JPH11209662A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JPH11209662A
JPH11209662A JP1898098A JP1898098A JPH11209662A JP H11209662 A JPH11209662 A JP H11209662A JP 1898098 A JP1898098 A JP 1898098A JP 1898098 A JP1898098 A JP 1898098A JP H11209662 A JPH11209662 A JP H11209662A
Authority
JP
Japan
Prior art keywords
powder
conductive paste
binder
conductive
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1898098A
Other languages
Japanese (ja)
Inventor
Junichi Kikuchi
純一 菊池
Shozo Yamana
章三 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1898098A priority Critical patent/JPH11209662A/en
Publication of JPH11209662A publication Critical patent/JPH11209662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a conductive paste excellent in electric conductivity, printabilty, migration resistance, etc., by specifying the compounding ratio of a conductive powder to a binder, using no solvent, and imparting a specified viscosity to the same. SOLUTION: The compounding ratio of a conductive powder to a binder is pref. (75:25)-(90-10), and the paste does not contain a solvent and has a viscosity prf. of 10-150 Pa.s. The conductive powder is pref. a copper powder or copper alloy powder of which 10-50% of the surface is exposed and almost all the surface is covered with 5-25 wt.% silver and which is in the form of flakes having an aspect ratio of 3-20 and an average length of 5-30 μm. Pref., the binder comprises a compsn. cosisting of an epoxy resin liq. or solid at normal temp. and a diluent in a wt. ratio of (50:50)-(70:30) and a curig agent therefor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多層プリント配線
板の層間接続用の貫通穴又は非貫通穴に埋め込むための
導電ペーストに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste for embedding in a through hole or a non-through hole for interlayer connection of a multilayer printed wiring board.

【0002】[0002]

【従来の技術】従来の多層プリント配線板は、加圧加熱
による多層化積層工程を経て製造された多層基板に、層
間接続用の貫通穴又は非貫通穴を形成した後、その穴に
めっきを行うか導電ペーストを印刷又は埋め込むなどの
方法で製造していた。
2. Description of the Related Art In a conventional multilayer printed wiring board, a through hole or a non-through hole for interlayer connection is formed on a multilayer substrate manufactured through a multi-layer lamination process by pressurizing and heating, and plating is performed on the hole. Or by printing or embedding a conductive paste.

【0003】従来の導電ペーストは、電子材料、199
4年10月号の42〜46項に記載されているように、
金、銀、銅、カーボン等の導電性粉末を用い、それにバ
インダ、有機溶剤及び必要に応じて添加剤を加えてペー
スト状に混合して作製していた。特に高導電性が要求さ
れる分野では、金粉又は銀粉が一般的に用いられてい
る。銀粉を含有する導電ペーストは、導電性が良好なこ
とから印刷配線板、電子部品等の電気回路や電極の形成
に使用されているが、これらは高温多湿の雰囲気下で電
界が印加されると、電気回路や電極にマイグレーション
と称する銀の電析が生じ電極間又は配線間が短絡すると
いう欠点が生じる。このマイグレーションを防止するた
めの方策はいくつか行われており、導体の表面に防湿塗
料を塗布するか又は導電ペーストに含窒素化合物などの
腐食抑制剤を添加するなどの方策が検討されているが十
分な効果の得られるものではなかった。
Conventional conductive pastes include electronic materials, 199
As described in the October, 4th issue, paragraphs 42-46,
It has been prepared by using a conductive powder of gold, silver, copper, carbon or the like, adding a binder, an organic solvent, and an additive as needed, and mixing them into a paste. Particularly in a field where high conductivity is required, gold powder or silver powder is generally used. A conductive paste containing silver powder is used for forming an electric circuit or an electrode of a printed wiring board, an electronic component, etc. because of its good conductivity, but when an electric field is applied in an atmosphere of high temperature and high humidity. Further, there is a disadvantage that silver deposition called migration occurs in an electric circuit or an electrode and a short circuit occurs between the electrodes or between the wirings. Several measures have been taken to prevent this migration, and measures such as applying a moisture-proof paint to the surface of the conductor or adding a corrosion inhibitor such as a nitrogen-containing compound to the conductive paste have been studied. It was not enough effect.

【0004】また、導通抵抗の良好な導体を得るには銀
粉の配合量を増加しなければならず、銀粉が高価である
ことから導電ペーストも高価になるという欠点があっ
た。銀被覆銅粉を使用すればマイグレーションを改善で
き、これを用いれば安価な導電ペーストが得られること
になる。しかし、銀被覆を均一にかつ厚く被覆するとマ
イグレーションの改善効果はない。また被覆法としてめ
っき法は安価な方法であり、例えば球状又は略球状の銅
粉に対して銀めっきするのは凝集も少なく容易に行える
が、これを用いた導電ペーストは抵抗が高くなるという
欠点があった。上記のような銀めっき銅粉を用いて導通
抵抗の良好な導体を得るには扁平状銅粉を用いればよい
が、しかしながらこの扁平状銅粉は高価であることから
導電ペーストも高価になるという欠点があった。
Also, in order to obtain a conductor having good conduction resistance, the amount of silver powder must be increased, and the silver paste is expensive, so that the conductive paste becomes expensive. The use of silver-coated copper powder can improve migration, and the use of silver-coated copper powder results in an inexpensive conductive paste. However, if the silver coating is uniformly and thickly coated, there is no effect of improving migration. In addition, plating is an inexpensive method of coating. For example, silver plating of spherical or substantially spherical copper powder can be easily performed with less aggregation, but the conductive paste using this has a drawback that resistance is high. was there. In order to obtain a conductor having good conduction resistance using the silver-plated copper powder as described above, flat copper powder may be used. However, since this flat copper powder is expensive, the conductive paste is also expensive. There were drawbacks.

