〕、それらのブロックタイプ等が挙げられ
る。
BEST MODE FOR CARRYING OUT THE INVENTION As a sulfonic acid-based curing agent, a solution mixed with water at a ratio of 1: 1 has a pH of 5 to 8.8 and a dissociation temperature of 60 to 1 because of its function as a phenol resin curing agent.
Those having a temperature range of 30 ° C. are preferred, and the pH is 5.5 to 5.5.
7.5, and those having a dissociation temperature in the range of 65 to 120 ° C are more preferable. Representative examples thereof include p-toluenesulfonic acid [formula (a)], dinonylnaphthalenesulfonic acid [general formula (b)], dinonylnaphthalenedisulfonic acid [general formula (c)], dodecylbenzenesulfonic acid [Formula (d)], their block types, and the like.

【0010】[0010]

【化1】 Embedded image

【0011】硬化剤の添加量は、スルーホール貫通性、
抵抗値、そのばらつき等の点から固形分のフェノール樹
脂90〜99.95重量%に対して0.05〜10重量
%の範囲であることが好ましく、フェノール樹脂95〜
99.9重量%に対して0.1〜5重量%の範囲である
ことがさらに好ましい。
[0011] The amount of the curing agent added is such that
From the viewpoints of resistance value, variation thereof, and the like, the content is preferably in the range of 0.05 to 10% by weight with respect to 90 to 99.95% by weight of the solid phenol resin.
More preferably, it is in the range of 0.1 to 5% by weight with respect to 99.9% by weight.

【0012】スルホン酸系の硬化剤を添加した導電ペー
ストを用いてスルーホールを形成すれば、スルーホール
貫通性が良好になる。これはスルホン酸系の硬化剤が酸
としての働きが強く、また解離温度が低いことによって
乾燥後の乾燥機内の温度が上昇する早い段階で、ペース
ト粘度の低下とバインダーの硬化が起こり、ペーストの
形態変化が進みやすいためスルーホール貫通性が良好に
なるものと考えられる。
If the through-hole is formed using a conductive paste to which a sulfonic acid-based curing agent is added, the through-hole penetration is improved. This is because the sulfonic acid-based curing agent has a strong function as an acid, and because of the low dissociation temperature, the temperature in the dryer after drying rises at an early stage where the paste viscosity decreases and the binder hardens. It is considered that since the morphological change easily proceeds, the through-hole penetration is improved.

【0013】銅粉又は銅合金粉は、アトマイズ法で作製
された粉体を用いることが好ましく、その粒径は小さい
ほど好ましく、例えば平均粒径が1〜20μm、好まし
くは1〜10μmの粉体を用いれば、表面に銀を被覆し
た後、扁平状に加工しても導電粉中に均一に分散させ易
いので好ましい。
As the copper powder or copper alloy powder, it is preferable to use a powder produced by an atomizing method, and the smaller the particle size, the better, for example, the powder having an average particle size of 1 to 20 μm, preferably 1 to 10 μm. It is preferable to use, because even if the surface is coated with silver and then flattened, it can be easily dispersed uniformly in the conductive powder.

【0014】銅粉又は銅合金粉の表面に銀を被覆するに
は、置換めっき、電気めっき、無電解めっき等の方法が
あり、銅粉又は銅合金粉と銀の付着力が高いこと及びラ
ンニングコストが安価であることから、置換めっきで被
覆することが好ましい。銅粉又は銅合金粉の表面への銀
の被覆量は、耐マイグレーション性、コスト、導電性向
上等の点から銅粉又は銅合金粉に対して5〜25重量%
の範囲が好ましく、10〜23重量%の範囲がさらに好
ましい。
[0014] There are methods such as displacement plating, electroplating, and electroless plating for coating the surface of copper powder or copper alloy powder with silver, and the copper powder or copper alloy powder has high adhesion to silver and running. Since the cost is low, it is preferable to cover with displacement plating. The amount of silver coating on the surface of the copper powder or copper alloy powder is 5 to 25% by weight based on the copper powder or copper alloy powder from the viewpoints of migration resistance, cost, and improvement in conductivity.
Is more preferable, and the range of 10 to 23% by weight is more preferable.

【0015】本発明に用いられる導電粉とは、上記の銅
粉又は銅合金粉の一部を露出して表面が大略銀で被覆さ
れている銀被覆銅粉又は銀被覆銅合金粉のことであり、
もし銅粉又は銅合金粉の一部を露出させないで全面に銀
を被覆したものを用いるとはんだ付け性が悪くなり本発
明の目的を達成することができない。また、全面に銀を
被覆したものを用いるとマイグレーション性も悪くなり
好ましくない。銅粉又は銅合金粉の露出面積は、はんだ
付け性、露出部の酸化、導電性等の点から10〜60%
の範囲が好ましく、25〜55%の範囲がさらに好まし
い。なお、上記の銅合金粉としては、銅とスズ、銅と亜
鉛等との合金を用いることが好ましい。
The conductive powder used in the present invention is a silver-coated copper powder or a silver-coated copper alloy powder in which a part of the above-mentioned copper powder or copper alloy powder is exposed and the surface is substantially covered with silver. Yes,
If a copper powder or a copper alloy powder that is entirely covered with silver without exposing a part thereof is used, the solderability is deteriorated and the object of the present invention cannot be achieved. In addition, it is not preferable to use a material whose entire surface is coated with silver, because the migration property is deteriorated. The exposed area of the copper powder or copper alloy powder is 10 to 60% in terms of solderability, oxidation of exposed portions, conductivity, etc.
Is preferable, and the range of 25 to 55% is more preferable. Note that, as the copper alloy powder, an alloy of copper and tin, copper and zinc, or the like is preferably used.

