JP2001297627A - Conductive material - Google Patents

Conductive material

Info

Publication number
JP2001297627A
JP2001297627A JP2000115864A JP2000115864A JP2001297627A JP 2001297627 A JP2001297627 A JP 2001297627A JP 2000115864 A JP2000115864 A JP 2000115864A JP 2000115864 A JP2000115864 A JP 2000115864A JP 2001297627 A JP2001297627 A JP 2001297627A
Authority
JP
Japan
Prior art keywords
powder
silver
conductive material
substantially spherical
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000115864A
Other languages
Japanese (ja)
Inventor
秀次 ▲桑▼島
Hideji Kuwajima
Junichi Kikuchi
純一 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000115864A priority Critical patent/JP2001297627A/en
Publication of JP2001297627A publication Critical patent/JP2001297627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive material having superior electrical conductivity and thermal heat conductivity. SOLUTION: A conductive material includes a mixed conductive powder of 75 to 95 weight 5 composed of a nearly ball-shaped, composite conductive powder, in which the surface of the copper powder or the copper alloy powder is coated with silver or a silver alloy for the most part, and the powder having silver as a main ingredient with a flocculating characteristic, are included, and a binder composition of a matter such as epoxy resin containing 2.5 to 5 weight %. The diameters of the nearly ball-shaped, composite conductive powder of 10 μm or smaller and the powder having silver as a main ingredient of 0.5 μm or smaller preferably have a high thermal conductivity and larger electrical conductivity. A mix weight proportion of the nearly ball-shaped composite conductive powder and the powder, having silver as a main ingredient between 99:1 and 85:15, preferably has flow property, electrical conductivity, and thermal conductivity and the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高導電性及び高熱
伝導性の接着に使用される導電材や基板の表裏回路など
の層間接続に使用される導電材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive material used for bonding of high conductivity and high thermal conductivity and a conductive material used for interlayer connection of a front and back circuit of a substrate.

【0002】[0002]

【従来の技術】従来、熱伝導性が要求される導電材に
は、高熱伝導性金属粉又は高熱伝導性無機粉をエポキシ
樹脂などのバインダ組成物に分散させた導電材が用いら
れていた。また電気伝導性が要求される導電材には、高
熱伝導性金属粉である銀粉、アルミニウム粉、銅粉等が
用いられていた。
2. Description of the Related Art Conventionally, as a conductive material requiring thermal conductivity, a conductive material obtained by dispersing a highly thermally conductive metal powder or a highly thermally conductive inorganic powder in a binder composition such as an epoxy resin has been used. In addition, silver powder, aluminum powder, copper powder, and the like, which are high heat conductive metal powders, have been used as conductive materials that require electrical conductivity.

【0003】ダイボンディングなどの接着に用いられる
導電材は、導電性と共に高い熱伝導性が求められるた
め、銀粉の配合割合を多くして使用されることが多かっ
た。しかし、銀粉の配合割合が多くなると、銀粉が高価
であることから導電材も高価になる欠点があった。また
りん片の寸法が大きく薄い場合には隠蔽力が大きく、溶
剤の乾燥の際にボイドが残り易い欠点もあった。
A conductive material used for bonding such as die bonding is required to have high thermal conductivity as well as conductivity. Therefore, silver powder is often used in a large proportion. However, when the mixing ratio of the silver powder is large, there is a disadvantage that the silver powder is expensive and the conductive material is also expensive. Further, when the size of the scale is large and thin, the hiding power is large, and there is a disadvantage that voids are apt to remain when the solvent is dried.

【0004】さらに、ダイボンディングなどの用途で
は、導電材をシリンジなどから圧力を加えて押し出す際
の流動性及び押し出された導電材が安易に流れ出さない
粘性挙動が要求される。一方、ビルドアップ法による多
層配線板は、充填性(流動性)が高いこと及び導電性が
高く、その信頼性も高いことが要求される。
Further, in applications such as die bonding, fluidity when the conductive material is extruded by applying pressure from a syringe or the like and viscous behavior in which the extruded conductive material does not easily flow out are required. On the other hand, the multilayer wiring board by the build-up method is required to have high filling property (fluidity), high conductivity, and high reliability.

【0005】[0005]

【発明が解決しようとする課題】請求項1、2、3及び
4記載の発明は、高導電性及び高熱伝導性に優れる導電
材を提供するものである。請求項5記載の発明は、請求
項1、2、3及び4記載の発明に加えて、抵抗の信頼性
が高く、またスルーホールへの充填性が良好な導電材を
提供するものである。
The first, second, third and fourth aspects of the present invention provide a conductive material excellent in high electrical conductivity and high thermal conductivity. A fifth aspect of the present invention provides a conductive material having high resistance reliability and good through-hole filling properties, in addition to the first, second, third, and fourth aspects of the invention.

【0006】[0006]

【課題を解決するための手段】本発明は、銅粉又は銅合
金粉の表面が大略銀又は銀合金で被覆された略球状複合
導電粉と凝集性を有する銀を主成分とした粉末とを含む
混合導電粉及びバインダ組成物を含有してなる導電材に
関する。また、本発明は、凝集性を有する銀を主成分と
した粉末の平均粒径が略球状複合導電粉の1/3以下で
ある導電材に関する。また、本発明は、略球状複合導電
粉の平均粒径が10μm以下で、凝集性を有する銀を主
成分とした粉末の平均粒径が0.5μm以下である導電
材に関する。
SUMMARY OF THE INVENTION The present invention relates to a substantially spherical composite conductive powder in which the surface of a copper powder or a copper alloy powder is substantially coated with silver or a silver alloy and a powder mainly containing silver having cohesiveness. The present invention relates to a conductive material containing a mixed conductive powder and a binder composition. Further, the present invention relates to a conductive material in which the average particle size of the powder having silver as a main component having a cohesive property is 1/3 or less of the substantially spherical composite conductive powder. Further, the present invention relates to a conductive material in which the average particle diameter of the substantially spherical composite conductive powder is 10 μm or less, and the average particle diameter of the powder mainly containing cohesive silver is 0.5 μm or less.