【0005】[0005]

【発明が解決しようとする課題】請求項1記載の発明
は、導電性及び印刷性に優れる導電ペーストを提供する
ものである。請求項2記載の発明は、耐マイグレーショ
ン性及び請求項1記載の発明のうち、特に導電性の向上
効果に優れる導電ペーストを提供するものである。請求
項3及び4記載の発明は、導電性及び印刷性の向上効果
に優れる導電ペーストを提供するものである。
SUMMARY OF THE INVENTION The first aspect of the present invention provides a conductive paste having excellent conductivity and printability. The invention according to claim 2 provides a conductive paste which is particularly excellent in the effect of improving conductivity among the migration resistance and the invention according to claim 1. The third and fourth aspects of the present invention provide a conductive paste having an excellent effect of improving conductivity and printability.

【0006】[0006]

【課題を解決するための手段】本発明は、導電粉及びバ
インダを含む導電ペーストにおいて、導電粉とバインダ
の配合割合が、導電ペーストの固形分に対して、重量比
で導電粉:バインダが75:25〜90:10であり、
かつ粘度が10〜150Pa・sである溶剤を含まない導電
ペーストに関する。また、本発明は、導電粉が、銅粉又
は銅合金粉の一部を露出して表面が大略銀で被覆され、
形状が扁平状である溶剤を含まない導電ペーストに関す
る。
According to the present invention, in a conductive paste containing a conductive powder and a binder, the mixing ratio of the conductive powder and the binder is 75% by weight of the conductive powder: binder relative to the solid content of the conductive paste. : 25 to 90:10,
The present invention relates to a conductive paste containing no solvent having a viscosity of 10 to 150 Pa · s. Further, according to the present invention, the conductive powder exposes a part of the copper powder or the copper alloy powder and the surface is generally covered with silver,
The present invention relates to a solvent-free conductive paste having a flat shape.

【0007】また、本発明は、バインダが、エポキシ樹
脂組成物とその硬化剤を含むものからなる溶剤を含まな
い導電ペーストに関する。さらに、本発明は、エポキシ
樹脂組成物が、常温で液状のエポキシ樹脂又は常温で固
形のエポキシ樹脂及び反応性希釈剤を含み、かつエポキ
シ樹脂と反応性希釈剤の配合割合が、重量比でエポキシ
樹脂:反応性希釈剤が50:50〜70:30である溶
剤を含まない導電ペーストに関する。
[0007] The present invention also relates to a conductive paste containing no solvent, the binder comprising an epoxy resin composition and a curing agent thereof. Further, the present invention provides an epoxy resin composition, which comprises a liquid epoxy resin at room temperature or an epoxy resin solid at room temperature and a reactive diluent, and the mixing ratio of the epoxy resin and the reactive diluent is epoxy by weight. Resin: relates to a solvent-free conductive paste having a reactive diluent of 50:50 to 70:30.

【0008】[0008]

【発明の実施の形態】銅粉又は銅合金粉は、球状又は略
球状が取り扱い易く、例えば、アトマイズ法で作製され
た粉体を用いることが好ましく、その粒径は小さいほど
好ましく、例えば平均粒径が1〜20μm、好ましくは
1〜10μmの粉体を用いれば、表面に銀を被覆した
後、扁平状に加工しても複合導電粉中に均一に分散させ
易いので好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Copper powder or copper alloy powder is easy to handle in a spherical or substantially spherical shape. For example, it is preferable to use a powder produced by an atomizing method. The smaller the particle size is, the more preferable it is. It is preferable to use a powder having a diameter of 1 to 20 μm, preferably 1 to 10 μm, because even if the surface is coated with silver and then flattened, it is easily dispersed uniformly in the composite conductive powder.

【0009】銅粉又は銅合金粉の表面に銀を被覆するに
は、置換めっき、電気めっき、無電解めっき等の方法が
あるが、めっきの容易さ及びランニングコストが安価で
あることから、置換めっき法で被覆することが好まし
い。銅粉又は銅合金粉の表面への銀の被覆量は、耐マイ
グレーション性、コスト、導電性向上等の点から銅粉又
は銅合金粉に対して5〜25重量%の範囲が好ましく、
10〜23重量%の範囲がさらに好ましい。
To cover the surface of copper powder or copper alloy powder with silver, there are methods such as displacement plating, electroplating, and electroless plating. However, since the plating is easy and the running cost is inexpensive, replacement is difficult. It is preferable to coat by a plating method. The coating amount of silver on the surface of the copper powder or the copper alloy powder is preferably in the range of 5 to 25% by weight based on the copper powder or the copper alloy powder from the viewpoint of migration resistance, cost, improvement in conductivity, and the like.
The range of 10 to 23% by weight is more preferable.

【0010】本発明に用いられる導電粉とは、上記の銅
粉又は銅合金粉の一部を露出して表面が大略銀で被覆さ
れている銀被覆銅粉又は銀被覆銅合金粉のことであり、
もし銅粉又は銅合金粉の一部を露出させないで全面に銀
を被覆したものを用いると銀のマイグレーションが生じ
易く本発明の目的を達成することができない。また、銅
粉又は銅合金粉の露出面積は、良好な導電性を得る点で
10〜50%の範囲が好ましく、10〜30%の範囲が
さらに好ましい。なお上記の銅合金粉としては、例えば
銅とスズ、銅と亜鉛等との合金を用いることが好まし
い。
The conductive powder used in the present invention is a silver-coated copper powder or a silver-coated copper alloy powder in which a part of the above-mentioned copper powder or copper alloy powder is exposed and the surface is substantially covered with silver. Yes,
If a copper powder or a copper alloy powder whose entire surface is coated with silver without exposing a part thereof is used, migration of silver is likely to occur, and the object of the present invention cannot be achieved. The exposed area of the copper powder or copper alloy powder is preferably in the range of 10 to 50%, more preferably 10 to 30%, in order to obtain good conductivity. As the above copper alloy powder, for example, it is preferable to use an alloy of copper and tin, copper and zinc, or the like.