【0016】導電粉は接触点が少ないと抵抗が高くなり
易い。そのため導電粒子同士の接触面積を大きくして高
導電性を得るため、導電粉に衝撃を与えて粒子の形状を
扁平状に変形することが好ましい。本発明における扁平
状導電粉としては、形状としてほぼ平坦で微細な小片か
らなる導電粉で、例えばりん片状導電粉がある。扁平状
導電粉としては、アスペクト比が3〜20及び長径の平
均粒径が5〜30μmの導電粉を用いることが好まし
く、アスペクト比が5〜15及び長径の平均粒径が5〜
20μmの導電粉を用いることがさらに好ましい。
If the conductive powder has few contact points, the resistance tends to increase. Therefore, in order to increase the contact area between the conductive particles and obtain high conductivity, it is preferable to apply an impact to the conductive powder to deform the particles into a flat shape. The flat conductive powder in the present invention is a conductive powder composed of fine particles that are almost flat in shape and, for example, flaky conductive powder. As the flat conductive powder, it is preferable to use a conductive powder having an aspect ratio of 3 to 20 and an average particle diameter of the major axis of 5 to 30 μm, and an aspect ratio of 5 to 15 and an average particle diameter of the major axis of 5 to 5 μm.
It is more preferable to use a conductive powder of 20 μm.

【0017】アスペクト比が3未満及び長径の平均粒径
が5μm未満の導電粉は、導電粒子同士の接触面積が十
分に得られず導電性が低下する傾向がある。またアスペ
クト比が20を越え及び長径の平均粒径が30μmを越
える導電粉は、印刷性を損ねる傾向がある。なお上記で
いう平均粒径は、レーザー散乱型粒度分布測定装置によ
り測定することができる。本発明においては、前記装置
としてマスターサイザー(マルバン社製)を用いて測定
した。
In the case of conductive powder having an aspect ratio of less than 3 and a long diameter of less than 5 μm, a sufficient contact area between the conductive particles cannot be obtained, and the conductivity tends to decrease. In addition, conductive powder having an aspect ratio of more than 20 and an average long particle diameter of more than 30 μm tends to impair printability. The average particle size mentioned above can be measured by a laser scattering type particle size distribution measuring device. In the present invention, the measurement was performed using a master sizer (manufactured by Malvern) as the device.

【0018】本発明におけるアスペクト比とは、導電粉
の粒子の長径と短径の比率(長径/短径)をいう。本発
明においては、粘度の低い硬化性樹脂中に導電粉の粒子
をよく混合し、静置して粒子を沈降させるとともにその
まま樹脂を硬化させ、得られた硬化物を垂直方向に切断
し、その切断面に現れる粒子の形状を電子顕微鏡で拡大
して観察し、少なくとも100の粒子について一つ一つ
の粒子の長径/短径を求め、それらの平均値をもってア
スペクト比とする。
The aspect ratio in the present invention refers to the ratio of the major axis to the minor axis (major axis / minor axis) of the conductive powder particles. In the present invention, the particles of the conductive powder are mixed well in the curable resin having a low viscosity, and the resin is cured while allowing the particles to settle by standing, and the obtained cured product is cut in the vertical direction. The shape of the particles appearing on the cut surface is observed under magnification with an electron microscope, and the major axis / minor axis of each particle is obtained for at least 100 particles, and the average value thereof is defined as the aspect ratio.

【0019】ここで、短径とは、前記切断面に現れる粒
子について、その粒子の外側に接する二つの平行線の組
み合わせ粒子を挟むように選択し、それらの組み合わせ
のうち最短間隔になる二つの平行線の距離である。一
方、長径とは、前記短径を決する平行線に直角方向の二
つの平行線であって、粒子の外側に接する二つの平行線
の組み合わせのうち、最長間隔になる二つの平行線の距
離である。これらの四つの線で形成される長方形は、粒
子がちょうどその中に納まる大きさとなる。なお、本発
明において行った具体的方法については後述する。
Here, the minor axis is selected so that a particle appearing on the cut surface sandwiches a combination particle of two parallel lines contacting the outside of the particle, and two of the combinations having the shortest interval are selected. The distance between the parallel lines. On the other hand, the major axis is the two parallel lines perpendicular to the parallel line that determines the minor axis, and is the distance between the two parallel lines that are the longest among the combinations of the two parallel lines that contact the outside of the particle. is there. The rectangle formed by these four lines is sized to fit the particle exactly inside it. The specific method used in the present invention will be described later.

【0020】バインダーとしては、エポキシ樹脂、フェ
ノール樹脂等の有機質の接着剤成分、さらに必要に応じ
て飽和ポリエステル樹脂、フェノキシ樹脂等が用いられ
る。エポキシ樹脂及びフェノール樹脂の割合は、エポキ
シ樹脂が5〜30重量%及びフェノール樹脂が70〜9
5重量%の範囲が好ましく、エポキシ樹脂が10〜25
重量%及びフェノール樹脂が75〜90重量%の範囲が
さらに好ましい。エポキシ樹脂が5重量%未満の場合、
ペーストと銅箔の接着力が低下する傾向があり、エポキ
シ樹脂が30重量%を越える場合、導電性が低下する傾
向がある。なお必要に応じて用いられる飽和ポリエステ
ル樹脂、フェノキシ樹脂等は、バインダー中に15重量
%以下含有することが好ましい。
As the binder, an organic adhesive component such as an epoxy resin or a phenol resin, and, if necessary, a saturated polyester resin or a phenoxy resin are used. The ratio of the epoxy resin and the phenol resin is 5 to 30% by weight of the epoxy resin and 70 to 9% of the phenol resin.
The range of 5% by weight is preferable, and the epoxy resin is 10 to 25%.
More preferably, the weight percent and the phenolic resin are in the range of 75 to 90 weight percent. When the epoxy resin is less than 5% by weight,
The adhesive strength between the paste and the copper foil tends to decrease, and when the epoxy resin exceeds 30% by weight, the conductivity tends to decrease. It is preferable that a saturated polyester resin, a phenoxy resin, and the like, which are used as needed, be contained in the binder in an amount of 15% by weight or less.