【0007】また、本発明は、凝集性を有する銀を主成
分とした粉末が、塊状である導電材に関する。さらに、
本発明は、略球状複合導電粉と銀を主成分とした粉末と
の配合割合が、重量比で略球状複合導電粉:銀を主成分
とした粉末が99:1〜85:15である導電材に関す
る。
[0007] The present invention also relates to a conductive material in which a powder containing silver having a cohesive property as a main component is a lump. further,
The present invention relates to a conductive material in which the mixing ratio of the substantially spherical composite conductive powder and the powder containing silver as a main component is 99: 1 to 85:15 in terms of weight ratio. About materials.

【0008】[0008]

【発明の実施の形態】本発明において、略球状複合導電
粉には、内部が銅粉又は銅合金粉でその表面を銀又は銀
合金で被覆したものが用いられ、この複合導電粉中に、
銅粉又は銅合金粉の表面が完全に銀又は銀合金で被覆さ
れたもの若しくは内部の銅粉又は銅合金粉と表面の銀又
は銀合金が混じり合った合金層が含まれていても、複合
導電粉中の50%以上の粒子が被覆された銀又は銀合金
の間から内部の銅粉又は銅合金粉の一部を露出している
ものが存在すれば特に差し支えない。なお、銅合金粉と
しては、銅と錫、銅と亜鉛等の合金粉を用いることがで
きる。また銀合金としては、銀とパラジウム、銀と白金
等の合金を用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a substantially spherical composite conductive powder whose inside is coated with copper or copper alloy powder and whose surface is coated with silver or silver alloy is used.
Even if the surface of copper powder or copper alloy powder is completely coated with silver or silver alloy or contains an alloy layer in which copper powder or copper alloy powder inside and silver or silver alloy on the surface are mixed There is no particular problem as long as a part of the copper powder or copper alloy powder inside is exposed between silver or silver alloy coated with 50% or more of the particles in the conductive powder. Note that as the copper alloy powder, an alloy powder of copper and tin, copper and zinc, or the like can be used. As the silver alloy, an alloy of silver and palladium, silver and platinum, or the like can be used.

【0009】銅粉又は銅合金粉の表面に銀又は銀合金を
被覆するには、置換めっき、電気めっき、無電解めっき
等の方法があるが、銅粉又は銅合金粉と銀又は銀合金と
の付着力が高いこと及びライニングコストが安価である
ことから、置換めっき法で被覆することが好ましい。銅
粉又は銅合金粉の表面への銀又は銀合金の被覆量は、耐
マイグレーション性、コスト、導電性向上の点から、銅
粉又は銅合金粉に対して、5〜25重量%の範囲が好ま
しく、10〜23重量%の範囲がさらに好ましい。
In order to coat the surface of copper powder or copper alloy powder with silver or silver alloy, there are methods such as displacement plating, electroplating, and electroless plating. It is preferable to coat by a displacement plating method because of its high adhesion and low lining cost. The coating amount of silver or silver alloy on the surface of copper powder or copper alloy powder is in the range of 5 to 25% by weight based on copper powder or copper alloy powder from the viewpoints of migration resistance, cost, and improvement in conductivity. Preferably, the range is 10 to 23% by weight.

【0010】複合導電粉は、形状が略球状の粉末が用い
られ完全に球状である必要はなく、例えばアスペクト比
が1〜1.5及び長径の平均粒径が1〜20μmの略球
状複合導電粉を用いることが好ましく、アスペクト比が
1〜1.3及び長径の平均粒径が1〜10μmの略球状
複合導電粉を用いることが好ましい。なお上記でいう平
均粒径は、レーザー散乱型粒度分布測定装置により測定
することができる。本発明においては、前記装置として
マスターサイザー(マルバン社製)を用いて測定した。
As the composite conductive powder, a powder having a substantially spherical shape is used and does not need to be completely spherical. For example, a substantially spherical composite conductive powder having an aspect ratio of 1 to 1.5 and a long diameter having an average particle diameter of 1 to 20 μm is used. It is preferable to use powder, and it is preferable to use a substantially spherical composite conductive powder having an aspect ratio of 1 to 1.3 and a long diameter having an average particle diameter of 1 to 10 μm. The average particle size mentioned above can be measured by a laser scattering type particle size distribution measuring device. In the present invention, the measurement was performed using a master sizer (manufactured by Malvern) as the device.

【0011】本発明におけるアスペクト比とは、導電粉
の粒子の長径と短径の比率(長径/短径)をいう。本発
明においては、粘度の低い硬化性樹脂中に導電粉の粒子
をよく混合し、静置して粒子を沈降させるとともにその
まま樹脂を硬化させ、得られた硬化物を垂直方向に切断
し、その切断面に現れる粒子の形状を電子顕微鏡で拡大
して観察し、少なくとも100の粒子について一つ一つ
の粒子の長径/短径を求め、それらの平均値をもってア
スペクト比とする。
The aspect ratio in the present invention refers to the ratio of the major axis to the minor axis (major axis / minor axis) of the conductive powder particles. In the present invention, the particles of the conductive powder are mixed well in the curable resin having a low viscosity, and the resin is cured while allowing the particles to settle by standing, and the obtained cured product is cut in the vertical direction. The shape of the particles appearing on the cut surface is observed under magnification with an electron microscope, and the major axis / minor axis of each particle is obtained for at least 100 particles, and the average value thereof is defined as the aspect ratio.

