JP2001302884A - Electrodonductive paste - Google Patents

Electrodonductive paste

Info

Publication number
JP2001302884A
JP2001302884A JP2000126300A JP2000126300A JP2001302884A JP 2001302884 A JP2001302884 A JP 2001302884A JP 2000126300 A JP2000126300 A JP 2000126300A JP 2000126300 A JP2000126300 A JP 2000126300A JP 2001302884 A JP2001302884 A JP 2001302884A
Authority
JP
Japan
Prior art keywords
powder
conductive paste
weight
silver
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000126300A
Other languages
Japanese (ja)
Inventor
Junichi Kikuchi
純一 菊池
秀次 ▲桑▼島
Hideji Kuwajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000126300A priority Critical patent/JP2001302884A/en
Publication of JP2001302884A publication Critical patent/JP2001302884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electroconductive paste excellent in curability. SOLUTION: This electroconductive paste comprises a binder comprising 10-90 wt.% of an epoxy resin and 10-90 wt.% of a phenol resin and a curing agent therefor and an electroconductive powder. The amounts of the binder and electroconductive powder are 5-15 wt.% of the binder and 95-85 wt.% of the electroconductive powder in the electroconductive paste. The electroconductive powder is preferably a copper powder, a copper alloy powder, a silver-coated copper powder or a silver-coated copper alloy powder. The silver-coated copper powder and the silver-coated copper alloy powder are preferably degrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層プリント配線
板などの層間接続用の貫通孔又は非貫通孔に埋め込んで
使用される導電ペースト、特にビルドアップ多層配線板
用の孔埋め導電ペーストに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste used for embedding in a through hole or a non-through hole for interlayer connection of a multilayer printed wiring board or the like, and more particularly to a conductive paste for filling a build-up multilayer wiring board.

【0002】[0002]

【従来の技術】従来の多層プリント配線板は、加熱加圧
による多層化積層工程を経て得られた多層基板に、層間
接続用の貫通孔又は非貫通孔を形成した後、図1に示す
ようにその孔に対して銅めっき1を施すか、導電ペース
ト2を印刷又は充填するなどの方法で製造していた。な
お図1において3は銅箔である。
2. Description of the Related Art In a conventional multilayer printed wiring board, through holes or non-through holes for interlayer connection are formed in a multilayer substrate obtained through a multi-layer lamination process by heating and pressing, as shown in FIG. In this method, copper plating 1 is applied to the holes, or a conductive paste 2 is printed or filled. In FIG. 1, reference numeral 3 denotes a copper foil.

【0003】一般的に孔埋め導電ペーストを用いた多層
化積層工程は、孔に導電ペーストを充填させ予備乾燥さ
せたビルドアップ層を積層し、本乾燥として加熱加圧を
行っていた。そのため、本乾燥後に導電ペーストが硬化
していることが必要であり、また積層後加圧することに
よって加圧しない場合よりも導電性が向上している必要
がある。
In general, in a multilayer lamination process using a hole-filling conductive paste, build-up layers in which holes are filled with a conductive paste and preliminarily dried are stacked, and heating and pressurizing are performed as main drying. Therefore, the conductive paste needs to be hardened after the main drying, and the conductivity needs to be improved by pressing after lamination as compared with the case where no pressing is performed.

【0004】従来の孔埋め導電ペーストは、バインダの
主成分がエポキシ樹脂であり、その硬化剤としてイミダ
ゾール類が一般的に用いられており、導電粉が銅粉であ
る場合、銅合金粉において銅の部分が表面に露出してい
る場合、銀被覆銅粉又は銀被覆銅合金粉において銅の部
分が表面に露出している場合、導電ペーストは未硬化に
なり易いという欠点があった。これは硬化剤であるイミ
ダゾール類が銅とキレート結合を結成し、エポキシ樹脂
の硬化剤としての働きをしなくなるため、エポキシ樹脂
が硬化せず、導電ペーストも未硬化になるものと考えら
れる。
[0004] In the conventional hole filling conductive paste, the main component of the binder is an epoxy resin, and imidazoles are generally used as a hardening agent thereof. When the conductive powder is copper powder, the copper alloy powder contains copper. When the portion is exposed on the surface, and when the copper portion is exposed on the surface of the silver-coated copper powder or the silver-coated copper alloy powder, the conductive paste tends to be uncured. It is considered that this is because the imidazole as a curing agent forms a chelate bond with copper and does not function as a curing agent for the epoxy resin, so that the epoxy resin does not cure and the conductive paste becomes uncured.

【0005】銀など高導電性の金属粉を使用すればその
欠点を解消することは可能であるが、導電ペーストも高
価になってしまう。銅粉若しくは銅合金粉又は銀被覆銅
粉若しくは銀被覆銅合金粉の銅の部分が表面に露出して
いる導電粉を使用するためには、銅とキレート結合を結
成せず、エポキシ樹脂の硬化剤として働く物質を添加す
る必要がある。
The use of a highly conductive metal powder such as silver can eliminate the disadvantages, but the conductive paste becomes expensive. In order to use copper powder or copper alloy powder or conductive powder with silver-covered copper powder or silver-coated copper alloy powder whose copper part is exposed on the surface, it does not form a chelate bond with copper and cures the epoxy resin. It is necessary to add substances that act as agents.

【0006】[0006]

【発明が解決しようとする課題】請求項1記載の発明
は、硬化性に優れる導電ペーストを提供するものであ
る。請求項2記載の発明は、請求項1記載の発明に加え
て、硬化性の向上効果に優れる導電ペーストを提供する
ものである。請求項3及び4記載の発明は、請求項1記
載の発明に加えて、マイグレーション性に優れる導電ペ
ーストを提供するものである。請求項5記載の発明は、
請求項1記載の発明に加えて、導電性に優れる導電ペー
ストを提供するものである。
The first object of the present invention is to provide a conductive paste having excellent curability. According to a second aspect of the present invention, in addition to the first aspect, a conductive paste having an excellent effect of improving curability is provided. The third and fourth aspects of the present invention provide a conductive paste having excellent migration properties in addition to the first aspect of the present invention. The invention according to claim 5 is
In addition to the first aspect, the present invention provides a conductive paste having excellent conductivity.

【0007】[0007]

【課題を解決するための手段】本発明は、エポキシ樹脂
10〜90重量%及びフェノール樹脂10〜90重量%
とその硬化剤を含むバインダ並びに導電粉を含有してな
る導電ペーストに関する。また、本発明は、導電粉が、
銅粉又は銅合金粉である導電ペーストに関する。また、
本発明は、導電粉が、銀被覆銅粉又は銀被覆銅合金粉で
ある導電ペーストに関する。
According to the present invention, there is provided an epoxy resin of 10 to 90% by weight and a phenol resin of 10 to 90% by weight.
And a binder containing the curing agent, and a conductive paste containing conductive powder. In addition, the present invention, the conductive powder,
The present invention relates to a conductive paste that is copper powder or copper alloy powder. Also,
The present invention relates to a conductive paste in which the conductive powder is silver-coated copper powder or silver-coated copper alloy powder.