【0021】バインダーと導電粉の配合割合は、バイン
ダーが5〜15重量%及び導電粉が85〜95重量%の
範囲が好ましく、バインダーが7〜13重量%及び導電
粉が87〜93重量%の範囲がさらに好ましい。導電粉
が85重量%未満の場合、はんだ付け性及び導電性が低
下する傾向があり、導電粉が95重量%を越える場合、
ペーストと銅箔の接着力が低下する傾向がある。
The compounding ratio of the binder to the conductive powder is preferably 5 to 15% by weight of the binder and 85 to 95% by weight of the conductive powder, and 7 to 13% by weight of the binder and 87 to 93% by weight of the conductive powder. The range is more preferred. When the conductive powder is less than 85% by weight, the solderability and the conductivity tend to decrease, and when the conductive powder exceeds 95% by weight,
The adhesive strength between the paste and the copper foil tends to decrease.

【0022】導電ペースト中に含まれる有機溶剤として
は、テルピネオール、ベンジルアルコール、エチルカル
ビトール、エチルカルビトールアセテート、ブチルセロ
ソルブ等が用いられる。さらに導電ペーストは、上記の
材料以外に必要に応じて消泡剤又は脱泡剤等を添加して
均一に混合して得られる。消泡剤、脱泡剤等は必要に応
じて添加されるが、もし添加される場合はその含有量
は、消泡剤、脱泡剤等は導電粉100重量部に対して
0.005〜10重量部の範囲であることが好ましい。
As the organic solvent contained in the conductive paste, terpineol, benzyl alcohol, ethyl carbitol, ethyl carbitol acetate, butyl cellosolve and the like are used. Further, the conductive paste can be obtained by adding an antifoaming agent or a defoaming agent as required in addition to the above-mentioned materials, and mixing them uniformly. An antifoaming agent, a defoaming agent, etc. are added as necessary. If added, the content of the defoaming agent, the defoaming agent, etc. is 0.005 to 100 parts by weight of the conductive powder. Preferably it is in the range of 10 parts by weight.

【0023】次に、表面と裏面の両面に電気回路を形成
し、スルーホールを通じて両面の電気回路を導通させる
と共にスルーホール導体部分を貫通させてピン挿入孔を
形成する両面プリント配線板について詳しく説明する。
Next, a double-sided printed wiring board in which electric circuits are formed on both the front surface and the rear surface, the electric circuits on both surfaces are conducted through through holes, and pin insertion holes are formed by penetrating through conductor portions of the through holes will be described in detail. I do.

【0024】電気回路及びスルーホールを形成する両面
プリント配線板に用いられる基材としては、紙フェノー
ル積層板、ガラスエポキシ積層板、ガラス不織布とガラ
スクロスを併用したコンポジット積層板、ポリアミドイ
ミド積層板などの積層板、ポリエチレンテレフタレート
などのフィルム、ポリエステル、ポリアミドイミドなど
のフィルム等を使用することができる。これらの基材に
導電ペーストによる電気回路を形成する方法は特に制限
されないが、作業性、生産性等の面からスクリーン印刷
法、コンピュータ制御によるディスペンサによる方法等
が好ましい。
The base material used for the double-sided printed wiring board for forming the electric circuit and the through hole includes a paper phenol laminate, a glass epoxy laminate, a composite laminate using a glass nonwoven fabric and a glass cloth, a polyamideimide laminate, and the like. , A film of polyethylene terephthalate or the like, a film of polyester or polyamide imide, or the like. The method for forming an electric circuit using a conductive paste on these substrates is not particularly limited, but a screen printing method, a method using a dispenser controlled by a computer, and the like are preferable in terms of workability, productivity, and the like.

【0025】本発明になる両面プリント配線板は、以下
に示す方法により得られる。電気回路をエッチングアウ
トした基材の全スルーホールに、本発明になるスルーホ
ール導体形成用導電ペーストを塗布又は充填する。塗布
又は充填はスクリーン印刷、ピンやシリンジなどによる
充填がある。スルーホールに塗布又は充填が完了した基
材を40〜160℃の熱処理を行う。
The double-sided printed wiring board according to the present invention is obtained by the following method. The conductive paste for forming a through-hole conductor according to the present invention is applied or filled in all the through-holes of the substrate from which the electric circuit has been etched out. The application or filling includes screen printing, filling with pins, syringes, or the like. The base material coated or filled in the through holes is subjected to a heat treatment at 40 to 160 ° C.

【0026】このようにして得られた両面プリント配線
板は、スルーホールが貫通しており、はんだ付け性が可
能なことから、配線板の表面と裏面を導通させ、かつピ
ン挿入孔を形成することができる。さらにピン挿入孔以
外のスルーホールにおいては表面と裏面との導通が導電
ペーストによって得られるため、ピン挿入孔及びピン挿
入孔以外の全てのスルーホールを導電ペーストによって
同一作業で形成させることができる。そのため、従来導
電ペーストを用いた配線板では、ピン挿入孔及びピン挿
入孔以外のスルーホールを同一作業で形成させることが
できなかったが、この製造法で作製すれば、ピン挿入孔
及びピン挿入孔以外のスルーホールを同一作業で形成さ
せた両面プリント配線板が得られる。
The double-sided printed wiring board thus obtained has through holes penetrating therethrough and is capable of being soldered, so that the front and back surfaces of the wiring board are electrically connected and a pin insertion hole is formed. be able to. Further, in the through holes other than the pin insertion holes, conduction between the front surface and the back surface is obtained by the conductive paste, so that all the through holes other than the pin insertion holes and the pin insertion holes can be formed by the same operation using the conductive paste. Therefore, in the conventional wiring board using the conductive paste, the pin insertion hole and the through hole other than the pin insertion hole cannot be formed by the same operation. A double-sided printed wiring board having through holes other than holes formed by the same operation is obtained.