【0012】ここで、短径とは、前記切断面に現れる粒
子について、その粒子の外側に接する二つの平行線の組
み合わせ粒子を挟むように選択し、それらの組み合わせ
のうち最短間隔になる二つの平行線の距離である。一
方、長径とは、前記短径を決する平行線に直角方向の二
つの平行線であって、粒子の外側に接する二つの平行線
の組み合わせのうち、最長間隔になる二つの平行線の距
離である。これらの四つの線で形成される長方形は、粒
子がちょうどその中に納まる大きさとなる。なお、本発
明において行った具体的方法については後述する。
Here, the minor axis is selected so that a particle appearing on the cut surface is sandwiched by a combination of two parallel lines contacting the outside of the particle, and two of the combinations having the shortest interval are selected. The distance between the parallel lines. On the other hand, the major axis is the two parallel lines perpendicular to the parallel line that determines the minor axis, and is the distance between the two parallel lines that are the longest among the combinations of the two parallel lines that contact the outside of the particle. is there. The rectangle formed by these four lines is sized to fit the particle exactly inside it. The specific method used in the present invention will be described later.

【0013】本発明で用いられる銅粉又は銅合金粉の表
面が大略銀又は銀合金で被覆された直後の略球状複合導
電粉は凝集した状態であるので、これを解粒して用いる
ことが好ましい。解粒をしていない凝集した状態の略球
状複合導電粉を用いると、充填密度が高くならず熱伝導
性又は導電性を高くすることができなくなる傾向があ
る。
The substantially spherical composite conductive powder immediately after the surface of the copper powder or copper alloy powder used in the present invention is substantially coated with silver or a silver alloy is in an agglomerated state. preferable. When a substantially spherical composite conductive powder in an agglomerated state that has not been pulverized is used, the packing density does not increase and the thermal conductivity or conductivity tends to be unable to be increased.

【0014】解粒する方法については特に制限はない
が、例えば略球状複合導電粉に剪断力を加えて凝集をと
きほぐすか又は機械的に弱い力を加えて粒子を変形させ
ずに粒子の凝集を外すことにより解粒することができ
る。解粒による効果は、例えば銀又は銀合金をめっき法
で銅粉又は銅合金粉の表面に被覆した場合、解粒しない
略球状複合導電粉の嵩密度は相対密度で約45〜50%
前後であるが、解粒することにより60%以上に高める
ことができる。
There is no particular limitation on the method of pulverization. For example, a shear force is applied to the substantially spherical composite conductive powder to loosen the agglomeration, or a mechanically weak force is applied to reduce the agglomeration of the particles without deforming the particles. It can be broken by removing it. The effect of the pulverization is that, for example, when silver or a silver alloy is coated on the surface of a copper powder or a copper alloy powder by a plating method, the bulk density of the substantially spherical composite conductive powder that is not pulverized is about 45 to 50% in relative density
Before and after, it can be increased to 60% or more by pulverization.

【0015】本発明において、銅粉又は銅合金粉の表面
が大略銀又は銀合金で被覆され、かつ解粒された略球状
複合導電粉を用いることにより、平坦な基板などで押し
つぶす際の配向もなく、熱伝導性が良好な状態を維持す
ることができる。これが例えばりん片状複合導電粉であ
ると溶剤の揮散の障害になると共に基板面に対して垂直
方向への熱伝導性を高くすることができない。
In the present invention, by using a substantially spherical composite conductive powder in which the surface of copper powder or copper alloy powder is substantially covered with silver or a silver alloy and is pulverized, the orientation when crushing on a flat substrate or the like can be improved. And good thermal conductivity can be maintained. If this is, for example, flaky composite conductive powder, it will not only hinder the evaporation of the solvent, but also cannot increase the thermal conductivity in the direction perpendicular to the substrate surface.

【0016】本発明では、上記に示す銅粉又は銅合金粉
の表面が大略銀又は銀合金で被覆された略球状複合導電
粉の他に、平均粒径が上記の略球状複合導電粉の1/3
以下で、かつ凝集性を有する銀を主成分とした粉末を用
いる。この併用により、流動性、導電性、熱伝導性のバ
ランスがとれ、また流動性を損なわない範囲で、導電材
のにじみやだれを防止することができる。
According to the present invention, in addition to the substantially spherical composite conductive powder having the surface of the copper powder or the copper alloy powder coated with substantially silver or silver alloy as described above, one of the substantially spherical composite conductive powder having an average particle diameter of one of the above-described ones. / 3
Hereinafter, a powder containing silver having a cohesive property as a main component is used. By this combination, fluidity, conductivity, and thermal conductivity are balanced, and bleeding and dripping of the conductive material can be prevented as long as fluidity is not impaired.

【0017】凝集性を有する銀を主成分とした粉末は、
上記に示すように平均粒径が、解粒された略球状複合導
電粉の1/3以下の粉末を用いることが好ましく、1/
4以下の粉末を用いることがさらに好ましい。1/3を
越える粉末を用いると解粒された略球状複合導電粉の充
填率を高くすることが困難で、熱伝導性を高くすること
ができなくなる傾向がある。
The silver-based powder having cohesive properties is
As described above, it is preferable to use powder having an average particle diameter of 1/3 or less of the pulverized substantially spherical composite conductive powder,
It is more preferred to use no more than 4 powders. If the powder exceeds 1/3, it is difficult to increase the filling rate of the pulverized substantially spherical composite conductive powder, and it tends to be impossible to increase the thermal conductivity.

【0018】凝集性を有する銀を主成分とした粉末の形
状については特に制限はないが、配合量を増加させた場
合の温度上昇を抑制する観点から、塊状又は略球状であ
ることが好ましい。また、凝集性を有する銀を主成分と
した粉末は、銀粉を50重量%以上含有し、その他に銅
粉、ニッケル粉、銀とパラジウムの合金粉、銀と銅の合
金粉等を添加したものが用いられる。
There is no particular limitation on the shape of the powder containing silver having cohesive properties as a main component, but from the viewpoint of suppressing a rise in temperature when the blending amount is increased, it is preferably a lump or substantially spherical. The powder containing silver as a main component having cohesiveness contains silver powder in an amount of 50% by weight or more, and additionally contains copper powder, nickel powder, alloy powder of silver and palladium, and alloy powder of silver and copper. Is used.