【0008】また、本発明は、銀被覆銅粉又は銀被覆銅
合金粉が、解粒された銀被覆銅粉又は銀被覆銅合金粉で
ある導電ペーストに関する。さらに、本発明は、バイン
ダと導電粉の配合割合が、導電ペーストの固形分に対し
て、バインダが5〜15重量%及び導電粉が85〜95
重量%である導電ペーストに関する。
[0008] The present invention also relates to a conductive paste wherein the silver-coated copper powder or silver-coated copper alloy powder is pulverized silver-coated copper powder or silver-coated copper alloy powder. Further, in the present invention, the mixing ratio of the binder and the conductive powder is such that the binder is 5 to 15% by weight and the conductive powder is 85 to 95% based on the solid content of the conductive paste.
% By weight of the conductive paste.

【0009】[0009]

【発明の実施の形態】本発明におけるバインダは、エポ
キシ樹脂及びフェノール樹脂とその硬化剤が用いられ
る。このうち、フェノール樹脂は、ノボラック型、レゾ
ール型等公知のものが用いられる。また、エポキシ樹脂
は、常温で液状のものが好ましい。常温で結晶化するも
のは液状物と混合することで結晶化を回避できる。常温
で液状のエポキシ樹脂とは、例えば常温で固形のもので
も常温で液状のエポキシ樹脂と混合して常温で安定して
液状となるものも含む。なお本発明において常温とは温
度が約25℃を示すものを意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a binder in the present invention, an epoxy resin, a phenol resin and a curing agent thereof are used. Among these, known phenol resins such as novolak type and resol type are used. The epoxy resin is preferably liquid at room temperature. Those that crystallize at room temperature can avoid crystallization by mixing with a liquid. The epoxy resin that is liquid at room temperature includes, for example, a resin that is solid at room temperature or that becomes stable at room temperature by mixing with an epoxy resin that is liquid at room temperature. In the present invention, the normal temperature means a temperature of about 25 ° C.

【0010】本発明に用いられるエポキシ樹脂は、公知
のものが用いられ、分子量中にエポキシ基を2個以上含
有する化合物、例えばビスフェノールA、ビスフェノー
ルAD、ビスフェノールF、ノボラック、クレゾールノ
ボラック類とエピクロルヒドリンとの反応により得られ
るポリグリシジルエーテル、ジヒドロキシナフタレンジ
グリシジルエーテル、ブタンジオールジグリシジルエー
テル、ネオペンチルグリコールジグリシジルエーテル等
の脂肪族エポキシ樹脂やジグリシジルヒダントイン等の
複素環式エポキシ、ビニルシクロヘキセンジオキサイ
ド、ジシクロペンタンジエンジオキサイド、アリサイク
リックジエポキシアジペイトのような脂環式エポキシ樹
脂が挙げられる。
As the epoxy resin used in the present invention, known resins are used, and compounds containing two or more epoxy groups in the molecular weight, such as bisphenol A, bisphenol AD, bisphenol F, novolak, cresol novolaks and epichlorohydrin Aliphatic epoxy resins such as polyglycidyl ether, dihydroxynaphthalenediglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, and heterocyclic epoxies such as diglycidyl hydantoin, vinylcyclohexene dioxide, Alicyclic epoxy resins such as cyclopentanedienedoxide and alicyclic diepoxy adipate are exemplified.

【0011】本発明においては、必要に応じて可撓性付
与剤が用いられる。可撓性付与剤は公知のものが用いら
れ、分子量中にエポキシ基を1個だけ有する化合物、例
えばn−ブチルグリシジルエーテル、バーサティック酸
グリシジルエステル、スチレンオキサイド、エチルヘキ
シルグリシジルエーテル、フェニルグリシジルエーテ
ル、クレジルグリシジルエーテル、ブチルフェニルグリ
シジルエーテル等のような通常のエポキシ樹脂が挙げら
れる。これらのエポキシ樹脂及び可撓性付与剤は、単独
又は2種以上を混合して用いることができる。
In the present invention, a flexibility-imparting agent is used if necessary. As the flexibility-imparting agent, known compounds are used, and compounds having only one epoxy group in the molecular weight, for example, n-butyl glycidyl ether, versidic acid glycidyl ester, styrene oxide, ethylhexyl glycidyl ether, phenyl glycidyl ether, cresylate Conventional epoxy resins such as jyl glycidyl ether, butylphenyl glycidyl ether and the like can be mentioned. These epoxy resins and flexibility-imparting agents can be used alone or in combination of two or more.

【0012】フェノール樹脂を使用し、なおかつ従来使
用していた硬化剤を使用することで導電ペースト硬化物
の耐溶剤性が良好になるので好ましい。また融点、解離
温度の異なる硬化剤を使用又は組み合わせることによ
り、導電ペーストのセミキュア状態をコントロールでき
るので好ましい。
It is preferable to use a phenolic resin and a conventionally used curing agent since the solvent resistance of the cured conductive paste is improved. It is also preferable to use or combine curing agents having different melting points and dissociation temperatures because the semi-cured state of the conductive paste can be controlled.

【0013】硬化剤としては、ポットライフの点でイミ
ダゾール類が好ましいが、その他としては、例えばメン
センジアミン、イソフオロンジアミン、メタフェニレン
ジアミン、ジアミノジフェニルメタン、ジアミノジフェ
ニルスルホン、メチレンジアニリン等のアミン類、無水
フタル酸、無水トリメリット酸、無水ピロメリット酸、
無水コハク酸、テトラヒドロ無水フタル酸等の酸無水
物、ジシアンジアミドなどの化合物系硬化剤を用いても
よく、必要に応じて、潜在性アミン硬化剤などの硬化剤
と併用して用いてもよく、また3級アミン、トリフェニ
ルホスフィン、テトラフェニルホスフェニルボレート等
といった化合物を添加してもよい。
As the curing agent, imidazoles are preferable from the viewpoint of pot life, and other examples thereof include amines such as mensendiamine, isophoronediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and methylenedianiline. , Phthalic anhydride, trimellitic anhydride, pyromellitic anhydride,
Succinic anhydride, acid anhydrides such as tetrahydrophthalic anhydride, compound-based curing agents such as dicyandiamide may be used, if necessary, may be used in combination with a curing agent such as a latent amine curing agent, Further, a compound such as a tertiary amine, triphenylphosphine, or tetraphenylphosphenyl borate may be added.

【0014】上記の硬化剤の含有量は、導電ペースト硬
化物のガラス転移点(以下Tgとする)の点で、エポキ
シ樹脂100重量部に対して、0.1〜20重量部の範
囲であることが好ましく、1〜10重量部の範囲である
ことがさらに好ましい。
The content of the above curing agent is in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the epoxy resin in terms of the glass transition point (hereinafter referred to as Tg) of the cured conductive paste. It is more preferable that the content is in the range of 1 to 10 parts by weight.