【0027】[0027]

【実施例】以下、本発明を実施例により説明する。 実施例1 ビスフェノールA型エポキシ樹脂(油化シェルエポキシ
(株)製、商品名エピコート834)10重量部及びレゾ
ール型フェノール樹脂(群栄化学(株)製、商品名レヂト
ップPL−2211NV60)の溶剤を除去し固形化し
たもの40重量部をベンジルアルコール(関東化学(株)
製、特級)25重量部に予め加温溶解させ、次いで室温
に冷却した後、ドデシルベンゼンスルホン酸系の硬化剤
(楠本化成(株)製、商品名5225 NV25)0.4
重量部を加えて均一に混合して樹脂組成物とした。
The present invention will be described below with reference to examples. Example 1 Bisphenol A type epoxy resin (oiled shell epoxy)
10 parts by weight of Epicoat 834 (trade name, manufactured by Co., Ltd.) and 40 parts by weight of a solid obtained by removing the solvent of a resole-type phenol resin (Retop PL-2211 NV60, trade name, manufactured by Gunei Chemical Co., Ltd.) are converted to benzyl alcohol Kanto Chemical Co., Ltd.
(Special grade), 25 parts by weight in advance, and then cooled to room temperature, and then a dodecylbenzenesulfonic acid-based curing agent (manufactured by Kusumoto Kasei Co., Ltd., trade name 5225 NV25) 0.4
The parts by weight were added and uniformly mixed to obtain a resin composition.

【0028】次にアトマイズ法で作製した平均粒径が
5.4μmの球状銅粉(日本アトマイズ加工(株)製、商
品名SF−Cu)を希塩酸及び純水で洗浄した後、水1
リットルあたりAgCN(和光純薬(株)製、試薬)を8
0g及びNaCN(和光純薬(株)製、試薬)を75g含
むめっき溶液で球状銅粉に対して銀の量が17重量%に
なるように置換めっきを行い、水洗、乾燥して銀めっき
銅粉を得た。
Next, spherical copper powder (manufactured by Nippon Atomize Processing Co., Ltd., trade name: SF-Cu) produced by an atomizing method and having an average particle size of 5.4 μm was washed with dilute hydrochloric acid and pure water, and then washed with water 1
8 AgCN (Wako Pure Chemical Industries, Ltd., reagent) per liter
0 g and a plating solution containing 75 g of NaCN (manufactured by Wako Pure Chemical Industries, Ltd.), displacement plating is performed so that the amount of silver is 17% by weight with respect to the spherical copper powder, washed with water, dried, and dried with silver-plated copper. Powder was obtained.

【0029】この後、2リットルのボールミル容器内に
上記で得た銀めっき銅粉450g及び直径が10mmのジ
ルコニアボール4kgを投入し、1時間30分間回転させ
て形状を変形させ、アスペクト比が平均6.2及び長径
の平均粒径が7.8μmのりん片状銀めっき銅粉を得
た。得られた銀めっき銅粉の粒子を10個取り出し、走
査型オージェ電子分光分析装置で定量分析して銅粉の露
出面積について調べたところ23〜58%の範囲で平均
が52%であった。また銅粉の表面への銀の被覆量は、
銅粉に対して17重量%であった。
Thereafter, 450 g of the silver-plated copper powder obtained above and 4 kg of zirconia balls having a diameter of 10 mm were put into a 2 liter ball mill container, and rotated for 1 hour and 30 minutes to deform the shape. A flaky silver-plated copper powder having an average particle diameter of 6.2 and a major axis of 7.8 μm was obtained. Ten particles of the obtained silver-plated copper powder were taken out and quantitatively analyzed by a scanning Auger electron spectrometer to examine the exposed area of the copper powder. The average was 52% in the range of 23 to 58%. The silver coating amount on the surface of the copper powder is
It was 17% by weight based on the copper powder.

【0030】次いで上記で得た樹脂組成物75.4gに
上記のりん片状銀めっき銅粉450gを加えて撹拌らい
かい機及び三本ロールで均一に混合分散して導電ペース
トを得た。さらにこの混合分散した導電ペーストにジエ
チレングリコールモノエチルエーテル(関東化学(株)
製、特級)120gを加えて撹拌らいかい機で均一に混
合分散して印刷用導電ペーストを得た。なおドデシルベ
ンゼンスルホン酸系の硬化剤の割合は、フェノール樹脂
に対して0.3重量%であり、導電ペーストにおける導
電粉とバインダーの配合割合は、導電粉90重量%及び
バインダー10重量%であった。
Next, 450 g of the flaky silver-plated copper powder was added to 75.4 g of the resin composition obtained above, and the mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill to obtain a conductive paste. In addition, diethylene glycol monoethyl ether (Kanto Chemical Co., Ltd.)
(Special grade, special grade) was added and uniformly mixed and dispersed by a stirrer to obtain a conductive paste for printing. The proportion of the dodecylbenzenesulfonic acid-based curing agent was 0.3% by weight based on the phenol resin, and the blending ratio of the conductive powder and the binder in the conductive paste was 90% by weight of the conductive powder and 10% by weight of the binder. Was.

【0031】次に上記で得た導電ペーストを用いて、厚
さが1.6mmで直径が0.85mmのスルーホールを形成
した紙フェノール銅張り積層板(日立化成工業(株)製、
商品名MCL−437F)の銅箔をエッチングして除去
した後、図3に示すようにスルーホール1内に導電ペー
ストを充填すると共にスルーホール1間を印刷して接続
したものを大気中で60℃1時間さらに160℃40分
間の条件で加熱処理して両面プリント配線板を得た。な
お図3において8は紙フェノール銅張り積層板である。
Next, using the conductive paste obtained above, a paper phenol copper-clad laminate having a through hole having a thickness of 1.6 mm and a diameter of 0.85 mm (manufactured by Hitachi Chemical Co., Ltd.)
After etching and removing the copper foil (trade name: MCL-437F), as shown in FIG. 3, a conductive paste is filled in the through-holes 1 and printed and connected between the through-holes 1 in the air for 60 hours. Heat treatment was performed at 160 ° C. for 40 minutes at 160 ° C. for 1 hour to obtain a double-sided printed wiring board. In FIG. 3, reference numeral 8 denotes a paper phenol copper-clad laminate.