【0019】導電粉の粒径は前記に示す他に、略球状複
合導電粉が10μm以下で、銀を主成分とした粉末が
0.5μm以下であれば、高熱伝導性及び導電性に優れ
る点で好ましく、略球状複合導電粉が8μm以下で、銀
を主成分とした粉末が0.4μm以下であればより好ま
しく、略球状複合導電粉が6.5μm以下で、銀を主成
分とした粉末が0.2μm以下であればさらに好まし
い。
In addition to the particle diameters of the conductive powder described above, if the substantially spherical composite conductive powder is 10 μm or less and the powder containing silver as a main component is 0.5 μm or less, high thermal conductivity and excellent conductivity are obtained. More preferably, the substantially spherical composite conductive powder is 8 μm or less, and the silver-based powder is more preferably 0.4 μm or less, and the substantially spherical composite conductive powder is 6.5 μm or less, and the powder is mainly silver. Is more preferably 0.2 μm or less.

【0020】略球状複合導電粉と銀を主成分とした粉末
との配合割合は、重量比で略球状複合導電粉:銀を主成
分とした粉末が99:1〜85:15であれば、流動
性、導電性、熱伝導性等の点で好ましく、98:2〜8
8:12であればより好ましく、98:2〜90:10
であればさらに好ましい。
The compounding ratio of the substantially spherical composite conductive powder and the powder containing silver as a main component is such that the weight ratio of the substantially spherical composite conductive powder: powder containing silver as a main component is 99: 1 to 85:15. It is preferable in terms of fluidity, electrical conductivity, thermal conductivity, and the like.
8:12 is more preferable, and 98: 2 to 90:10.
Is more preferable.

【0021】バインダ組成物としては、エポキシ樹脂、
フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹
脂、ウレタン樹脂等の熱硬化性樹脂さらに必要に応じて
可撓性を付与する飽和ポリエステル樹脂、フェノキシ樹
脂等の熱可塑性樹脂が用いられる。なお必要に応じて用
いられる熱可塑性樹脂は、バインダ組成物に対して15
重量%以下含有することが好ましい。
As the binder composition, epoxy resin,
Thermosetting resins such as phenolic resins, melamine resins, unsaturated polyester resins, and urethane resins, and, if necessary, thermoplastic resins such as saturated polyester resins and phenoxy resins that impart flexibility. In addition, the thermoplastic resin used as needed is 15% with respect to the binder composition.
It is preferable that the content is not more than weight%.

【0022】バインダ組成物は、上記成分の他に硬化
剤、硬化促進剤又は金属との濡れ性をよくするカップリ
ング剤、界面活性剤等を含むものが用いられる。硬化剤
の含有量は、バインダ組成物に対して0.2〜10重量
%の範囲であることが好ましく、硬化促進剤の含有量
は、バインダ組成物に対して0.1〜10重量%の範囲
であることが好ましく、またカップリング剤及び界面活
性剤の含有量は、それぞれバインダ組成物に対して0.
01〜1重量%の範囲であることが好ましい。
As the binder composition, those containing a curing agent, a curing accelerator, a coupling agent for improving the wettability with a metal, a surfactant and the like in addition to the above components are used. The content of the curing agent is preferably in the range of 0.2 to 10% by weight based on the binder composition, and the content of the curing accelerator is preferably 0.1 to 10% by weight based on the binder composition. Preferably, the content of the coupling agent and the content of the surfactant are within the range of 0.1 to 0.1% based on the binder composition.
It is preferably in the range of 01 to 1% by weight.

【0023】溶剤は、必要に応じて添加され、添加する
場合は高級アルコールとこのエステル、カルビトール系
とこのエステル等が作業温度に応じて適宜選定して添加
される。添加量は少ない程望ましいが、用途によっては
導電材に対して2重量%以上含有していても差し支えな
い。例えば溶剤を含む導電材をスルーホールに充填した
後加熱加圧硬化する場合は、充填後に予備乾燥で溶剤を
揮散させることができ、また加圧硬化で緻密化を図れる
ので、2〜5重量%含有しても差し支えない。
The solvent is added as needed, and when it is added, a higher alcohol and its ester, a carbitol type and its ester are appropriately selected and added according to the working temperature. The smaller the amount of addition, the better, but depending on the application, it may be contained at 2% by weight or more based on the conductive material. For example, when a conductive material containing a solvent is filled in a through-hole and then heated and pressed, the solvent can be volatilized by preliminary drying after filling, and densification can be achieved by pressure hardening. It may be contained.

【0024】混合導電粉とバインダ組成物の配合割合
は、混合導電粉が75〜95重量%に対しバインダ組成
物が5〜25重量%の範囲が好ましく、混合導電粉が8
0〜95重量%に対しバインダ組成物が5〜20重量%
の範囲がさらに好ましい。本発明になる導電材は、混合
導電粉とバインダ組成物を含む材料を、らいかい機、ニ
ーダー、三本ロール等で均一に混合、分散して得ること
ができる。
The mixing ratio of the mixed conductive powder and the binder composition is preferably in the range of 75 to 95% by weight of the mixed conductive powder and 5 to 25% by weight of the binder composition.
5 to 20% by weight of the binder composition with respect to 0 to 95% by weight
Is more preferable. The conductive material according to the present invention can be obtained by uniformly mixing and dispersing a material containing the mixed conductive powder and the binder composition by using a grinder, a kneader, a three-roll mill, or the like.

【0025】[0025]

【実施例】以下、本発明を実施例により説明する。The present invention will be described below with reference to examples.