【0015】エポキシ樹脂とフェノール樹脂の配合割合
は、エポキシ樹脂10〜90重量%及びフェノール樹脂
10〜90重量%であることが好ましく、エポキシ樹脂
10〜70重量%及びフェノール樹脂30〜90重量%
であることがさらに好ましい。フェノール樹脂の配合割
合が10重量%未満の場合、導電ペーストの硬化性が向
上しない場合がある。フェノール樹脂を10重量%以上
併用することにより、導電性が向上し、配合割合が多く
なるほど導電性は良好になるが、上限についても制限が
あり90重量%を越えると、予備乾燥し加熱加圧後の導
電性が加圧しない場合に比較して向上しない場合があ
る。
The mixing ratio of the epoxy resin and the phenol resin is preferably 10 to 90% by weight of the epoxy resin and 10 to 90% by weight of the phenol resin, and 10 to 70% by weight of the epoxy resin and 30 to 90% by weight of the phenol resin.
Is more preferable. If the blending ratio of the phenolic resin is less than 10% by weight, the curability of the conductive paste may not be improved. By using 10% by weight or more of the phenol resin, the conductivity is improved. The conductivity increases as the blending ratio increases, but the upper limit is also limited. In some cases, the subsequent conductivity may not be improved as compared with the case where no pressure is applied.

【0016】これは、予備乾燥時にフェノール樹脂のゲ
ル化がある程度進んでしまうため、予備乾燥後加熱加圧
しても導電体の体積がそれほど小さくならず、導電粉も
緻密にならないため導電性が向上しないものと考えられ
る。フェノール樹脂の配合割合が90重量%を越える場
合でも、適切な条件で予備乾燥を行うことにより、加熱
加圧後の導電性を向上させることはできるが、予備乾燥
条件の作業幅が狭くなり、導電ペーストのセミキュア状
態をコントロールするのが難しく好ましくない。
This is because the gelling of the phenol resin proceeds to some extent during predrying, so that the volume of the conductor does not become so small even when heated and pressed after predrying, and the conductive powder does not become dense, so that the conductivity is improved. It is considered not to be. Even when the blending ratio of the phenolic resin exceeds 90% by weight, the pre-drying can be performed under appropriate conditions to improve the conductivity after heating and pressing, but the working width of the pre-drying conditions is reduced, It is difficult to control the semi-cure state of the conductive paste, which is not preferable.

【0017】本発明に用いられるバインダには、上記の
材料以外に必要に応じてチキソ剤、カップリング剤、消
泡剤、粉末表面処理剤、沈降防止剤等を添加して均一に
混合して得られる。必要に応じて添加されるチキソ剤、
カップリング剤、消泡剤、粉末表面処理剤、沈降防止剤
等の含有量は、導電ペーストに対して0.01〜1重量
%の範囲であることが好ましく、0.03〜0.5重量
%の範囲であることがさらに好ましい。
To the binder used in the present invention, a thixotropic agent, a coupling agent, an antifoaming agent, a powder surface treating agent, an anti-settling agent, etc. are added, if necessary, in addition to the above-mentioned materials, followed by uniform mixing. can get. Thixotropic agents added as needed,
The content of the coupling agent, the defoaming agent, the powder surface treating agent, the anti-settling agent and the like is preferably in the range of 0.01 to 1% by weight based on the conductive paste, and is preferably 0.03 to 0.5% by weight. % Is more preferable.

【0018】導電粉は、銅粉若しくは銅合金粉又は銀被
覆銅粉若しくは銀被覆銅合金粉を用いることが好まし
く、その粒径は小さいほど好ましく、例えば平均粒径が
1〜20μmの粉体が好ましく、1〜10μmの粉体が
さらに好ましい。また、銀被覆銅粉又は銀被覆銅合金粉
は、解粒された銀被覆銅粉又は銀被覆銅合金粉を用いれ
ば、解粒処理を行わない凝集した銀被覆銅粉又は銀被覆
銅合金粉より嵩密度が高いため小径の孔に充填する導電
粉として好ましい。
As the conductive powder, it is preferable to use copper powder, copper alloy powder, silver-coated copper powder, or silver-coated copper alloy powder, and the smaller the particle size, the more preferable. Preferably, a powder of 1 to 10 μm is more preferred. In addition, when silver-coated copper powder or silver-coated copper alloy powder is used, if the pulverized silver-coated copper powder or silver-coated copper alloy powder is used, agglomerated silver-coated copper powder or silver-coated copper alloy powder that is not subjected to pulverization treatment is used. Since it has a higher bulk density, it is preferable as a conductive powder to be filled in small-diameter holes.

【0019】導電粉は接触点が少ないと抵抗が高くなり
易い。導電粉の粒子同士の接触面積を大きくして高導電
性を得るため、導電粉に衝撃を与えて粒子の形状を扁平
状に変形することが好ましいが、扁平状導電粉を使用し
た導電ペーストは、略球状導電粉を使用した導電ペース
トに比較して粘度が高いため、埋め込み作業が困難にな
る。また、作業性及び導電ペーストを孔に埋め込んだと
きの孔のY軸方向への導電性という点からも、扁平状導
電粉より略球状導電粉を使用した導電ペーストを用いる
ことが好ましい。
If the conductive powder has few contact points, the resistance tends to increase. In order to increase the contact area between the particles of the conductive powder and obtain high conductivity, it is preferable to apply an impact to the conductive powder to deform the shape of the particles into a flat shape, but the conductive paste using the flat conductive powder is Since the viscosity is higher than that of the conductive paste using the substantially spherical conductive powder, the embedding work becomes difficult. Further, from the viewpoint of workability and conductivity in the Y-axis direction of the hole when the conductive paste is embedded in the hole, it is preferable to use a conductive paste using a substantially spherical conductive powder rather than a flat conductive powder.

【0020】銅粉又は銅合金粉の表面に銀又は銀合金を
被覆するには、置換めっき、電気めっき、無電解めっき
等の方法があり、銅粉又は銅合金粉と銀又は銀合金の付
着力が高いこと及びランニングコストが安価であること
から、置換めっきで被覆することが好ましい。銅粉又は
銅合金粉の表面への銀又は銀合金の被覆量は、耐マイグ
レーション性、コスト、導電性向上等の点から銅粉又は
銅合金粉に対して5〜25重量%の範囲が好ましく、1
0〜23重量%の範囲がさらに好ましい。
In order to coat the surface of copper powder or copper alloy powder with silver or silver alloy, there are methods such as displacement plating, electroplating, and electroless plating. It is preferable to cover with displacement plating because of high adhesion and low running cost. The coating amount of silver or silver alloy on the surface of copper powder or copper alloy powder is preferably in the range of 5 to 25% by weight based on copper powder or copper alloy powder from the viewpoints of migration resistance, cost, and improvement in conductivity. , 1
The range of 0 to 23% by weight is more preferable.