【0011】導電粉とバインダの配合割合は、導電ペー
ストの固形分に対して、重量比で導電粉:バインダが7
5:25〜90:10、好ましくは77.5:22.5
〜87.5:12.5とされ、導電粉が75未満でバイ
ンダが25を越えると導電性が低下し、一方導電粉が9
0を越え無溶剤バインダが10未満であると印刷性が低
下し、カスレ及びスルーホール内部にボイドが発生し易
くなるという欠点が生じる。
The mixing ratio of the conductive powder and the binder is such that the conductive powder: binder is 7% by weight based on the solid content of the conductive paste.
5:25 to 90:10, preferably 77.5: 22.5
When the amount of the conductive powder is less than 75 and the binder exceeds 25, the conductivity is reduced.
If the ratio is more than 0 and the solventless binder is less than 10, the printability deteriorates, and defects such as blurring and voids are easily generated inside the through holes.

【0012】粘度は10〜150Pa・sであることが好ま
しく、30〜90Pa・sであることがさらに好ましい。粘
度が10Pa・s未満になるとニジミが発生し易くなり、1
50Pa・sを越えるとカスレ及びスルーホール内部にボイ
ドが発生し易くなる。粘度の調整は、反応性希釈剤を加
えるか、エポキシ樹脂の配合比率を変えることにより行
うことができる。
The viscosity is preferably from 10 to 150 Pa · s, more preferably from 30 to 90 Pa · s. If the viscosity is less than 10 Pa · s, bleeding is likely to occur,
If it exceeds 50 Pa · s, voids are liable to occur inside the through holes and through holes. The viscosity can be adjusted by adding a reactive diluent or changing the mixing ratio of the epoxy resin.

【0013】本発明においては導電粉が球状の場合、接
触点が少ないため抵抗が高くなり易い。そのため導電粉
に衝撃を与え粒子の形状を扁平状に変形させることが好
ましい。具体的にはボールミル、振動ミル等の方法で変
形させることができる。本発明における扁平状導電粉と
しては、形状としてほぼ平担で微細な小片からなる導電
粉で、例えば扁平状導電粉がある。扁平状導電粉として
は、アスペクト比が3〜20及び長径の平均粒径が5〜
30μmの導電粉を用いることが好ましく、アスペクト
比が5〜15及び長径の平均粒径が5〜10μmの導電
粉を用いることがさらに好ましい。なお上記でいう平均
粒径は、レーザー散乱型粒度分布測定装置により測定す
ることができる。本発明においては、前記装置としてマ
スターサイザー(マルバン社製)を用いて測定した。
In the present invention, when the conductive powder is spherical, the resistance tends to be high because the number of contact points is small. Therefore, it is preferable to apply an impact to the conductive powder to deform the shape of the particles into a flat shape. Specifically, it can be deformed by a method such as a ball mill and a vibration mill. The flat conductive powder in the present invention is a conductive powder composed of fine particles that are substantially flat in shape and include, for example, flat conductive powder. As the flat conductive powder, the aspect ratio is 3 to 20 and the average diameter of the major axis is 5 to 5.
It is preferable to use conductive powder having a thickness of 30 μm, and it is more preferable to use conductive powder having an aspect ratio of 5 to 15 and a long diameter having an average particle diameter of 5 to 10 μm. The average particle size mentioned above can be measured by a laser scattering type particle size distribution measuring device. In the present invention, the measurement was performed using a master sizer (manufactured by Malvern) as the device.

【0014】本発明におけるアスペクト比とは、導電粉
の粒子の長径と短径の比率(長径/短径)をいう。本発
明においては、粘度の低い硬化性樹脂中に導電粉の粒子
をよく混合し、静置して粒子を沈降させるとともにその
まま樹脂を硬化させ、得られた硬化物を垂直方向に切断
し、その切断面に現れる粒子の形状を電子顕微鏡で拡大
して観察し、少なくとも100の粒子について一つ一つ
の粒子の長径/短径を求め、それらの平均値をもってア
スペクト比とする。ここで、短径とは、前記切断面に現
れる粒子について、その粒子の外側に接する二つの平行
線の組み合わせを粒子を挟むように選択し、それらの組
み合わせのうち最短間隔になる二つの平行線の距離であ
る。一方、長径とは、前記短径を決する平行線に直角方
向の二つの平行線であって、粒子の外側に接する二つの
平行線の組み合わせのうち、最長間隔になる二つの平行
線の距離である。これらの四つの線で形成される長方形
は、粒子がちょうどその中に納まる大きさとなる。な
お、本発明において行った具体的方法については後述す
る。
The aspect ratio in the present invention refers to the ratio of the major axis to the minor axis (major axis / minor axis) of the conductive powder particles. In the present invention, the particles of the conductive powder are mixed well in the curable resin having a low viscosity, and the resin is cured while allowing the particles to settle by standing, and the obtained cured product is cut in the vertical direction. The shape of the particles appearing on the cut surface is observed under magnification with an electron microscope, and the major axis / minor axis of each particle is obtained for at least 100 particles, and the average value thereof is defined as the aspect ratio. Here, the minor axis is, for a particle appearing on the cut surface, a combination of two parallel lines that are in contact with the outside of the particle is selected so as to sandwich the particle, and two parallel lines that become the shortest interval among those combinations Is the distance. On the other hand, the major axis is the two parallel lines perpendicular to the parallel line that determines the minor axis, and is the distance between the two parallel lines that are the longest among the combinations of the two parallel lines that contact the outside of the particle. is there. The rectangle formed by these four lines is sized to fit the particle exactly inside it. The specific method used in the present invention will be described later.