【0026】実施例1 ビスフェノールA型エポキシ樹脂(油化シェルエポキシ
(株)製、商品名エピコート827)80重量部、脂肪族
ジグリシジルエーテル(旭電化工業(株)製、商品名ED
−503)8重量部、2−フェニル−4−メチル−5−
ヒドロキシメチルイミダゾール(四国化成(株)製、商品
名キュアゾール2P4MHZ)8重量部及びジシアンジ
アミド4重量部を加えて均一に混合してバインダ組成物
とした。
Example 1 Bisphenol A type epoxy resin (oiled shell epoxy)
80 parts by weight of an aliphatic diglycidyl ether (trade name: ED, manufactured by Asahi Denka Kogyo Co., Ltd.)
-503) 8 parts by weight, 2-phenyl-4-methyl-5-
8 parts by weight of hydroxymethylimidazole (trade name: Curesol 2P4MHZ, manufactured by Shikoku Chemicals Co., Ltd.) and 4 parts by weight of dicyandiamide were added and uniformly mixed to obtain a binder composition.

【0027】次にアトマイズ法で作製した平均粒径が
5.1μmの球状銅粉(日本アトマイズ加工(株)製、商
品名SFR−Cu)を希塩酸及び純水で洗浄した後、水
1リットルあたりAgCN 80g及びNaCN 75
gを含むめっき溶液で球状銅粉に対して銀の量が18重
量%になるように置換めっきを行い、水洗、乾燥して銀
めっき銅粉を得た。
Next, spherical copper powder (trade name: SFR-Cu, manufactured by Nippon Atomize Processing Co., Ltd.) having an average particle size of 5.1 μm produced by an atomizing method was washed with dilute hydrochloric acid and pure water. 80 g of AgCN and 75 of NaCN
g was subjected to displacement plating so that the amount of silver was 18% by weight with respect to the spherical copper powder, washed with water and dried to obtain silver-plated copper powder.

【0028】この後、6リットルのボールミル容器内に
上記で得た銀めっき銅粉1500g及び直径が2mmのジ
ルコニアボール4kgを投入し、120分間回転させて、
アスペクト比が平均1.1及び長径の平均粒径が5.3
μmの解粒された略球状銀めっき銅粉を得た。得られた
略球状銀めっき銅粉の粒子を5個取り出し、走査型オー
ジェ電子分光分析装置で定量分析して銅粉の露出面積に
ついて調べたところ3〜10%の範囲で平均が7%であ
った。
Thereafter, 1500 g of the silver-plated copper powder obtained above and 4 kg of zirconia balls having a diameter of 2 mm were put into a 6-liter ball mill container and rotated for 120 minutes.
The aspect ratio is 1.1 on average and the average diameter of the major axis is 5.3.
A μm-disintegrated substantially spherical silver-plated copper powder was obtained. Five particles of the obtained substantially spherical silver-plated copper powder were taken out and quantitatively analyzed by a scanning Auger electron spectrometer to examine the exposed area of the copper powder. The average area was 7% in the range of 3 to 10%. Was.

【0029】上記で得たバインダ組成物55gに、上記
で得た解粒された略球状銀めっき銅粉425g、粒径が
0.1μm以下で凝集して樹枝状になっている銀粉
((株)徳力化学研究所製、商品名シルベストE−20)
20g及び溶剤として沸点が202℃のジエチレングリ
コールエチルエーテル15gを加えて、三本ロール及び
撹拌らいかい機で均一に混合、分散して導電材を得た。
なお溶剤の含有量は、導電材に対して2.9重量%で、
バインダ組成物と混合導電粉(解粒された略球状銀めっ
き銅粉及び凝集して樹枝状になっている銀粉)の配合割
合は、バインダ組成物が11重量%及び混合導電粉が8
9重量%であった。
To 55 g of the above-obtained binder composition, 425 g of the pulverized substantially spherical silver-plated copper powder obtained above, and silver powder having a particle size of 0.1 μm or less and agglomerated into a dendritic form ((stock) ) Sylvest E-20, manufactured by Tokuriki Chemical Laboratory)
20 g and 15 g of diethylene glycol ethyl ether having a boiling point of 202 ° C. as a solvent were added, and the mixture was uniformly mixed and dispersed with a three-roll mill and a stirrer to obtain a conductive material.
The content of the solvent was 2.9% by weight based on the conductive material.
The blending ratio of the binder composition and the mixed conductive powder (pulverized substantially spherical silver-plated copper powder and agglomerated dendritic silver powder) was 11% by weight for the binder composition and 8 for the mixed conductive powder.
It was 9% by weight.

【0030】次に、上記で得た導電材を用いて、予め表
面の銅箔をエッチングして除去した厚さが1.6mmの紙
フェノール積層板(日立化成工業(株)製、商品名MCL
−437F(SRD))上に図1に示すテストパターン
1を印刷し、大気中で80℃1時間、さらに165℃で
1時間の条件で加熱処理して配線板を得た。なお図1に
おいて2は紙フェノール積層板である。得られた配線板
の特性を評価した結果、導体の比抵抗は最大値が45μ
Ω・m、最小値が33μΩ・mで、平均は37μΩ・m
であった。
Next, a 1.6 mm-thick paper phenol laminate (manufactured by Hitachi Chemical Co., Ltd., trade name: MCL
The test pattern 1 shown in FIG. 1 was printed on −437F (SRD)), and heat-treated in air at 80 ° C. for 1 hour and at 165 ° C. for 1 hour to obtain a wiring board. In FIG. 1, reference numeral 2 denotes a paper phenol laminate. As a result of evaluating the characteristics of the obtained wiring board, the maximum specific resistance of the conductor was 45 μm.
Ω ・ m, minimum value is 33μΩ ・ m, average is 37μΩ ・ m
Met.