【0032】得られた配線板の特性を評価した結果、6
0穴当たりスルーホールが貫通している割合は100%
であり、スルーホール1穴当たりの抵抗値は27.6m
Ω/穴であり、隣り合うスルーホール間の絶縁抵抗は1
010Ω以上であった。該配線板のはんだ耐熱試験及び
温度サイクル試験及び湿中負荷試験を実施した結果、は
んだ耐熱試験の抵抗変化率は+22.1であり、温度サ
イクル試験の抵抗変化率は+24.2%であり、湿中負
荷試験のスルーホール間の絶縁抵抗は108Ω以上であ
った。
As a result of evaluating the characteristics of the obtained wiring board, 6
Percentage of through holes per hole is 100%
And the resistance value per through hole is 27.6 m
Ω / hole and insulation resistance between adjacent through holes is 1
It was 010Ω or more. As a result of conducting a solder heat resistance test, a temperature cycle test, and a wet and medium load test of the wiring board, the resistance change rate of the solder heat resistance test was +22.1, and the resistance change rate of the temperature cycle test was + 24.2%. The insulation resistance between the through holes in the wet and medium load test was 108Ω or more.

【0033】なお、はんだ耐熱試験は260℃に加熱し
たはんだ槽に5秒間浸漬を5回、温度サイクルは−65
℃30分〜125℃30分を1サイクルとしこれを10
0サイクル、湿中負荷試験は40℃95%RH中で隣あ
うライン間に50Vの電圧を印加して1000時間行っ
た。
The solder heat resistance test was performed by dipping the solder bath heated to 260 ° C. for 5 seconds 5 times, and the temperature cycle was −65.
One cycle from 30 minutes at 30 ° C. to 30 minutes at 125 ° C.
The 0-cycle, medium humidity load test was carried out at 40 ° C. and 95% RH for 1000 hours by applying a voltage of 50 V between adjacent lines.

【0034】また、はんだ付け性の評価も行った。スル
ーホール上の導電ペーストにフラックスを塗布し、その
上にはんだ付けを行った。冷却後、導電ペーストに付着
したはんだの上にセロテープを張り付け、90℃の角度
に引き剥がした。その結果、導電ペーストからはんだの
剥がれは見られなかった。さらにはんだ付けしたスルー
ホールの断面を観察した結果、導電ペースト上にはんだ
が付いていることが確認できた。
The solderability was also evaluated. A flux was applied to the conductive paste on the through holes, and soldering was performed thereon. After cooling, a cellophane tape was stuck on the solder adhered to the conductive paste, and peeled off at an angle of 90 ° C. As a result, no peeling of the solder from the conductive paste was observed. Furthermore, as a result of observing the cross section of the soldered through-hole, it was confirmed that solder was attached to the conductive paste.

【0035】さらに、スルーホール上の導電ペーストに
フラックスを塗布し、部品穴にピンを挿入した状態で配
線板をはんだ槽の上面をフロートさせ、部品穴にはんだ
付けを行った。冷却後、配線板の表面と裏面及びピンと
の間の導通を確認した結果、10mAの電流が流れること
が確認でき、またピンを挿入した部品穴のスルーホール
の断面を観察した結果、導電ペースト上にはんだが付
き、ピンがはんだによって固定されていることが確認で
きた。
Further, a flux was applied to the conductive paste on the through holes, and the wiring board was floated on the upper surface of the solder bath with the pins inserted into the component holes, and soldered to the component holes. After cooling, the conduction between the front and back surfaces of the wiring board and the pins was confirmed. As a result, a current of 10 mA could be confirmed to flow. , And it was confirmed that the pins were fixed by the solder.

【0036】なお、本実施例におけるアスペクト比の具
体的測定法を以下に示す。低粘度のエポキシ樹脂(ビュ
ーラー社製)の主剤(No.20−8130)8gと硬化
剤(No.20−8132)2gを混合し、ここへ導電粉
2gを混合して良く分散させ、そのまま30℃で真空脱
泡した後、6〜8時間30℃で静置して粒子を沈降させ
硬化させた。その後、得られた硬化物を垂直方向に切断
し、切断面を電子顕微鏡で2000倍に拡大して切断面
に現れた100個の粒子について長径/短径を求め、そ
れらの平均値をもって、アスペクト比とした。
The specific method of measuring the aspect ratio in this embodiment is described below. 8 g of a base material (No. 20-8130) of a low-viscosity epoxy resin (manufactured by Buehler Co.) and 2 g of a curing agent (No. 20-8132) are mixed, and 2 g of conductive powder is mixed and dispersed well, and the mixture is left as it is. After degassing in vacuo at ℃, the particles were allowed to stand at 30 ℃ for 6 to 8 hours to settle and harden the particles. Thereafter, the obtained cured product was cut in the vertical direction, the cut surface was magnified 2000 times with an electron microscope, and the major axis / minor axis was determined for 100 particles that appeared on the cut surface. Ratio.

【0037】実施例2 実施例1で用いたビスフェノールA型エポキシ樹脂12
重量部及びレゾール型フェノール樹脂の溶剤を除去し固
形化したもの38重量部をベンジルアルコール25重量
部に予め加温溶解させ、次いで室温に冷却した後、ジノ
ニルナフタレンジスルホン酸系の硬化剤(楠本化成(株)
製、商品名X49−110 NV25)2重量部を加え
て均一に混合して樹脂組成物とした。
Example 2 Bisphenol A type epoxy resin 12 used in Example 1
38 parts by weight of the resol-type phenol resin and solidified by removing the solvent of the resol-type phenol resin are heated and dissolved in 25 parts by weight of benzyl alcohol in advance, then cooled to room temperature, and then a dinonylnaphthalenedisulfonic acid-based curing agent (Kusumoto Kasei Co., Ltd.
(Trade name: X49-110, NV25) (2 parts by weight) and uniformly mixed to obtain a resin composition.