【0015】導電ペーストは、導電粉の他に、バインダ
を含有してなるものである。本発明におけるバインダ
は、例えばエポキシ樹脂とその硬化剤を含むものを用い
ることが好ましい。エポキシ樹脂は、常温で液状のもの
が好ましい。常温で結晶化するものは液状物と混合する
ことで結晶化を回避できる。本発明における常温で液状
のエポキシ樹脂とは、例えば常温で固形のものでも常温
で液状のエポキシ樹脂と混合することで常温で安定して
液状のエポキシ樹脂となるものも含む。なお本発明にお
いて常温とは温度が約25℃を示すものを意味する。
The conductive paste contains a binder in addition to the conductive powder. As the binder in the present invention, it is preferable to use a binder containing, for example, an epoxy resin and a curing agent thereof. The epoxy resin is preferably liquid at room temperature. Those that crystallize at room temperature can avoid crystallization by mixing with a liquid. The epoxy resin which is liquid at room temperature in the present invention includes, for example, a resin which is solid at room temperature and which becomes a liquid epoxy resin stably at room temperature by being mixed with the epoxy resin which is liquid at room temperature. In the present invention, the normal temperature means a temperature of about 25 ° C.

【0016】本発明に用いられるエポキシ樹脂は公知の
ものが用いられ、分子量中にエポキシ基を2個以上有す
る化合物、例えばビスフェノールA、ビスフェノールA
D、ビスフェノールF、ノボラック、クレゾールノボラ
ック類とエピクロルヒドリンとの反応により得られるポ
リグリシジルエーテル、ジヒドロキシナフタレンジグリ
シジルエーテル、ブタンジオールジグリシジルエーテ
ル、ネオペンチルグリコールジグリシジルエーテル等の
脂肪族エポキシ樹脂やジグリシジルヒダントイン等の複
素環式エポキシ樹脂、ビニルシクロヘキセンジオキサイ
ド、ジシクロペンタジエンジオキサイド、アリサイクリ
ックジエポキシ−アジペイトのような脂環式エポキシ樹
脂又はエポキシ基を1個だけ有する低分子量化合物、例
えばn−ブチルグリシジルエーテル、バーサティック酸
グリシジルエステル、スチレンオキサイド、エチルヘキ
シルグリシジルエーテル、フェニルグリシジルエーテ
ル、クレジルグリシジルエーテル、ブチルフェニルグリ
シジルエーテル等のような通常のエポキシ樹脂の反応性
希釈剤として用いられるエポキシ樹脂があり、これらの
エポキシ樹脂は、単独または2種以上を混合して用いる
ことができる。
As the epoxy resin used in the present invention, known resins are used, and compounds having two or more epoxy groups in the molecular weight, for example, bisphenol A, bisphenol A
Aliphatic epoxy resins such as polyglycidyl ether, dihydroxynaphthalenediglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, and diglycidyl hydantoin obtained by reacting D, bisphenol F, novolak, cresol novolaks with epichlorohydrin; Alicyclic epoxy resins such as vinylcyclohexene dioxide, dicyclopentadiene dioxide, alicyclic diepoxy-adipate or low molecular weight compounds having only one epoxy group, e.g. n-butyl Glycidyl ether, glycidyl versatate, styrene oxide, ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl Ether, there is an epoxy resin used as an ordinary epoxy resin reactive diluents such as butyl phenyl glycidyl ether, these epoxy resins may be used alone or in combination.

【0017】エポキシ樹脂組成物は、常温で液状のエポ
キシ樹脂又は常温で固形のエポキシ樹脂及び反応性希釈
剤を含むものであり、固形のエポキシ樹脂を用いる場
合、反応性希釈剤を加えるが、エポキシ樹脂と反応性希
釈剤の配合割合は、重量比でエポキシ樹脂:反応性希釈
剤が50:50〜70:30であることが好ましく、6
5:35〜55:45であることがさらに好ましい。エ
ポキシ樹脂が50未満で反応性希釈剤が50を越えると
導電性が低下する傾向があり、一方エポキシ樹脂が70
を越え反応性希釈剤が30未満であると印刷性が低下
し、カスレ及びスルーホール内部にボイドが発生し易く
なる傾向がある。
The epoxy resin composition contains a liquid epoxy resin at room temperature or an epoxy resin solid at room temperature and a reactive diluent. When a solid epoxy resin is used, a reactive diluent is added. The mixing ratio of the resin and the reactive diluent is preferably from 50:50 to 70:30 by weight of epoxy resin: reactive diluent,
The ratio is more preferably from 5:35 to 55:45. If the epoxy resin is less than 50 and the reactive diluent exceeds 50, the conductivity tends to decrease.
If the reactive diluent exceeds 30 and the reactive diluent is less than 30, printability tends to decrease, and blurring and voids tend to occur easily in the through holes.

【0018】バインダに添加される硬化剤としては、例
えばメンセンジアミン、イソフォロンジアミン、メタフ
ェニレンジアミン、ジアミノジフェニルメタン、ジアミ
ノジフェニルスルホン、メチレンジアニリン等のアミン
類、無水フタル酸、無水トリメリット酸、無水ピロメリ
ット酸、無水コハク酸、テトラヒドロ無水フタル酸等の
酸無水物、イミダゾール、ジシアンジアミド等の化合物
系硬化剤、ポリアミド樹脂、フェノール樹脂、尿素樹脂
等の樹脂系硬化剤が用いられるが、必要に応じて、潜在
性アミン硬化剤等の硬化剤と併用して用いてもよく、ま
た3級アミン、イミダゾール類、トリフェニルホスフィ
ン、テトラフェニルホスフィンテトラフェニルボレート
等といった一般にエポキシ樹脂とフェノール系硬化剤と
の硬化促進剤として知られている化合物を添加してもよ
い。これら硬化剤の含有量は、作業性の点でバインダ1
00重量部に対して0.01〜2重量部の範囲であるこ
とが好ましく0.05〜1.5重量部の範囲であること
がさらに好ましい。
Examples of the curing agent added to the binder include amines such as mensendiamine, isophoronediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, methylenedianiline, phthalic anhydride, trimellitic anhydride, Acid anhydrides such as pyromellitic anhydride, succinic anhydride, and tetrahydrophthalic anhydride, compound-based curing agents such as imidazole and dicyandiamide, and resin-based curing agents such as polyamide resins, phenol resins, and urea resins are used. Accordingly, it may be used in combination with a curing agent such as a latent amine curing agent or the like, and generally an epoxy resin such as a tertiary amine, imidazoles, triphenylphosphine, tetraphenylphosphine tetraphenylborate or the like and a phenol-based curing agent. As a curing accelerator for The known compounds may be added. The content of these curing agents depends on the binder 1 in terms of workability.
It is preferably in the range of 0.01 to 2 parts by weight, more preferably 0.05 to 1.5 parts by weight, based on 00 parts by weight.