【0031】なお、本実施例におけるアスペクト比の具
体的測定法を以下に示す。低粘度のエポキシ樹脂(ビュ
ーラー社製)の主剤(No.10−8130)8gと硬化
剤(No.10−8132)2gを混合し、ここへ導電粉
2gを混合して良く分散させ、そのまま30℃で真空脱
泡した後、30℃で10時間静置して粒子を沈降させ硬
化させた。その後、得られた硬化物を垂直方向に切断
し、切断面を電子顕微鏡で1000倍に拡大して切断面
に現れた150個の粒子について長径/短径を求め、そ
れらの平均値をもって、アスペクト比とした。
The specific method of measuring the aspect ratio in this embodiment will be described below. 8 g of a base material (No. 10-8130) of a low-viscosity epoxy resin (manufactured by Buehler) and 2 g of a curing agent (No. 10-8132) are mixed, and 2 g of conductive powder is mixed and dispersed well, and the mixture is left as it is. After degassing in vacuo at a temperature of 30 ° C., the particles were allowed to stand at 30 ° C. for 10 hours to settle and harden the particles. Thereafter, the obtained cured product was cut in the vertical direction, the cut surface was magnified 1000 times with an electron microscope, and the long diameter / short diameter of 150 particles that appeared on the cut surface was obtained. Ratio.

【0032】実施例2 実施例1で得たバインダ組成物45gに、実施例1で得
た解粒された略球状銀めっき銅粉440g、実施例1で
用いた粒径が0.1μm以下で凝集して樹枝状になって
いる銀粉15g及び実施例1で用いた溶剤15gを加え
て、三本ロール及び撹拌らいかい機で均一に混合、分散
して導電材を得た。なお溶剤の含有量は、導電材に対し
て2.9重量%で、バインダ組成物と混合導電粉の配合
割合は、バインダ組成物が9重量%及び混合導電粉が9
1重量%であった。以下、実施例1と同様の工程を経て
配線板を作製して特性を評価した結果、導体の比抵抗は
最大値が41μΩ・m、最小値が33μΩ・mで、平均
は35μΩ・mであった。
Example 2 To 45 g of the binder composition obtained in Example 1, 440 g of the crushed substantially spherical silver-plated copper powder obtained in Example 1, and the particle size used in Example 1 was 0.1 μm or less. 15 g of aggregated and dendritic silver powder and 15 g of the solvent used in Example 1 were added, and the mixture was uniformly mixed and dispersed with a three-roll mill and a stirrer to obtain a conductive material. The content of the solvent was 2.9% by weight with respect to the conductive material, and the mixing ratio of the binder composition and the mixed conductive powder was 9% by weight of the binder composition and 9% by weight of the mixed conductive powder.
It was 1% by weight. Hereinafter, as a result of fabricating a wiring board through the same steps as in Example 1 and evaluating the characteristics, the specific resistance of the conductor was 41 μΩ · m at the maximum, 33 μΩ · m at the minimum, and 35 μΩ · m on average. Was.

【0033】実施例3 銅の露出面積が平均で6%で、長径の平均粒径が5.4
μmの解粒された略球状銀めっき銅粉を用いた以外は、
実施例1と同様の材料及び実施例1と同様の工程を経て
導電材を得た。以下、実施例1と同様の工程を経て配線
板を作製して特性を評価した結果、導体の比抵抗は最大
値が40μΩ・m、最小値が31μΩ・mで、平均は3
5μΩ・mであった。
Example 3 The exposed area of copper was 6% on average, and the average long diameter was 5.4.
Except that μm-disintegrated substantially spherical silver-plated copper powder was used,
A conductive material was obtained through the same materials as in Example 1 and the same steps as in Example 1. Hereinafter, as a result of fabricating a wiring board through the same steps as in Example 1 and evaluating the characteristics, the specific resistance of the conductor was 40 μΩ · m at the maximum value, 31 μΩ · m at the minimum value, and 3 on the average.
It was 5 μΩ · m.

【0034】実施例4 実施例1で得たバインダ組成物45gに、実施例1で得
た解粒された略球状銀めっき銅粉445g、実施例1で
用いた粒径が0.1μm以下で凝集して樹枝状になって
いる銀粉10g及び実施例1で用いた溶剤15gを加え
て、三本ロール及び撹拌らいかい機で均一に混合、分散
して導電材を得た。なお溶剤の含有量は、導電材に対し
て2.9重量%で、バインダ組成物と混合導電粉の配合
割合は、バインダ組成物が9重量%及び混合導電粉が9
1重量%であった。以下、実施例1と同様の工程を経て
配線板を作製して特性を評価した結果、導体の比抵抗は
最大値が43μΩ・m、最小値が33μΩ・mで、平均
は36μΩ・mであった。
Example 4 45 g of the pulverized substantially spherical silver-plated copper powder obtained in Example 1 was added to 45 g of the binder composition obtained in Example 1, and the particle size used in Example 1 was 0.1 μm or less. 10 g of the aggregated and dendritic silver powder and 15 g of the solvent used in Example 1 were added, and the mixture was uniformly mixed and dispersed with a three-roll mill and a stirrer to obtain a conductive material. The content of the solvent was 2.9% by weight with respect to the conductive material, and the mixing ratio of the binder composition and the mixed conductive powder was 9% by weight of the binder composition and 9% by weight of the mixed conductive powder.
It was 1% by weight. Hereinafter, as a result of fabricating a wiring board through the same steps as in Example 1 and evaluating the characteristics, the specific resistance of the conductor was 43 μΩ · m at the maximum, 33 μΩ · m at the minimum, and 36 μΩ · m on average. Was.

【0035】次に、上記の実施例1、2、3及び4で得
られた配線板を85℃85%相対湿度の恒温恒湿槽中に
500時間放置して抵抗変化率を測定したところ平均−
0.5%であった。
Next, the wiring boards obtained in Examples 1, 2, 3 and 4 were left in a thermo-hygrostat at 85 ° C. and 85% relative humidity for 500 hours, and the resistance change rate was measured. −
0.5%.