【0021】銅粉又は銅合金粉の露出面積は、耐マイグ
レーション性、はんだ付け性、露出部の酸化、導電性等
の点から10〜50%の範囲が好ましく、10〜30%
の範囲がさらに好ましい。なお、上記の銅合金粉として
は、銅とスズ、銅と亜鉛等の合金粉を用いることが好ま
しい。また銀合金としては、銀とパラジウム、銀と白金
等の合金を用いることが好ましい。
The exposed area of the copper powder or copper alloy powder is preferably in the range of 10 to 50% from the viewpoints of migration resistance, solderability, oxidation of the exposed portion, conductivity, etc., and 10 to 30%.
Is more preferable. In addition, it is preferable to use an alloy powder of copper and tin, copper and zinc, etc. as the above-mentioned copper alloy powder. As the silver alloy, an alloy of silver and palladium, silver and platinum, or the like is preferably used.

【0022】本発明における略球状導電粉としては、ア
スペクト比が1〜1.5及び長径の平均粒径が1〜20
μmの導電粉を用いることが好ましく、アスペクト比が
1〜1.3及び長径の平均粒径が1〜10μmの導電粉
を用いることがさらに好ましい。なお上記でいう平均粒
径は、レーザー散乱型粒度分布測定装置により測定する
ことができる。本発明においては、前記装置としてマス
ターサイザー(マルバン社製)を用いて測定した。
The substantially spherical conductive powder of the present invention has an aspect ratio of 1 to 1.5 and an average long particle diameter of 1 to 20.
It is preferable to use conductive powder of μm, and it is more preferable to use conductive powder having an aspect ratio of 1 to 1.3 and a long diameter having an average particle diameter of 1 to 10 μm. The average particle size mentioned above can be measured by a laser scattering type particle size distribution measuring device. In the present invention, the measurement was performed using a master sizer (manufactured by Malvern) as the device.

【0023】本発明におけるアスペクト比とは、導電粉
の粒子の長径と短径の比率(長径/短径)をいう。本発
明においては、粘度の低い硬化性樹脂中に導電粉の粒子
をよく混合し、静置して粒子を沈降させるとともにその
まま樹脂を硬化させ、得られた硬化物を垂直方向に切断
し、その切断面に現れる粒子の形状を電子顕微鏡で拡大
して観察し、少なくとも100の粒子について一つ一つ
の粒子の長径/短径を求め、それらの平均値をもってア
スペクト比とする。
The aspect ratio in the present invention refers to the ratio of the major axis to the minor axis (major axis / minor axis) of the conductive powder particles. In the present invention, the particles of the conductive powder are mixed well in the curable resin having a low viscosity, and the resin is cured while allowing the particles to settle by standing, and the obtained cured product is cut in the vertical direction. The shape of the particles appearing on the cut surface is observed under magnification with an electron microscope, and the major axis / minor axis of each particle is obtained for at least 100 particles, and the average value thereof is defined as the aspect ratio.

【0024】ここで、短径とは、前記切断面に現れる粒
子について、その粒子の外側に接する二つの平行線の組
み合わせ粒子を挟むように選択し、それらの組み合わせ
のうち最短間隔になる二つの平行線の距離である。一
方、長径とは、前記短径を決する平行線に直角方向の二
つの平行線であって、粒子の外側に接する二つの平行線
の組み合わせのうち、最長間隔になる二つの平行線の距
離である。これらの四つの線で形成される長方形は、粒
子がちょうどその中に納まる大きさとなる。なお、本発
明において行った具体的方法については後述する。
Here, the minor axis is selected so that a particle appearing on the cut surface sandwiches a combination particle of two parallel lines contacting the outside of the particle, and two of the combinations having the shortest interval are selected. The distance between the parallel lines. On the other hand, the major axis is the two parallel lines perpendicular to the parallel line that determines the minor axis, and is the distance between the two parallel lines that are the longest among the combinations of the two parallel lines that contact the outside of the particle. is there. The rectangle formed by these four lines is sized to fit the particle exactly inside it. The specific method used in the present invention will be described later.

【0025】バインダと導電粉の配合割合は、導電ペー
ストの固形分に対して、バインダが5〜15重量%及び
導電粉が85〜95重量%の範囲が好ましく、バインダ
が7〜13重量%及び導電粉が87〜93重量%の範囲
がさらに好ましい。バインダが5重量%未満で、導電粉
が95重量%を越えると、粘度、接着力、導電ペースト
の強度及び信頼性が低下する傾向があり、バインダが1
5重量%を越え、導電粉が85重量%未満であると、導
電性が低下する傾向がある。
The mixing ratio of the binder and the conductive powder is preferably in the range of 5 to 15% by weight of the binder and 85 to 95% by weight of the conductive powder, and 7 to 13% by weight of the binder. The conductive powder is more preferably in the range of 87 to 93% by weight. When the amount of the binder is less than 5% by weight and the amount of the conductive powder exceeds 95% by weight, the viscosity, adhesive strength, strength and reliability of the conductive paste tend to decrease, and
If it exceeds 5% by weight and the conductive powder is less than 85% by weight, the conductivity tends to decrease.

【0026】本発明の導電ペーストは、上記のバイン
ダ、導電粉及び必要に応じて添加されるチキソ剤、カッ
プリング剤、消泡剤、粉末表面処理剤、沈降防止剤等と
共に、らいかい機、ニーダー、三本ロール等で均一に混
合、分散して得ることができる。
The conductive paste of the present invention can be used together with the binder, conductive powder and thixo agent, coupling agent, defoaming agent, powder surface treating agent, anti-settling agent, etc. It can be obtained by uniformly mixing and dispersing with a kneader, three rolls or the like.

【0027】[0027]

【実施例】以下、本発明を実施例により説明する。The present invention will be described below with reference to examples.

【0028】実施例1 ビスフェノールA型エポキシ樹脂(油化シェルエポキシ
(株)製、商品名エポコート827)54重量部、フェノ
ール樹脂(鐘紡(株)製、商品名ベルパールS−890)
40重量部及び2−フェニル−4−メチル−5−ヒドロ
キシメチルイミダゾール(四国化成(株)製、商品名キュ
アゾール2P4MHZ)6重量部を均一に混合してバイ
ンダとした。なおエポキシ樹脂とフェノール樹脂の配合
割合は、エポキシ樹脂が57.5重量%及びフェノール
樹脂が42.5重量%であった。
Example 1 Bisphenol A type epoxy resin (oiled shell epoxy)
54 parts by weight, phenolic resin (manufactured by Kanebo Co., Ltd., trade name Bellpearl S-890)
40 parts by weight and 6 parts by weight of 2-phenyl-4-methyl-5-hydroxymethylimidazole (manufactured by Shikoku Chemicals Co., Ltd., trade name: Curesol 2P4MHZ) were uniformly mixed to prepare a binder. The mixing ratio of the epoxy resin and the phenol resin was 57.5% by weight of the epoxy resin and 42.5% by weight of the phenol resin.