【0019】さらに導電ペーストは、上記の材料以外に
必要に応じてチキソ剤、カップリング剤、消泡剤、粉末
表面処理剤、沈降防止剤等を添加して均一に混合して得
られる。なおこれらの材料に溶剤を含む場合は、脱溶剤
処理を行ってから使用するものとする。必要に応じて添
加されるチキソ剤、カップリング剤、消泡剤、粉末表面
処理剤、沈降防止剤等の含有量は、導電ペーストに対し
て0.01〜1重量%の範囲であることが好ましく、
0.03〜0.5重量%の範囲であることがさらに好ま
しい。
Further, the conductive paste is obtained by adding a thixotropic agent, a coupling agent, a defoaming agent, a powder surface treating agent, an anti-settling agent and the like, as required, in addition to the above-mentioned materials, and uniformly mixing them. When a solvent is contained in these materials, they are used after performing a solvent removal treatment. The content of the thixotropic agent, the coupling agent, the defoaming agent, the powder surface treating agent, the anti-settling agent and the like added as necessary may be in the range of 0.01 to 1% by weight based on the conductive paste. Preferably
More preferably, it is in the range of 0.03 to 0.5% by weight.

【0020】本発明の導電ペーストは、上記の導電粉、
バインダ及び必要に応じて添加されるチキソ剤、カップ
リング剤、消泡剤、粉末表面処理剤、沈降防止剤等と共
にらいかい機、ニーダー、三本ロール等で均一に混分、
分散して得ることができる。
The conductive paste of the present invention comprises the above conductive powder,
Thickener, coupling agent, defoaming agent, powder surface treating agent, anti-settling agent, etc. added together with binder and thixo agent if necessary
Can be obtained in a dispersed manner.

【0021】[0021]

【実施例】以下本発明の実施例を説明する。 実施例1 ビスフェノールA型エポキシ樹脂(油化シェルエポキシ
(株)製、商品名エピコート827)58重量部、脂肪族
ジグリシジルエーテル(旭電化工業(株)製、商品名ED
−503)42重量部、2−エチル−4−メチルイミダ
ゾール(四国化成(株)製、商品名キュアゾール2E4M
HZ)6重量部及びジシアンジアミド4重量部を加えて
均一に混合してバインダとした。
Embodiments of the present invention will be described below. Example 1 Bisphenol A type epoxy resin (oiled shell epoxy)
58 parts by weight, manufactured by Asahi Denka Kogyo Co., Ltd., trade name: ED
-503) 42 parts by weight, 2-ethyl-4-methylimidazole (manufactured by Shikoku Chemicals Co., Ltd., trade name: Curesol 2E4M)
HZ) 6 parts by weight and dicyandiamide 4 parts by weight were added and uniformly mixed to obtain a binder.

【0022】次にアトマイズ法で作製した平均粒径が
5.1μmの球状銅粉(日本アトマイズ加工(株)製、商
品名SF−Cu)を希塩酸及び純水で洗浄した後、水1
リットルあたりAgCN80g及びNaCN75g含む
めっき溶液で球状銅粉に対して銀の量が18重量%にな
るように置換めっきを行い、水洗、乾燥して銀めっき銅
粉を得た。
Next, spherical copper powder (trade name: SF-Cu, manufactured by Nippon Atomize Processing Co., Ltd.) having an average particle size of 5.1 μm produced by an atomizing method was washed with dilute hydrochloric acid and pure water, and then washed with water 1
Substitution plating was performed with a plating solution containing 80 g of AgCN and 75 g of NaCN per liter so that the amount of silver was 18% by weight with respect to the spherical copper powder, washed with water and dried to obtain a silver-plated copper powder.

【0023】この後、2リットルのボールミル容器内に
上記で得た銀めっき銅粉750g及び直径が5mmのジル
コニアボール3kgを投入し、10時間回転させて形状を
変形させ、アスペクト比が平均3.5及び長径の平均粒
径が7.1μmの扁平状銀めっき銅粉を得た。得られた
銀めっき銅粉の粒子を5個取り出し、走査型オージェ電
子分光分析装置で定量分析して銅の露出面積について調
べたところ10〜50%の範囲で平均が30%であっ
た。上記で得たバインダ110gに上記の扁平状銀めっ
き銅粉470gを加えて撹拌らいかい機及び三本ロール
で均一に混合、分散して粘度が65Pa・sの溶剤を含まな
い導電ペーストを得た。なお導電粉とバインダの配合割
合は、導電ペーストの固形分に対して重量比で導電粉:
バインダが81:19であった。粘度測定に用いた粘度
計は、ブルックフィールド社製のHBT型であり、スモ
ールチャンバー内の温度を25℃にして測定を行った
(以下の実施例及び比較例についても同様の方法で行っ
た)。
Thereafter, 750 g of the silver-plated copper powder obtained above and 3 kg of zirconia balls having a diameter of 5 mm were put into a 2 liter ball mill container, and rotated for 10 hours to deform the shape. A flat silver-plated copper powder having an average particle diameter of No. 5 and a major axis of 7.1 μm was obtained. Five particles of the obtained silver-plated copper powder were taken out and quantitatively analyzed by a scanning Auger electron spectrometer to examine the exposed area of copper. The average was 30% in the range of 10 to 50%. 110 g of the above-obtained binder was added with 470 g of the flat silver-plated copper powder described above, and the mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill to obtain a conductive paste containing a solvent having a viscosity of 65 Pa · s. . The mixing ratio of the conductive powder and the binder is such that the weight ratio of the conductive powder to the solid content of the conductive paste is:
The binder was 81:19. The viscometer used for the viscosity measurement was an HBT type manufactured by Brookfield, and the measurement was performed with the temperature in the small chamber set to 25 ° C. (The same method was used for the following Examples and Comparative Examples). .