【0036】比較例1 実施例1で得たバインダ組成物45gに、実施例1で用
いた球状銅粉455g及び実施例1で用いた溶剤15g
を加えて、三本ロール及び撹拌らいかい機で均一に混
合、分散して導電材を得た。以下、実施例1と同様の工
程を経て配線板を作製して特性を評価した結果、導体の
比抵抗は最大値が87μΩ・m、最小値が56μΩ・m
で、平均は69μΩ・mであった。また、得られた配線
板を85℃85%相対湿度の恒温恒湿槽中に500時間
放置して抵抗変化率を測定したところ平均157%と大
きく変化した。
Comparative Example 1 45 g of the spherical copper powder used in Example 1 and 15 g of the solvent used in Example 1 were added to 45 g of the binder composition obtained in Example 1.
Was added and uniformly mixed and dispersed with a three-roll mill and a stirrer to obtain a conductive material. Hereinafter, as a result of fabricating a wiring board through the same steps as in Example 1 and evaluating the characteristics, the specific resistance of the conductor was 87 μΩ · m at the maximum and 56 μΩ · m at the minimum.
And the average was 69 μΩ · m. When the obtained wiring board was left in a thermo-hygrostat at 85 ° C. and 85% relative humidity for 500 hours, and the resistance change rate was measured, it was found to be 157% on average, and the resistance was largely changed.

【0037】[0037]

【発明の効果】請求項1、2、3及び4記載の導電材
は、高導電性及び高熱伝導性に優れ、工業的に極めて好
適な導電材である。請求項5記載の導電材は、請求項
1、2、3及び4記載の発明に加えて、抵抗の信頼性が
高く、またスルーホールへの充填性が良好な導電材であ
る。
The conductive material according to the first, second, third and fourth aspects is excellent in high electrical conductivity and high thermal conductivity, and is an industrially suitable electrically conductive material. The conductive material according to claim 5 is a conductive material having high resistance reliability and good filling property in through holes, in addition to the invention according to claims 1, 2, 3 and 4.

【図面の簡単な説明】[Brief description of the drawings]

【図1】紙フェノール積層板上に形成したテストパター
ンを示す平面図である。
FIG. 1 is a plan view showing a test pattern formed on a paper phenol laminate.

【符号の説明】[Explanation of symbols]

1 テストパターン 2 紙フェノール積層板 1 Test pattern 2 Paper phenol laminate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09J 11/04 C09J 11/04 201/00 201/00 Fターム(参考) 4E351 BB01 BB31 DD04 DD05 DD52 EE15 EE16 GG16 4J040 DB001 EB031 EB131 ED111 EF001 HA066 HA076 JB02 JB10 KA03 KA07 KA32 LA08 LA09 NA20 5E343 AA14 BB24 BB25 BB52 BB72 BB76 BB77 BB79 DD02 FF02 GG16 5G301 DA03 DA06 DA42 DA53 DA55 DA57 DA59 DD01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) C09J 11/04 C09J 11/04 201/00 201/00 F term (reference) 4E351 BB01 BB31 DD04 DD05 DD52 EE15 EE16 GG16 4J040 DB001 EB031 EB131 ED111 EF001 HA066 HA076 JB02 JB10 KA03 KA07 KA32 LA08 LA09 NA20 5E343 AA14 BB24 BB25 BB52 BB72 BB76 BB77 BB79 DD02 FF02 GG16 5G301 DA03 DA06 DA42 DA53 DA55 DA57 DA57 DA57 DA57 DA57 DA57 DA57 DA57 DA57 DA57 DA57 DA57 DA57 DA57 DA57 DA57

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 銅粉又は銅合金粉の表面が大略銀又は銀
合金で被覆された略球状複合導電粉と凝集性を有する銀
を主成分とした粉末とを含む混合導電粉及びバインダ組
成物を含有してなる導電材。
1. A mixed conductive powder and a binder composition comprising a substantially spherical composite conductive powder in which the surface of a copper powder or a copper alloy powder is substantially coated with silver or a silver alloy and a powder mainly containing silver having cohesiveness. A conductive material comprising:
【請求項2】 凝集性を有する銀を主成分とした粉末の
平均粒径が略球状複合導電粉の1/3以下である請求項
1記載の導電材。
2. The conductive material according to claim 1, wherein the average particle diameter of the powder containing silver having cohesive properties as a main component is 1/3 or less of the substantially spherical composite conductive powder.
【請求項3】 略球状複合導電粉の平均粒径が10μm
以下で、凝集性を有する銀を主成分とした粉末の平均粒
径が0.5μm以下である請求項1記載の導電材。
3. The substantially spherical composite conductive powder has an average particle size of 10 μm.
The conductive material according to claim 1, wherein the average particle diameter of the powder containing silver having cohesive properties as a main component is 0.5 m or less.
【請求項4】 凝集性を有する銀を主成分とした粉末
が、塊状である請求項1、2又は3記載の導電材。
4. The conductive material according to claim 1, wherein the powder containing silver having cohesive properties as a main component is in a lump.
【請求項5】 略球状複合導電粉と銀を主成分とした粉
末との配合割合が、重量比で略球状複合導電粉:銀を主
成分とした粉末が重量比で99:1〜85:15である
請求項1、2、3又は4記載の導電材。
5. The compounding ratio of the substantially spherical composite conductive powder and the powder containing silver as a main component is such that the weight ratio of the substantially spherical composite conductive powder: powder containing silver as a main component is 99: 1 to 85: The conductive material according to claim 1, 2, 3, or 4.
JP2000115864A 2000-04-12 2000-04-12 Conductive material Pending JP2001297627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000115864A JP2001297627A (en) 2000-04-12 2000-04-12 Conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000115864A JP2001297627A (en) 2000-04-12 2000-04-12 Conductive material

Publications (1)

Publication Number Publication Date
JP2001297627A true JP2001297627A (en) 2001-10-26