【0029】この後、上記で得たバインダ50gに、ア
トマイズ法で作製した平均粒径が5.1μmの球状銅粉
(日本アトマイズ加工(株)製、商品名SFR−Cu)4
50g及び溶剤として3−メチル−3−メトキシブタノ
ール((株)クラレ製、商品名ソルフィット)15gを加
えて撹拌らいかい機及び三本ロールで均一に混合、分散
して導電ペーストを得た。なおバインダと導電粉の配合
割合は、導電ペーストの固形分に対して、バインダが1
0重量%及び導電粉が90重量%であった。
Thereafter, spherical copper powder (trade name: SFR-Cu, manufactured by Nippon Atomize Processing Co., Ltd.) 4 having an average particle size of 5.1 μm, prepared by the atomization method, was added to 50 g of the binder obtained above.
50 g and 15 g of 3-methyl-3-methoxybutanol (manufactured by Kuraray Co., Ltd., Solfit) as a solvent were added, and the mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill to obtain a conductive paste. The mixing ratio of the binder and the conductive powder is such that the binder is 1 to the solid content of the conductive paste.
0% by weight and 90% by weight of conductive powder.

【0030】次に上記で得た導電ペーストを用いて、予
め172℃でプレシュリンクさせたポリエチレンテレフ
タレートフィルム上に図2に示すテストパターン4を印
刷し、90℃で20分間予備乾燥後170℃で2.5MP
aの条件で1時間加熱加圧処理して配線板を得た。なお
図2において5はポリエチレンテレフタレートフィルム
である。
Next, using the conductive paste obtained above, a test pattern 4 shown in FIG. 2 was printed on a polyethylene terephthalate film pre-shrinked at 172 ° C., preliminarily dried at 90 ° C. for 20 minutes, and then dried at 170 ° C. 2.5MP
Heating and pressurizing treatment was performed for 1 hour under the condition of a to obtain a wiring board. In FIG. 2, reference numeral 5 denotes a polyethylene terephthalate film.

【0031】次いで得られた配線板について、導電ペー
ストの硬化性をJISの塗膜用鉛筆引っかき試験の手か
き法(K5400)で評価した結果、評価は6Hだっ
た。また導体の比抵抗は57.2μΩ・mであった。
Next, the curability of the conductive paste of the obtained wiring board was evaluated by the hand-drawing method (K5400) of the pencil scratch test for paint film of JIS, and the evaluation was 6H. The specific resistance of the conductor was 57.2 μΩ · m.

【0032】比較例1 実施例1で用いたビスフェノールA型エポキシ樹脂86
重量部、フェノール樹脂5重量部及び2−フェニル−4
−メチル−5−ヒドロキシメチルイミダゾール9重量部
を均一に混合してバインダとした。なおエポキシ樹脂と
フェノール樹脂の配合割合は、エポキシ樹脂が94.5
重量%及びフェノール樹脂が5.5重量%であった。
Comparative Example 1 Bisphenol A type epoxy resin 86 used in Example 1
Parts by weight, 5 parts by weight of phenol resin and 2-phenyl-4
9 parts by weight of -methyl-5-hydroxymethylimidazole was uniformly mixed to prepare a binder. The mixing ratio of the epoxy resin and the phenol resin is 94.5 for the epoxy resin.
Wt% and 5.5 wt% phenolic resin.

【0033】次に、上記で得たバインダ50gに実施例
1で用いたアトマイズ法で作製した平均粒径が5.1μ
mの球状銅粉450g及び実施例1で用いた3−メチル
−3−メトキシブタノール15gを加えて撹拌らいかい
機及び三本ロールで均一に混合、分散して導電ペースト
を得た。なおバインダと導電粉の配合割合は、導電ペー
ストの固形分に対して、バインダが10重量%及び導電
粉が90重量%であった。
Next, 50 g of the binder obtained above had an average particle size of 5.1 μm produced by the atomizing method used in Example 1.
m of spherical copper powder (450 g) and 15 g of 3-methyl-3-methoxybutanol used in Example 1 were added, and the mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill to obtain a conductive paste. The blending ratio of the binder and the conductive powder was 10% by weight of the binder and 90% by weight of the conductive powder based on the solid content of the conductive paste.

【0034】以下、実施例1と同様の工程を経て配線板
を得た。得られた配線板について、導電ペーストの硬化
性を実施例1と同様の塗膜用鉛筆引っかき試験の手かき
法で評価した結果、評価は6Bであり、導電ペーストは
未硬化であった。
Thereafter, a wiring board was obtained through the same steps as in Example 1. As to the obtained wiring board, the curability of the conductive paste was evaluated by the same scratching method as in Example 1 in a pencil scratch test for a coating film. As a result, the evaluation was 6B, and the conductive paste was uncured.

【0035】実施例2 実施例1で用いたアトマイズ法で作製した平均粒径が
5.1μmの球状銅粉1kgを希塩酸及び純水で洗浄した
後、水1リットルあたりAgCN 80g及びNaCN
75gを含むめっき溶液で球状銅粉に対して銀の量が
18重量%になるように置換めっきを行い、水洗、乾燥
して銀めっき銅粉を得た。
Example 2 1 kg of spherical copper powder having an average particle size of 5.1 μm produced by the atomizing method used in Example 1 was washed with diluted hydrochloric acid and pure water, and then 80 g of AgCN and 1 g of NaCN per liter of water.
Substitution plating was performed with a plating solution containing 75 g so that the amount of silver was 18% by weight with respect to the spherical copper powder, washed with water and dried to obtain a silver-plated copper powder.

【0036】この後、2リットルのボールミル容器内に
上記で得た銀めっき銅粉750g及び直径が5mmのジル
コニアボール3kgを投入し、40分間回転し、アスペク
ト比が平均1.3及び長径の平均粒径が5.5μmの略
球状銀めっき銅粉を得た。得られた略球状銀めっき銅粉
の粒子を5個取り出し、走査型オージェ電子分光分析装
置で定量分析して銅の露出面積を調べたところ10〜5
0%の範囲で平均が20%であった。
Thereafter, 750 g of the silver-plated copper powder obtained above and 3 kg of zirconia balls having a diameter of 5 mm were put into a 2 liter ball mill container, and rotated for 40 minutes. A substantially spherical silver-plated copper powder having a particle size of 5.5 μm was obtained. Five particles of the obtained substantially spherical silver-plated copper powder were taken out and quantitatively analyzed with a scanning Auger electron spectrometer to examine the exposed area of copper.
The average was 20% in the range of 0%.