【0024】次に上記で得た導電ペーストを用いて、厚
さが1.0mmのガラスエポキシ銅張積層板(日立化成工
業(株)製、商品名MCL−E−670)の銅箔をエッチ
ングして除去した面に、図1に示すテストパターン1を
印刷した。なお図1において2はガラスエポキシ銅張積
層板である。また前述のガラスエポキシ銅張積層板2に
図2に示すように直径が0.3mmのスルーホール3を形
成し、このスルーホール3に導電ペーストを充填すると
共にスルーホール3間を印刷して接続したもの、前述の
ガラスエポキシ銅張積層板2の銅箔をエッチングして除
去した面に図3に示すように電極間の幅が1.2mmの櫛
形テストパターン4を印刷したもの及び前述のガラスエ
ポキシ銅張積層板2の銅箔5を図4の(a)及び(b)
に示すような形状に部分的にエッチングし、次いでその
表面に図5の(a)及び(b)に示すように厚さが50
μmのエポキシ樹脂フィルム(日立化成工業(株)製、商
品名AS3000)6を重ね合わせた後170℃、10
MPaの条件で加熱加圧し、さらにその上面にテストパタ
ーン7を印刷した。
Next, using the conductive paste obtained above, the copper foil of a 1.0 mm thick glass epoxy copper clad laminate (manufactured by Hitachi Chemical Co., Ltd., trade name: MCL-E-670) was etched. The test pattern 1 shown in FIG. 1 was printed on the removed surface. In FIG. 1, reference numeral 2 denotes a glass epoxy copper clad laminate. Further, as shown in FIG. 2, a through hole 3 having a diameter of 0.3 mm is formed in the above-mentioned glass epoxy copper clad laminate 2, and the through hole 3 is filled with a conductive paste and printed between the through holes 3 for connection. 3. A comb-shaped test pattern 4 having a width between electrodes of 1.2 mm as shown in FIG. The copper foil 5 of the epoxy copper-clad laminate 2 was replaced with the copper foil 5 shown in FIGS.
5 and partially etched to a thickness of 50 as shown in FIGS. 5 (a) and 5 (b).
μm epoxy resin film (trade name: AS3000, manufactured by Hitachi Chemical Co., Ltd.) 6
Heat and pressure were applied under the conditions of MPa, and a test pattern 7 was printed on the upper surface.

【0025】この後、上記で各々異なるテストパターン
を印刷したものを、それぞれ25℃で10分間静置した
後、155℃、45分間の条件で加熱処理を行って配線
板を得た。得られた配線板の特性を評価した結果、導体
の比抵抗は2.7mΩ・cm及びスルーホール1穴あたり
の抵抗値は0.3Ω/穴であり、スルーホール内部にボ
イドの発生は見られなかった。また図3並びに図5の
(a)及び(b)から得られた配線板の絶縁抵抗は10
8Ω以上であった。
Thereafter, the printed test patterns different from each other were left at 25 ° C. for 10 minutes, and then subjected to a heat treatment at 155 ° C. for 45 minutes to obtain a wiring board. As a result of evaluating the characteristics of the obtained wiring board, the specific resistance of the conductor was 2.7 mΩ · cm and the resistance value per hole of the through hole was 0.3 Ω / hole, and voids were found inside the through hole. Did not. The insulation resistance of the wiring board obtained from FIGS. 3 and 5A and 5B is 10%.
It was 8 Ω or more.

【0026】さらに図3並びに図5の(a)及び(b)
から得られた配線板の湿中負荷試験を2000時間行っ
た結果、絶縁抵抗は108Ω以上であった。なお湿中負
荷試験は、40℃、90%RH中、隣りあうライン間に
50Vの直流電圧を印加して行った(以下の実施例及び
比較例についても同様の方法で行った)。
Further, FIGS. 3 and 5 (a) and 5 (b)
The wiring board obtained from the above was subjected to a moisture and medium load test for 2000 hours, and as a result, the insulation resistance was 10 8 Ω or more. The wet load test was performed at 40 ° C. and 90% RH by applying a DC voltage of 50 V between adjacent lines (the same method was applied to the following Examples and Comparative Examples).

【0027】なお、本実施例におけるアスペクト比の具
体的測定法を以下に示す。低粘度のエポキシ樹脂(ビュ
ーラー社製)の主剤(No.10−8130)8gと硬化
剤(No.10−8132)2gを混合し、ここへ導電粉
2gを混合して良く分散せさ、そのまま30℃で真空脱
泡した後、10時間、30℃で静置して粒子を沈降させ
硬化させた。その後、得られた硬化物を垂直方向に切断
し、切断面を電子顕微鏡で1000倍に拡大して切断面
に現れた150個の粒子について長径/短径を求め、そ
れらの平均値をもって、アスペクト比とした。
The specific method of measuring the aspect ratio in this embodiment is described below. 8 g of the base material (No. 10-8130) of a low-viscosity epoxy resin (manufactured by Buehler) and 2 g of a curing agent (No. 10-8132) are mixed, and 2 g of conductive powder is mixed and dispersed well, and the mixture is left as it is. After vacuum degassing at 30 ° C., the particles were allowed to stand at 30 ° C. for 10 hours to settle and harden the particles. Thereafter, the obtained cured product was cut in the vertical direction, the cut surface was magnified 1000 times with an electron microscope, and the long diameter / short diameter of 150 particles that appeared on the cut surface was obtained. Ratio.