【0038】この樹脂組成物77gに実施例1で得たり
ん片状銀めっき銅粉367gを加えて実施例1と同様の
方法で均一混合し、さらに実施例1で用いたジエチレン
グリコールモノエチルエーテル120gを加えて均一に
混合して印刷用導電ペーストを得た。なおジノニルナフ
タレンジスルホン酸系の硬化剤の割合は、フェノール樹
脂に対して1.3重量%であり、導電ペーストにおける
導電粉とバインダーの割合は、導電粉88重量%及びバ
インダー12重量%であった。
To 77 g of this resin composition, 367 g of the flaky silver-plated copper powder obtained in Example 1 was added and uniformly mixed in the same manner as in Example 1, and 120 g of diethylene glycol monoethyl ether used in Example 1 was further added. Was added and uniformly mixed to obtain a conductive paste for printing. The ratio of the dinonylnaphthalenedisulfonic acid-based curing agent was 1.3% by weight based on the phenol resin, and the ratio of the conductive powder to the binder in the conductive paste was 88% by weight of the conductive powder and 12% by weight of the binder. Was.

【0039】次に実施例1と同様の工程を経て両面プリ
ント配線板を作製し、その特性を評価した。その結果、
得られた配線板の60穴当たりのスルーホールが貫通し
ている割合は100%であり、スルーホールの1穴当た
りの抵抗値は26.7mΩ/穴であった。該配線板のは
んだ耐熱試験及び温度サイクル試験及び湿中負荷試験を
実施した結果、はんだ耐熱試験の抵抗変化率は+19.
4であり、温度サイクル試験の抵抗変化率は+27.7
%であり、湿中負荷試験のスルーホール間の絶縁抵抗は
108Ω以上であった。
Next, a double-sided printed wiring board was manufactured through the same steps as in Example 1, and its characteristics were evaluated. as a result,
The ratio of through holes per 60 holes of the obtained wiring board was 100%, and the resistance per through hole was 26.7 mΩ / hole. As a result of conducting a solder heat resistance test, a temperature cycle test, and a humidity and medium load test of the wiring board, the resistance change rate in the solder heat resistance test was +19.
4, and the resistance change rate in the temperature cycle test was +27.7.
%, And the insulation resistance between the through holes in the wet and medium load test was 108 Ω or more.

【0040】はんだ付け性の評価も行った。その結果、
はんだ上にセロテープを張り付け、90℃の角度に引き
剥がしたが、導電ペーストからはんだの剥がれは見られ
ず、断面観察においても導電ペースト上にはんだが付い
ていることが確認できた。また、実施例1と同様の工程
を経て部品穴にピンを挿入しはんだ付けを行い、冷却
後、配線板の表面と裏面及びピンとの間の導通を確認し
た結果、10mAの電流が流れることが確認でき、ピンを
挿入した部品穴のスルーホールの断面を観察した結果に
おいても、導電ペースト上にはんだが付き、ピンがはん
だによって固定されていることが確認できた。
The solderability was also evaluated. as a result,
A cellophane tape was stuck on the solder and peeled off at an angle of 90 ° C. However, no peeling of the solder was observed from the conductive paste, and it was confirmed from the cross-sectional observation that the solder was on the conductive paste. In addition, through the same process as in Example 1, a pin was inserted into the component hole and soldered. After cooling, conduction between the front and back surfaces of the wiring board and the pin was confirmed. As a result, a current of 10 mA could flow. From the result of observing the cross section of the through hole of the component hole into which the pin was inserted, it was confirmed that the solder was attached on the conductive paste and the pin was fixed by the solder.

【0041】比較例1 実施例1で用いたビスフェノールA型エポキシ樹脂10
重量部及びレゾール型フェノール樹脂の溶剤を除去し固
形化したもの40重量部をベンジルアルコール25重量
部に予め加温溶解させ、均一に混合して樹脂組成物とし
た。この樹脂組成物75.04gに実施例1で得たりん
片状銀めっき銅粉450gを加え、以下実施例1と同様
の工程を経て印刷用導電ペーストを得た。次に実施例1
と同様の工程を経て両面プリント配線板を作製し、その
特性を評価した結果、得られた配線板の60穴当たりの
スルーホールが貫通している割合は4%と低くなった。
またスルーホールの1穴当たりの抵抗値は62.8mΩ
/穴と高くなった。
Comparative Example 1 Bisphenol A type epoxy resin 10 used in Example 1
40 parts by weight of a solid by removing the solvent of the resol-type phenolic resin and 40 parts by weight were dissolved in 25 parts by weight of benzyl alcohol in advance by heating and uniformly mixed to obtain a resin composition. 450 g of the flaky silver-plated copper powder obtained in Example 1 was added to 75.04 g of this resin composition, and the same process as in Example 1 was performed to obtain a conductive paste for printing. Next, Example 1
As a result of producing a double-sided printed wiring board through the same steps as described above and evaluating its characteristics, the ratio of through holes per 60 holes of the obtained wiring board was as low as 4%.
The resistance value per through hole is 62.8 mΩ.
/ It became high with a hole.

【0042】上記で得た配線板のうちスルーホールが貫
通していない配線板のスルーホール上の導電ペーストに
フラックスを塗布し、部品穴にピンを挿入した状態で配
線板をはんだ槽の上面をフロートさせ、部品穴にはんだ
付けを行った。冷却後、配線板の表面と裏面の導通を確
認したが、10mAの電流が流れず、ピンを挿入した部品
穴のスルーホールの断面を観察した結果、図2に示すよ
うに導電ペーストにクラック6が生じた。このため各試
験は行わなかった。
A flux is applied to the conductive paste on the through-holes of the wiring board of which the through-hole does not penetrate, and the wiring board is placed on the upper surface of the solder bath with the pins inserted into the component holes. It was floated and soldered to the component holes. After cooling, the continuity between the front and back surfaces of the wiring board was confirmed. However, a current of 10 mA did not flow, and the cross section of the through hole of the component hole into which the pin was inserted was observed. As shown in FIG. Occurred. Therefore, each test was not performed.