【0037】次に、実施例1で得たバインダ50gに上
記で得た略球状銀めっき銅粉450g及び実施例1で用
いた3−メチル−3−メトキシブタノール15gを加え
て撹拌らいかい機及び三本ロールで均一に混合、分散し
て導電ペーストを得た。なおバインダと導電粉の配合割
合は、導電ペーストの固形分に対して、バインダが10
重量%及び導電粉が90重量%であった。
Next, 450 g of the substantially spherical silver-plated copper powder obtained above and 15 g of 3-methyl-3-methoxybutanol used in Example 1 were added to 50 g of the binder obtained in Example 1, and a stirrer was used. The conductive paste was obtained by uniformly mixing and dispersing with a three-roll mill. The mixing ratio of the binder and the conductive powder is such that the binder is 10% based on the solid content of the conductive paste.
% By weight and 90% by weight of conductive powder.

【0038】以下、実施例1と同様の工程を経て配線板
を得た。得られた配線板について、導電ペーストの硬化
性を実施例1と同様の塗膜用鉛筆引っかき試験の手かき
法で評価した結果、評価は6Hだった。また導体の比抵
抗は7.2μΩ・mであった。なお導体の比抵抗は、銀
めっき銅粉を用いた導電ペーストは、銅粉単体を用いた
導電ペーストより低い値であった。
Thereafter, a wiring board was obtained through the same steps as in Example 1. As to the obtained wiring board, the curability of the conductive paste was evaluated by the same method as that of Example 1 in the pencil scratch test for paint film, and the evaluation was 6H. The specific resistance of the conductor was 7.2 μΩ · m. The specific resistance of the conductor was lower in the conductive paste using the silver-plated copper powder than in the conductive paste using the copper powder alone.

【0039】なお、本実施例におけるアスペクト比の具
体的測定法を以下に示す。低粘度のエポキシ樹脂(ビュ
ーラー社製)の主剤(No.10−8130)8gと硬化
剤(No.10−8132)2gを混合し、ここへ導電粉
2gを混合して良く分散させ、そのまま30℃で真空脱
泡した後、30℃で10時間静置して粒子を沈降させ硬
化させた。その後、得られた硬化物を垂直方向に切断
し、切断面を電子顕微鏡で1000倍に拡大して切断面
に現れた150個の粒子について長径/短径を求め、そ
れらの平均値をもって、アスペクト比とした。
The specific method of measuring the aspect ratio in this embodiment will be described below. 8 g of a base material (No. 10-8130) of a low-viscosity epoxy resin (manufactured by Buehler) and 2 g of a curing agent (No. 10-8132) are mixed, and 2 g of conductive powder is mixed and dispersed well, and the mixture is left as it is. After degassing in vacuo at a temperature of 30 ° C., the particles were allowed to stand at 30 ° C. for 10 hours to settle and harden the particles. Thereafter, the obtained cured product was cut in the vertical direction, the cut surface was magnified 1000 times with an electron microscope, and the long diameter / short diameter of 150 particles that appeared on the cut surface was obtained. Ratio.

【0040】実施例3 実施例1で用いたビスフェノールA型エポキシ樹脂20
重量部、フェノール樹脂78重量部及び2−フェニル−
4−メチル−5−ヒドロキシメチルイミダゾール2重量
部を均一に混合してバインダとした。なおエポキシ樹脂
とフェノール樹脂の配合割合は、エポキシ樹脂が20.
4重量%及びフェノール樹脂が79.6重量%であっ
た。
Example 3 Bisphenol A type epoxy resin 20 used in Example 1
Parts by weight, 78 parts by weight of a phenol resin and 2-phenyl-
2 parts by weight of 4-methyl-5-hydroxymethylimidazole was uniformly mixed to obtain a binder. The mixing ratio of the epoxy resin and the phenol resin is 20.
4% by weight and 79.6% by weight of phenolic resin.

【0041】次に、上記で得たバインダ50gに実施例
2で得た略球状銀めっき銅粉450g及び実施例1で用
いた3−メチル−3−メトキシブタノール15gを加え
て撹拌らいかい機及び三本ロールで均一に混合、分散し
て導電ペーストを得た。なおバインダと導電粉の配合割
合は、導電ペーストの固形分に対して、バインダが10
重量%及び導電粉が90重量%であった。
Next, 450 g of the substantially spherical silver-plated copper powder obtained in Example 2 and 15 g of 3-methyl-3-methoxybutanol used in Example 1 were added to 50 g of the binder obtained above, and a stirrer was used. The conductive paste was obtained by uniformly mixing and dispersing with a three-roll mill. The mixing ratio of the binder and the conductive powder is such that the binder is 10% based on the solid content of the conductive paste.
% By weight and 90% by weight of conductive powder.

【0042】以下、実施例1と同様の工程を経て配線板
を得た。得られた配線板について、導電ペーストの硬化
性を実施例1と同様の塗膜用鉛筆引っかき試験の手かき
法で評価した結果、評価は6Hだった。また導体の比抵
抗は4.1μΩ・mであった。
Thereafter, a wiring board was obtained through the same steps as in Example 1. As to the obtained wiring board, the curability of the conductive paste was evaluated by the same method as that of Example 1 in the pencil scratch test for paint film, and the evaluation was 6H. The specific resistance of the conductor was 4.1 μΩ · m.

【0043】比較例2 実施例1で用いたビスフェノールA型エポキシ樹脂86
重量部、フェノール樹脂5重量部及び2−フェニル−4
−メチル−5−ヒドロキシメチルイミダゾール9重量部
を均一に混合してバインダとした。なおエポキシ樹脂と
フェノール樹脂の配合割合は、エポキシ樹脂が94.5
重量%及びフェノール樹脂が5.5重量%であった。
Comparative Example 2 Bisphenol A type epoxy resin 86 used in Example 1
Parts by weight, 5 parts by weight of phenol resin and 2-phenyl-4
9 parts by weight of -methyl-5-hydroxymethylimidazole was uniformly mixed to prepare a binder. The mixing ratio of the epoxy resin and the phenol resin is 94.5 for the epoxy resin.
Wt% and 5.5 wt% phenolic resin.

【0044】次に、上記で得たバインダ50gに実施例
2で得た略球状銀めっき銅粉450g及び実施例1で用
いた3−メチル−3−メトキシブタノール15gを加え
て撹拌らいかい機及び三本ロールで均一に混合、分散し
て導電ペーストを得た。なおバインダと導電粉の配合割
合は、導電ペーストの固形分に対して、バインダが10
重量%及び導電粉が90重量%であった。
Next, 450 g of the substantially spherical silver-plated copper powder obtained in Example 2 and 15 g of 3-methyl-3-methoxybutanol used in Example 1 were added to 50 g of the binder obtained above, and the mixture was stirred. The conductive paste was obtained by uniformly mixing and dispersing with a three-roll mill. The mixing ratio of the binder and the conductive powder is such that the binder is 10% based on the solid content of the conductive paste.
% By weight and 90% by weight of conductive powder.