【0028】実施例2 実施例1で用いたビスフェノールA型エポキシ樹脂61
重量部、実施例1で用いた脂肪族ジグリシジルエーテル
39重量部、2−フェニル−4−メチルイミダゾール6
重量部及びジシアンジアミド4重量部を加えて均一に混
合してバインダとした。次に実施例1で得た銀めっき銅
粉750gを実施例1と同様の方法で15時間ボールミ
ルを回転させて形状を変形させ、アスペクト比が平均
4.4及び長径の平均粒径が8.6μmの扁平状銀めっ
き銅粉を得た。得られた扁平状銀めっき銅粉の粒子を5
個取り出し、走査型オージェ電子分光分析装置で定量分
析して銅粉の露出面積について調べたところ10〜50
%の範囲で平均が41%であった。
Example 2 Bisphenol A type epoxy resin 61 used in Example 1
Parts by weight, 39 parts by weight of the aliphatic diglycidyl ether used in Example 1, 2-phenyl-4-methylimidazole 6
Parts by weight and 4 parts by weight of dicyandiamide were added and uniformly mixed to obtain a binder. Next, 750 g of the silver-plated copper powder obtained in Example 1 was rotated by a ball mill for 15 hours in the same manner as in Example 1 to deform the shape, and the average aspect ratio was 4.4 and the average particle diameter of the major axis was 8.8. 6 μm flat silver-plated copper powder was obtained. 5 particles of the obtained flat silver-plated copper powder
The individual pieces were taken out and quantitatively analyzed by a scanning Auger electron spectrometer to examine the exposed area of the copper powder.
In the range of%, the average was 41%.

【0029】さらに、上記で得たバインダ110gに上
記の扁平状銀めっき銅粉630gを加えて撹拌らいかい
機及び三本ロールで均一に混合、分散して粘度が87Pa
・sの溶剤を含まない導電ペーストを得た。なお導電粉と
バインダの配合割合は、導電ペーストの固形分に対して
重量比で導電粉:バインダが85.1:14.9であっ
た。
Further, 630 g of the above-mentioned flat silver-plated copper powder was added to 110 g of the binder obtained above, and the mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill to give a viscosity of 87 Pa.
・ A conductive paste containing no s solvent was obtained. The mixing ratio of the conductive powder and the binder was 85.1: 14.9 in terms of weight ratio of the conductive powder to the binder with respect to the solid content of the conductive paste.

【0030】次に実施例1と同様の工程を経て配線板を
作製し、その特性を評価した。その結果、導体の比抵抗
は1.9mΩ・cm、スルーホールの1穴あたりの抵抗値
は0.2Ω/穴であり、スルーホール内部にボイドの発
生は見られなかった。また図3並びに図5の(a)及び
(b)から得られた配線板の絶縁抵抗は108Ω以上で
あった。さらに配線板の湿中負荷試験を実施した結果、
図3並びに図5の(a)及び(b)から得られた配線板
の絶縁抵抗は108Ω以上であった。
Next, a wiring board was manufactured through the same steps as in Example 1, and its characteristics were evaluated. As a result, the specific resistance of the conductor was 1.9 mΩ · cm, the resistance value per through hole was 0.2 Ω / hole, and no void was found inside the through hole. The insulation resistance of the wiring board obtained from FIGS. 3 and 5A and 5B was 10 8 Ω or more. In addition, as a result of conducting a moisture and medium load test
The insulation resistance of the wiring board obtained from FIGS. 3 and 5A and 5B was 10 8 Ω or more.

【0031】比較例1 実施例1で得たバインダ35gに実施例1で得た扁平状
銀めっき銅粉470gを加えて撹拌らいかい機及び三本
ロールで均一に混合分散して粘度が217Pa・sの溶剤を
含まない導電ペーストを得た。なお導電粉とバインダの
配合割合は、導電ペーストの固形分に対して重量比で導
電粉:バインダが93.1:6.9であった。
Comparative Example 1 470 g of the flat silver-plated copper powder obtained in Example 1 was added to 35 g of the binder obtained in Example 1, and the mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill to have a viscosity of 217 Pa · s. A conductive paste containing no solvent was obtained. The mixing ratio of the conductive powder and the binder was 93.1: 6.9 in terms of weight ratio of the conductive powder to the binder with respect to the solid content of the conductive paste.

【0032】次に実施例1と同様の工程を経て配線板を
作製し、その特性を評価した。その結果、導体の比抵抗
は1.2mΩ・cm、スルーホールの1穴あたりの抵抗値
は0.3Ω/穴であり、スルーホール内部にボイドが見
られ、その発生確率は77%であった。また図3並びに
図5の(a)及び(b)から得られた配線板の絶縁抵抗
は108Ω以上であった。さらに配線板の湿中負荷試験
を実施した結果、図3並びに図5の(a)及び(b)か
ら得られた配線板の絶縁抵抗は108Ω以上であった。
Next, a wiring board was manufactured through the same steps as in Example 1, and its characteristics were evaluated. As a result, the specific resistance of the conductor was 1.2 mΩ · cm, the resistance per through hole was 0.3 Ω / hole, voids were found inside the through hole, and the occurrence probability was 77%. . The insulation resistance of the wiring board obtained from FIGS. 3 and 5A and 5B was 10 8 Ω or more. Further, as a result of performing a moisture and medium load test on the wiring board, the insulation resistance of the wiring board obtained from FIGS. 3 and 5A and 5B was 10 8 Ω or more.

【0033】比較例2 実施例1で得たバインダ110gに実施例1で得た扁平
状銀めっき銅粉280gを加えて撹拌らいかい機及び三
本ロールで均一に混合分散して粘度が41Pa・sの溶剤を
含まない導電ペーストを得た。なお導電粉とバインダの
配合割合は、導電ペーストの固形分に対して重量比で導
電粉:バインダが71.8:28.2であった。
Comparative Example 2 280 g of the flat silver-plated copper powder obtained in Example 1 was added to 110 g of the binder obtained in Example 1, and the mixture was uniformly mixed and dispersed with a stirrer and a three-roll mill to obtain a viscosity of 41 Pa. A conductive paste containing no solvent was obtained. The mixing ratio of the conductive powder and the binder was 71.8: 28.2 in a ratio of conductive powder: binder by weight relative to the solid content of the conductive paste.