【0043】[0043]

【発明の効果】請求項1記載のスルーホール導体形成用
導電ペーストは、スルーホール貫通性とはんだ付け性に
優れる。請求項2及び3記載のスルーホール導体形成用
導電ペーストは、請求項1記載のスルーホール導体形成
用導電ペーストのうち、特にスルーホール貫通性の向上
効果に優れる。請求項4及び5記載のスルーホール導体
形成用導電ペーストは、請求項1記載のスルーホール導
体形成用導電ペーストのうち、特にはんだ付け性の向上
効果に優れ、また請求項1記載のスルーホール導体形成
用導電ペーストに加えて導電性の向上効果に優れる。
According to the present invention, the conductive paste for forming a through-hole conductor has excellent through-hole penetration and solderability. The conductive paste for forming a through-hole conductor according to claims 2 and 3 is particularly excellent in the effect of improving the through-hole penetrability of the conductive paste for forming a through-hole conductor according to claim 1. The conductive paste for forming a through-hole conductor according to claims 4 and 5 is particularly excellent in the effect of improving solderability among the conductive paste for forming a through-hole conductor according to claim 1, and the through-hole conductor according to claim 1 In addition to the conductive paste for forming, it has an excellent effect of improving conductivity.

【0044】請求項6記載の方法により得られるスルー
ホール導体形成用導電ペーストは、スルーホール貫通性
とはんだ付け性に優れる。請求項7記載の両面プリント
配線板は、前記のスルーホール導体形成用導電ペースト
を用いることにより、表面と裏面の両面における電気回
路が導通すると共にスルーホール導通部分を貫通させて
ピン挿入孔を形成することができる。
The conductive paste for forming a through-hole conductor obtained by the method according to claim 6 has excellent through-hole penetration and solderability. In the double-sided printed wiring board according to claim 7, by using the conductive paste for forming a through-hole conductor, an electric circuit on both the front surface and the rear surface is conducted, and a pin insertion hole is formed by penetrating the through-hole conducting portion. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】両面プリント配線板のスルーホール接続法の一
例を示す部分断面図である。
FIG. 1 is a partial cross-sectional view showing an example of a through-hole connection method for a double-sided printed wiring board.

【図2】両面プリント配線板のピン挿入孔にピンを挿入
して導電ペーストにクラックが発生した状態を示す部分
断面図である。
FIG. 2 is a partial cross-sectional view showing a state in which a pin is inserted into a pin insertion hole of a double-sided printed wiring board and a crack has occurred in a conductive paste.

【図3】表面の銅箔をエッチングして除去した紙フェノ
ール銅張り積層板のスルーホールに導電ペーストを充填
すると共にスルーホール間を印刷した状態を示す平面図
である。
FIG. 3 is a plan view showing a state in which a conductive paste is filled in through holes of a paper phenol copper-clad laminate in which a copper foil on a surface is removed by etching and printed between the through holes.

【符号の説明】[Explanation of symbols]

1 スルーホール 2 めっき 3 導電ペースト 4 ピン 5 はんだ 6 クラック 7 配線板基材 8 紙フェノール銅張り積層板 DESCRIPTION OF SYMBOLS 1 Through hole 2 Plating 3 Conductive paste 4 Pin 5 Solder 6 Crack 7 Wiring board base material 8 Paper phenol copper clad laminate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 1/11 H05K 1/11 N Fターム(参考) 4E351 AA01 AA03 AA04 BB31 BB49 CC11 CC22 DD04 DD05 DD21 DD52 DD54 DD56 EE02 EE15 EE16 EE27 GG06 GG16 5E317 AA24 BB02 BB03 BB12 BB14 BB18 CC08 CC22 CC25 CD21 CD25 CD27 CD32 GG07 GG11 5G301 DA03 DA06 DA42 DA55 DA57 DD01 DE01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 1/11 H05K 1/11 NF term (Reference) 4E351 AA01 AA03 AA04 BB31 BB49 CC11 CC22 DD04 DD05 DD21 DD52 DD54 DD56 EE02 EE15 EE16 EE27 GG06 GG16 5E317 AA24 BB02 BB03 BB12 BB14 BB18 CC08 CC22 CC25 CD21 CD25 CD27 CD32 GG07 GG11 5G301 DA03 DA06 DA42 DA55 DA57 DD01 DE01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 スルホン酸系の硬化剤、バインダー、銅
粉又は銅合金粉の一部を露出して表面が大略銀で被覆さ
れた導電粉及び有機溶剤を含有してなるスルーホール導
体形成用導電ペースト。
1. A through-hole conductor for forming a through-hole conductor comprising a sulfonic acid-based curing agent, a binder, a conductive powder whose surface is substantially covered with silver by exposing a part of a copper powder or a copper alloy powder, and an organic solvent. Conductive paste.
【請求項2】 バインダーが、エポキシ樹脂及びフェノ
ール樹脂である請求項1記載のスルーホール導体形成用
導電ペースト。
2. The conductive paste for forming a through-hole conductor according to claim 1, wherein the binder is an epoxy resin or a phenol resin.
【請求項3】 スルホン酸系の硬化剤が、固形分のフェ
ノール樹脂90〜99.95重量%に対して0.05〜
10重量%である請求項1又は2記載のスルーホール導
体形成用導電ペースト。
3. A sulfonic acid-based curing agent is used in an amount of 0.05 to 99.95% by weight based on 90 to 99.95% by weight of a solid phenol resin.
3. The conductive paste for forming a through-hole conductor according to claim 1, which is 10% by weight.
【請求項4】 バインダーと導電粉の配合割合が、導電
ペーストの固形分に対してバインダーが5〜15重量%
及び導電粉が85〜95重量%である請求項1、2又は
3記載のスルーホール導体形成用導電ペースト。
4. The compounding ratio of the binder and the conductive powder is such that the binder is 5 to 15% by weight based on the solid content of the conductive paste.
4. The conductive paste for forming a through-hole conductor according to claim 1, wherein the conductive powder is 85 to 95% by weight.
【請求項5】 導電粉が、アスペクト比3〜20及び長
径の平均粒径5〜30μmで、かつ銅粉又は銅合金粉の
露出面積が10〜60%の扁平状導電粉である請求項
1、2、3又は4記載のスルーホール導体形成用導電ペ
ースト。
5. The conductive powder according to claim 1, wherein the conductive powder is a flat conductive powder having an aspect ratio of 3 to 20 and an average long diameter of 5 to 30 μm, and an exposed area of copper powder or copper alloy powder of 10 to 60%. 5. The conductive paste for forming a through-hole conductor according to 2, 3, or 4.
【請求項6】 銅粉又は銅合金粉の一部を露出して表面
を大略銀で被覆した後、スルホン酸系の硬化剤、バイン
ダー及び有機溶剤を加えて均一に混合することを特徴と
するスルーホール導体形成用導電ペーストの製造法。
6. A method in which a part of copper powder or copper alloy powder is exposed to cover the surface with silver, and then a sulfonic acid-based hardener, a binder and an organic solvent are added and uniformly mixed. A method for producing a conductive paste for forming a through-hole conductor.
【請求項7】 電気回路を両面に有するプリント配線板
に貫通するスルーホールを形成し、請求項1〜5のいず
れかに記載のスルーホール導体形成用導電ペースト又は
請求項6記載の方法で製造されたスルーホール導体形成
用導電ペーストで、該スルーホールを通じて両面の電気
回路を導通させると共にスルーホール導体部分を貫通さ
せてピン挿入孔を形成してなる両面プリント配線板。
7. A conductive paste for forming a through-hole conductor according to claim 1 or a method according to claim 6, wherein a through-hole penetrating a printed wiring board having electric circuits on both sides is formed. A double-sided printed wiring board, comprising: a conductive paste for forming a through-hole conductor, wherein electrical circuits on both sides are conducted through the through-hole and a pin insertion hole is formed through the through-hole conductor.
JP27030299A 1999-09-24 1999-09-24 Through-hole conductor forming conductive paste and its manufacturing method as well as both-side printed wiring board using through-hole conductor forming conductive paste Pending JP2001093330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27030299A JP2001093330A (en) 1999-09-24 1999-09-24 Through-hole conductor forming conductive paste and its manufacturing method as well as both-side printed wiring board using through-hole conductor forming conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27030299A JP2001093330A (en) 1999-09-24 1999-09-24 Through-hole conductor forming conductive paste and its manufacturing method as well as both-side printed wiring board using through-hole conductor forming conductive paste