Family

ID=18627405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000115864A Pending JP2001297627A (en) 2000-04-12 2000-04-12 Conductive material

Country Status (1)

Country Link
JP (1) JP2001297627A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031760A1 (en) * 2003-09-26 2005-04-07 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof
JP2005317491A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
JP2005317490A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
WO2006013793A1 (en) * 2004-08-03 2006-02-09 Hitachi Chemical Company, Ltd. Electroconductive paste and substrate using the same for mounting electronic parts
JP2006083377A (en) * 2004-08-18 2006-03-30 Harima Chem Inc Electrically conductive adhesive and method for producing article utilizing the electrically conductive adhesive
JP2006111807A (en) * 2004-10-18 2006-04-27 Hitachi Chem Co Ltd Electronic part and method for producing the same
JP2007066785A (en) * 2005-09-01 2007-03-15 Seiko Epson Corp Formation method of pattern, organic electroluminescent device, its manufacturing method, electro-optical device, its manufacturing method, semiconductor device, and its manufacturing method
JP2007099851A (en) * 2005-10-03 2007-04-19 Denso Corp Electroconductive adhesive
JP2011065999A (en) * 2010-09-27 2011-03-31 Hitachi Chem Co Ltd Electronic component and its manufacturing method
KR101088632B1 (en) * 2009-05-27 2011-12-01 전자부품연구원 A via paste composition
KR101088631B1 (en) * 2009-05-27 2011-12-01 전자부품연구원 A via paste composition
EP2457944A1 (en) 2010-11-30 2012-05-30 Benecke-Kaliko AG Polymer mixture
DE102015207814A1 (en) 2015-04-28 2016-11-03 Benecke-Kaliko Ag Electrically conductive material composition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029701B2 (en) 2003-09-26 2011-10-04 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof
WO2005031760A1 (en) * 2003-09-26 2005-04-07 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof
DE112004001768B4 (en) * 2003-09-26 2019-11-21 Hitachi Chemical Co., Ltd. Mixed conductive powder and its use
JP2012253031A (en) * 2003-09-26 2012-12-20 Hitachi Chem Co Ltd Conductive paste
KR100719993B1 (en) * 2003-09-26 2007-05-21 히다치 가세고교 가부시끼가이샤 Mixed Conductive Powder and Use Thereof
US7790063B2 (en) 2003-09-26 2010-09-07 Hitachi Chemical Company, Ltd. Mixed conductive power and use thereof
JP2005317491A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
JP2005317490A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
WO2006013793A1 (en) * 2004-08-03 2006-02-09 Hitachi Chemical Company, Ltd. Electroconductive paste and substrate using the same for mounting electronic parts
KR100804840B1 (en) * 2004-08-03 2008-02-20 히다치 가세고교 가부시끼가이샤 Electroconductive paste and substrate using the same for mounting electronic parts
JP2006083377A (en) * 2004-08-18 2006-03-30 Harima Chem Inc Electrically conductive adhesive and method for producing article utilizing the electrically conductive adhesive
JP2006111807A (en) * 2004-10-18 2006-04-27 Hitachi Chem Co Ltd Electronic part and method for producing the same
JP4678264B2 (en) * 2005-09-01 2011-04-27 セイコーエプソン株式会社 Pattern formation method, organic electroluminescence device and manufacturing method thereof, electro-optical device and manufacturing method thereof, semiconductor device and manufacturing method thereof
JP2007066785A (en) * 2005-09-01 2007-03-15 Seiko Epson Corp Formation method of pattern, organic electroluminescent device, its manufacturing method, electro-optical device, its manufacturing method, semiconductor device, and its manufacturing method
JP2007099851A (en) * 2005-10-03 2007-04-19 Denso Corp Electroconductive adhesive
KR101088632B1 (en) * 2009-05-27 2011-12-01 전자부품연구원 A via paste composition
KR101088631B1 (en) * 2009-05-27 2011-12-01 전자부품연구원 A via paste composition
JP2011065999A (en) * 2010-09-27 2011-03-31 Hitachi Chem Co Ltd Electronic component and its manufacturing method
EP2457944A1 (en) 2010-11-30 2012-05-30 Benecke-Kaliko AG Polymer mixture
DE102010060904A1 (en) 2010-11-30 2012-05-31 Benecke-Kaliko Ag polymer mixture
DE102015207814A1 (en) 2015-04-28 2016-11-03 Benecke-Kaliko Ag Electrically conductive material composition

Similar Documents

Publication Publication Date Title
JP5146419B2 (en) Mixed conductive powder and its use
WO1996024938A1 (en) Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
JP3964868B2 (en) Thermosetting conductive paste for conductive bumps
KR20110049466A (en) Conductive paste and the manufacturing method thereof and the electric device comprising thereof
JP2001297627A (en) Conductive material
WO2019189512A1 (en) Electroconductive adhesive composition
JP4922793B2 (en) Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
JP3599149B2 (en) Conductive paste, electric circuit using conductive paste, and method of manufacturing electric circuit
JP3879749B2 (en) Conductive powder and method for producing the same
JP5609492B2 (en) Electronic component and manufacturing method thereof
JP3513636B2 (en) Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit
JP2004165357A (en) Film-laced heat-conducting sheet
JP2000322933A (en) Conductive paste and its manufacture
JPH10152630A (en) Conductive paste and composite conductive powder
JP2006286366A (en) Conductive paste composition and printed board
JP2006111807A (en) Electronic part and method for producing the same
JPH06333417A (en) Conductive paste
JP2001302884A (en) Electrodonductive paste
JP3783788B2 (en) Manufacturing method of conductive paste and electric circuit forming substrate
JP2005310538A (en) Electronic component and its manufacturing method
JPH07307110A (en) Conductive paste
JP2003068139A (en) Conductive paste
JP3952004B2 (en) Conductive paste
JPH06338219A (en) Conductive paste
JPH07307112A (en) Conductive paste