【0045】以下、実施例1と同様の工程を経て配線板
を得た。得られた配線板について、導電ペーストの硬化
性を実施例1と同様の塗膜用鉛筆引っかき試験の手かき
法で評価した結果、評価は6Bであり、導電ペーストは
未硬化であった。
Thereafter, a wiring board was obtained through the same steps as in Example 1. As to the obtained wiring board, the curability of the conductive paste was evaluated by the same scratching method as in Example 1 in a pencil scratch test for a coating film. As a result, the evaluation was 6B, and the conductive paste was uncured.

【0046】比較例3 実施例1で用いたビスフェノールA型エポキシ樹脂6重
量部、フェノール樹脂93重量部及び2−フェニル−4
−メチル−5−ヒドロキシメチルイミダゾール1重量部
を均一に混合してバインダとした。なおエポキシ樹脂と
フェノール樹脂の配合割合は、エポキシ樹脂が6.1重
量%及びフェノール樹脂が93.9重量%であった。
Comparative Example 3 6 parts by weight of the bisphenol A type epoxy resin used in Example 1, 93 parts by weight of the phenol resin and 2-phenyl-4
1 part by weight of -methyl-5-hydroxymethylimidazole was uniformly mixed to obtain a binder. The mixing ratio of the epoxy resin and the phenol resin was 6.1% by weight of the epoxy resin and 93.9% by weight of the phenol resin.

【0047】次に、上記で得たバインダ50gに実施例
2で得た略球状銀めっき銅粉450g及び実施例1で用
いた3−メチル−3−メトキシブタノール15gを加え
て撹拌らいかい機及び三本ロールで均一に混合、分散し
て導電ペーストを得た。なおバインダと導電粉の配合割
合は、導電ペーストの固形分に対して、バインダが10
重量%及び導電粉が90重量%であった。
Next, 450 g of the substantially spherical silver-plated copper powder obtained in Example 2 and 15 g of 3-methyl-3-methoxybutanol used in Example 1 were added to 50 g of the binder obtained above, and the mixture was stirred. The conductive paste was obtained by uniformly mixing and dispersing with a three-roll mill. The mixing ratio of the binder and the conductive powder is such that the binder is 10% based on the solid content of the conductive paste.
% By weight and 90% by weight of conductive powder.

【0048】以下、実施例1と同様の工程を経て配線板
を得た。得られた配線板について、導電ペーストの硬化
性を実施例1と同様の塗膜用鉛筆引っかき試験の手かき
法で評価した結果、評価は6Hであったが、導体の比抵
抗は、実施例2及び3に比較し、フェノール樹脂の量が
多いにもかかわらず8.6μΩ・mと高かった。
Thereafter, a wiring board was obtained through the same steps as in Example 1. For the obtained wiring board, the curability of the conductive paste was evaluated by the same scratching method as in Example 1 by a pencil scratch test for a coating film. The evaluation was 6H. Compared to 2 and 3, it was as high as 8.6 μΩ · m despite the large amount of phenolic resin.

【0049】実施例4 2リットルのボールミル容器内に、実施例2で得た略球
状銀めっき銅粉及び直径が1mmのジルコニアボール1kg
を投入し、30分間回転させて略球状銀めっき銅粉を解
粒して用いた以外は実施例2と同様の工程を得て配線板
を得た。得られた配線板について、導電ペーストの硬化
性を実施例1と同様の塗膜用鉛筆引っかき試験の手かき
法で評価した結果、評価は6Hだった。また導体の比抵
抗は6.9μΩ・mであった。
Example 4 A substantially spherical silver-plated copper powder obtained in Example 2 and 1 kg of zirconia balls having a diameter of 1 mm were placed in a 2 liter ball mill container.
And then rotated for 30 minutes to pulverize the substantially spherical silver-plated copper powder and use the same process as in Example 2 to obtain a wiring board. As to the obtained wiring board, the curability of the conductive paste was evaluated by the same method as that of Example 1 in the pencil scratch test for paint film, and the evaluation was 6H. The specific resistance of the conductor was 6.9 μΩ · m.

【0050】実施例5 実施例2で得た略球状銀めっき銅粉を実施例4と同様の
方法で解粒して用いた以外は実施例3と同様の工程を得
て配線板を得た。得られた配線板について、導電ペース
トの硬化性を実施例1と同様の塗膜用鉛筆引っかき試験
の手かき法で評価した結果、評価は6Hだった。また導
体の比抵抗は4.6μΩ・mであった。
Example 5 A wiring board was obtained by performing the same steps as in Example 3 except that the substantially spherical silver-plated copper powder obtained in Example 2 was pulverized and used in the same manner as in Example 4. . As to the obtained wiring board, the curability of the conductive paste was evaluated by the same method as that of Example 1 in the pencil scratch test for paint film, and the evaluation was 6H. The specific resistance of the conductor was 4.6 μΩ · m.

【0051】比較例4 比較例2で得た略球状銀めっき銅粉を実施例4と同様の
方法で解粒して用いた以外は比較例2と同様の工程を得
て配線板を得た。得られた配線板について、導電ペース
トの硬化性を実施例1と同様の塗膜用鉛筆引っかき試験
の手かき法で評価した結果、評価は6Bであり、導電ペ
ーストは未硬化であった。
Comparative Example 4 A wiring board was obtained by performing the same process as in Comparative Example 2 except that the substantially spherical silver-plated copper powder obtained in Comparative Example 2 was pulverized and used in the same manner as in Example 4. . As to the obtained wiring board, the curability of the conductive paste was evaluated by the same scratching method as in Example 1 in a pencil scratch test for a coating film. As a result, the evaluation was 6B, and the conductive paste was uncured.

【0052】比較例5 比較例3で得た略球状銀めっき銅粉を実施例4と同様の
方法で解粒して用いた以外は比較例3と同様の工程を得
て配線板を得た。得られた配線板について、導電ペース
トの硬化性を実施例1と同様の塗膜用鉛筆引っかき試験
の手かき法で評価した結果、評価は6Hであったが、導
体の比抵抗は、実施例4及び5に比較し、フェノール樹
脂の量が多いにもかかわらず9.2μΩ・mと高かっ
た。
Comparative Example 5 A wiring board was obtained by performing the same steps as in Comparative Example 3 except that the substantially spherical silver-plated copper powder obtained in Comparative Example 3 was granulated and used in the same manner as in Example 4. . For the obtained wiring board, the curability of the conductive paste was evaluated by the same scratching method as in Example 1 by a pencil scratch test for a coating film. The evaluation was 6H. Compared with Nos. 4 and 5, although the amount of the phenol resin was large, it was as high as 9.2 μΩ · m.