Publications (1)

Publication Number Publication Date
JP2001093330A true JP2001093330A (en) 2001-04-06

Family

ID=17484388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27030299A Pending JP2001093330A (en) 1999-09-24 1999-09-24 Through-hole conductor forming conductive paste and its manufacturing method as well as both-side printed wiring board using through-hole conductor forming conductive paste

Country Status (1)

Country Link
JP (1) JP2001093330A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008178A (en) * 2001-06-25 2003-01-10 Sony Corp Manufacturing method of printed wiring board
WO2003017290A1 (en) * 2001-08-09 2003-02-27 Matsushita Electric Industrial Co., Ltd. Production method for conductive paste and production method for printed circuit board
WO2006129487A1 (en) * 2005-05-30 2006-12-07 Sumitomo Electric Industries, Ltd. Conductive paste and multilayer printed wiring board using same
JP2011192602A (en) * 2010-03-16 2011-09-29 Toshiba Lighting & Technology Corp Solid-state light emitting device, and lighting system
JP2014524100A (en) * 2011-06-01 2014-09-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Solderable polymer thick film conductive electrode composition for use in thin film photovoltaic cells and other applications
JP2016219557A (en) * 2015-05-19 2016-12-22 パナソニックIpマネジメント株式会社 Printed circuit board and printed circuit board manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003008178A (en) * 2001-06-25 2003-01-10 Sony Corp Manufacturing method of printed wiring board
WO2003017290A1 (en) * 2001-08-09 2003-02-27 Matsushita Electric Industrial Co., Ltd. Production method for conductive paste and production method for printed circuit board
WO2006129487A1 (en) * 2005-05-30 2006-12-07 Sumitomo Electric Industries, Ltd. Conductive paste and multilayer printed wiring board using same
US8617688B2 (en) 2005-05-30 2013-12-31 Sumitomo Electric Industries, Ltd. Conductive paste and multilayer printed wiring board using the same
JP2011192602A (en) * 2010-03-16 2011-09-29 Toshiba Lighting & Technology Corp Solid-state light emitting device, and lighting system
JP2014524100A (en) * 2011-06-01 2014-09-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Solderable polymer thick film conductive electrode composition for use in thin film photovoltaic cells and other applications
JP2016219557A (en) * 2015-05-19 2016-12-22 パナソニックIpマネジメント株式会社 Printed circuit board and printed circuit board manufacturing method

Similar Documents

Publication Publication Date Title
US6515237B2 (en) Through-hole wiring board
US5951918A (en) Composite electroconductive powder, electroconductive paste, process for producing electroconductive paste, electric circuit and process for producing electric circuit
TWI477229B (en) Printed wiring board with shielding film and printed wiring board
CN101578927B (en) Printed wiring board and method for manufacturing the same
JP2012253031A (en) Conductive paste
JP2003045228A (en) Conductive paste
CN101563731B (en) Conductive paste
JP2001093330A (en) Through-hole conductor forming conductive paste and its manufacturing method as well as both-side printed wiring board using through-hole conductor forming conductive paste
JP2005044798A (en) Conductive powder and its production method
JP2000322933A (en) Conductive paste and its manufacture
JP2010090264A (en) Functional electroconductive coating and method for production of printed circuit board using the same
JP3513636B2 (en) Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit
JP2011228481A (en) Conductive paste, flexible printed-wiring board and electronic equipment
JPH10152630A (en) Conductive paste and composite conductive powder
KR102195144B1 (en) Conductive paste and substrate with conductive film
JPH0575225A (en) Metallic base printed wiring substrate and its manufacture
JP3783788B2 (en) Manufacturing method of conductive paste and electric circuit forming substrate
JPH0714427A (en) Conductive paste
JP2001236827A (en) Conductive paste
JP2002008444A (en) Conductive paste
JP2002260443A (en) Conductive paste
JP2009021149A (en) Conductive paste
JPH07307110A (en) Conductive paste
JP2002245873A (en) Formation method of low resistance conductor
JP2001273816A (en) Conductive paste