【0053】[0053]

【発明の効果】請求項1記載の発明の導電ペーストは、
硬化性に優れる。請求項2記載の発明の導電ペースト
は、請求項1記載の効果を奏し、さらに硬化性の向上効
果に優れる。請求項3及び4記載の発明の導電ペースト
は、請求項1記載の効果を奏し、さらにマイグレーショ
ン性に優れる。請求項5記載の発明の導電ペーストは、
請求項1記載の効果を奏し、さらに導電性に優れる。
The conductive paste according to the first aspect of the present invention is
Excellent curability. The conductive paste according to the second aspect of the invention has the effects described in the first aspect, and is further excellent in the effect of improving curability. The conductive paste according to the third and fourth aspects of the present invention has the effect of the first aspect, and is further excellent in migration properties. The conductive paste of the invention according to claim 5 is:
The effects described in claim 1 are achieved, and the conductivity is further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は多層プリント配線板の層間接続用の貫
通孔を銅めっきで接続した状態を示す断面図及び(b)
は多層プリント配線板の層間接続用の貫通孔を導電ペー
ストで接続した状態を示す断面図である。
FIG. 1A is a cross-sectional view showing a state in which through holes for interlayer connection of a multilayer printed wiring board are connected by copper plating, and FIG.
FIG. 3 is a cross-sectional view showing a state in which through holes for interlayer connection of a multilayer printed wiring board are connected by a conductive paste.

【図2】ポリエチレンテレフタレートフィルム上に形成
したテストパターンを示す平面図である。
FIG. 2 is a plan view showing a test pattern formed on a polyethylene terephthalate film.

【符号の説明】[Explanation of symbols]

1 銅めっき 2 導電ペースト 3 銅箔 4 テストパターン 5 ポリエチレンテレフタレートフィルム DESCRIPTION OF SYMBOLS 1 Copper plating 2 Conductive paste 3 Copper foil 4 Test pattern 5 Polyethylene terephthalate film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/22 H01B 1/22 A H05K 3/46 H05K 3/46 N Fターム(参考) 4J002 CC04X CD01W CD02W CD04W CD05W CD06W CD13W DA077 DC007 EF066 EL136 EN036 EN076 ER026 EU116 EV216 EW016 EY016 FB047 FB077 FD117 FD14X FD146 FD200 GQ02 HA08 4J036 AA01 DA01 FA02 FB07 JA08 JA15 KA07 5E346 AA43 CC31 CC32 CC39 EE31 FF18 GG15 5G301 DA03 DA06 DA55 DA57 DD01──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 1/22 H01B 1/22 A H05K 3/46 H05K 3/46 NF term (Reference) 4J002 CC04X CD01W CD02W CD04W CD05W CD06W CD13W DA077 DC007 EF066 EL136 EN036 EN076 ER026 EU116 EV216 EW016 EY016 FB047 FB077 FD117 FD14X FD146 FD200 GQ02 HA08 4J036 AA01 DA01 FA02 FB07 JA08 JA15 KA07 5E346 DA31 CC31 DA31 CC31 DA31 CC01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂10〜90重量%及びフェ
ノール樹脂10〜90重量%とその硬化剤を含むバイン
ダ並びに導電粉を含有してなる導電ペースト。
1. A conductive paste comprising a binder containing 10 to 90% by weight of an epoxy resin and 10 to 90% by weight of a phenol resin and a curing agent thereof, and a conductive powder.
【請求項2】 導電粉が、銅粉又は銅合金粉である請求
項1記載の導電ペースト。
2. The conductive paste according to claim 1, wherein the conductive powder is copper powder or copper alloy powder.
【請求項3】 導電粉が、銀被覆銅粉又は銀被覆銅合金
粉である請求項1記載の導電ペースト。
3. The conductive paste according to claim 1, wherein the conductive powder is silver-coated copper powder or silver-coated copper alloy powder.
【請求項4】 銀被覆銅粉又は銀被覆銅合金粉が、解粒
された銀被覆銅粉又は銀被覆銅合金粉である請求項1又
は3記載の導電ペースト。
4. The conductive paste according to claim 1, wherein the silver-coated copper powder or silver-coated copper alloy powder is pulverized silver-coated copper powder or silver-coated copper alloy powder.
【請求項5】 バインダと導電粉の配合割合が、導電ペ
ーストの固形分に対して、バインダが5〜15重量%及
び導電粉が85〜95重量%である請求項1、2、3又
は4記載の導電ペースト。
5. The compounding ratio of the binder and the conductive powder is 5 to 15% by weight of the binder and 85 to 95% by weight of the conductive powder based on the solid content of the conductive paste. The conductive paste as described in the above.
JP2000126300A 2000-04-21 2000-04-21 Electrodonductive paste Pending JP2001302884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000126300A JP2001302884A (en) 2000-04-21 2000-04-21 Electrodonductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000126300A JP2001302884A (en) 2000-04-21 2000-04-21 Electrodonductive paste

Publications (1)

Publication Number Publication Date
JP2001302884A true JP2001302884A (en) 2001-10-31

Family

ID=18636106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000126300A Pending JP2001302884A (en) 2000-04-21 2000-04-21 Electrodonductive paste

Country Status (1)

Country Link
JP (1) JP2001302884A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088225A (en) * 2000-07-13 2002-03-27 Ngk Spark Plug Co Ltd Paste for through-hole filling and printed circuit board using the same
JP2005317490A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
JP2005317491A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
WO2006013793A1 (en) * 2004-08-03 2006-02-09 Hitachi Chemical Company, Ltd. Electroconductive paste and substrate using the same for mounting electronic parts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088225A (en) * 2000-07-13 2002-03-27 Ngk Spark Plug Co Ltd Paste for through-hole filling and printed circuit board using the same
JP2005317490A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
JP2005317491A (en) * 2004-04-01 2005-11-10 Hitachi Chem Co Ltd Conductive paste and electronic component mounting substrate using it
WO2006013793A1 (en) * 2004-08-03 2006-02-09 Hitachi Chemical Company, Ltd. Electroconductive paste and substrate using the same for mounting electronic parts
KR100804840B1 (en) * 2004-08-03 2008-02-20 히다치 가세고교 가부시끼가이샤 Electroconductive paste and substrate using the same for mounting electronic parts

Similar Documents

Publication Publication Date Title
US6515237B2 (en) Through-hole wiring board
JP4389148B2 (en) Conductive paste
JP5516672B2 (en) Conductive paste
JP4235887B2 (en) Conductive paste
TWI645421B (en) Thermosetting conductive paste
JP2003045228A (en) Conductive paste
JP4235888B2 (en) Conductive paste
JP2000215730A (en) Anisotropic conductive adhesive
JP2001297627A (en) Conductive material
JP2012248370A (en) Conductive silver paste
JP4224771B2 (en) Conductive paste
JP2001302884A (en) Electrodonductive paste
JP2002008444A (en) Conductive paste
JP2001236827A (en) Conductive paste
JP4235885B2 (en) Conductive paste
JP2002164632A (en) Through hole wiring board
JP2001307550A (en) Conductive paste
JP4224772B2 (en) Conductive paste
JP4224774B2 (en) Conductive paste
JP2002245852A (en) Conductive paste
JP2002245850A (en) Conductive paste
JP2001261974A (en) Paste composition
JP2001266644A (en) Conductive paste
JP2002231050A (en) Conductive paste
JPH11209662A (en) Conductive paste