【0034】次に実施例1と同様の工程を経て配線板を
作製し、その特性を評価した。その結果、導体の比抵抗
は8.9mΩ・cm、スルーホールの1穴あたりの抵抗値
は1.2Ω/穴であり、スルーホール内部にボイドの発
生は見られなかった。また図3並びに図5の(a)及び
(b)から得られた配線板の絶縁抵抗は108Ω以上で
あった。さらに配線板の湿中負荷試験を実施した結果、
図3並びに図5の(a)及び(b)から得られた配線板
の絶縁抵抗は108Ω以上であった。
Next, a wiring board was manufactured through the same steps as in Example 1, and its characteristics were evaluated. As a result, the specific resistance of the conductor was 8.9 mΩ · cm, the resistance per through hole was 1.2 Ω / hole, and no void was found inside the through hole. The insulation resistance of the wiring board obtained from FIGS. 3 and 5A and 5B was 10 8 Ω or more. In addition, as a result of conducting a moisture and medium load test
The insulation resistance of the wiring board obtained from FIGS. 3 and 5A and 5B was 10 8 Ω or more.

【0035】[0035]

【発明の効果】請求項1記載の発明の導電ペーストは、
導電性と印刷性に優れる。請求項2記載の発明の導電ペ
ーストは、耐マイグレーション性と請求項1記載の導電
ペーストのうち、特に導電性の向上効果に優れる。請求
項3又は4記載の発明の導電ペーストは、導電性及び印
刷性の向上効果に優れる。
The conductive paste according to the first aspect of the present invention is
Excellent conductivity and printability. The conductive paste according to the second aspect of the invention is particularly excellent in the migration resistance and the effect of improving the conductivity among the conductive pastes according to the first aspect. The conductive paste of the invention according to claim 3 or 4 is excellent in the effect of improving conductivity and printability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガラスエポキシ銅張積層板の銅箔をエッチング
した面にテストパターンを印刷した状態を示す平面図で
ある。
FIG. 1 is a plan view showing a state where a test pattern is printed on a surface of a glass epoxy copper clad laminate where copper foil is etched.

【図2】ガラスエポキシ銅張積層板に形成したスルーホ
ールに導電ペーストを充填すると共にスルーホール間を
印刷して接続した状態を示す平面図である。
FIG. 2 is a plan view showing a state in which conductive paste is filled into through holes formed in a glass epoxy copper clad laminate and printed and connected between the through holes.

【図3】ガラスエポキシ銅張積層板の銅箔をエッチング
した面に櫛形テストパターンを印刷した状態を示す平面
図である。
FIG. 3 is a plan view showing a state in which a comb-shaped test pattern is printed on the surface of the glass epoxy copper-clad laminate on which the copper foil has been etched;

【図4】(a)はガラスエポキシ銅張積層板の銅箔を部
分的にエッチングした状態を示す平面図及び(b)はそ
の正面図である。
4A is a plan view showing a state where a copper foil of a glass epoxy copper clad laminate is partially etched, and FIG. 4B is a front view thereof.

【図5】(a)は銅箔を部分的にエッチングしたガラス
エポキシ銅張積層板の表面にエポキシ樹脂フィルムを重
ね、さらにその上面にテストパターンを印刷した状態を
示す平面図及び(b)はその平面図である。
FIG. 5A is a plan view showing a state in which an epoxy resin film is overlaid on the surface of a glass epoxy copper-clad laminate obtained by partially etching a copper foil, and further a test pattern is printed on the upper surface thereof, and FIG. It is the top view.

【符号の説明】[Explanation of symbols]

1 テストパターン 2 ガラスエポキシ銅張積層板 3 スルーホール 4 櫛形テストパターン 5 銅箔 6 エポキシ樹脂フィルム 7 テストパターン DESCRIPTION OF SYMBOLS 1 Test pattern 2 Glass epoxy copper clad laminated board 3 Through hole 4 Comb-shaped test pattern 5 Copper foil 6 Epoxy resin film 7 Test pattern

フロントページの続き (51)Int.Cl.6 識別記号 FI H05K 1/09 H05K 1/09 A 3/46 3/46 S N Continued on the front page (51) Int.Cl. 6 Identification code FI H05K 1/09 H05K 1/09 A 3/46 3/46 SN

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電粉及びバインダを含む導電ペースト
において、導電粉とバインダの配合割合が、導電ペース
トの固形分に対して、重量比で導電粉:バインダが7
5:25〜90:10であり、かつ粘度が10〜150
Pa・sである溶剤を含まない導電ペースト。
In a conductive paste containing a conductive powder and a binder, the mixing ratio of the conductive powder and the binder is 7 in a weight ratio of the conductive powder: binder to the solid content of the conductive paste.
5:25 to 90:10 and a viscosity of 10 to 150
Conductive paste containing no solvent that is Pa · s.
【請求項2】 導電粉が、銅粉又は銅合金粉の一部を露
出して表面が大略銀で被覆され、形状が扁平状である請
求項1又は2記載の溶剤を含まない導電ペースト。
2. The conductive paste containing no solvent according to claim 1, wherein the conductive powder has a surface which is substantially covered with silver by exposing a part of the copper powder or the copper alloy powder, and has a flat shape.
【請求項3】 バインダが、エポキシ樹脂組成物とその
硬化剤を含むものからなる請求項1、2又は3記載の溶
剤を含まない導電ペースト。
3. The solvent-free conductive paste according to claim 1, wherein the binder comprises an epoxy resin composition and a curing agent thereof.
【請求項4】 エポキシ樹脂組成物が、常温で液状のエ
ポキシ樹脂又は常温で固形のエポキシ樹脂及び反応性希
釈剤を含み、かつエポキシ樹脂と反応性希釈剤の配合割
合が、重量比でエポキシ樹脂:反応性希釈剤が50:5
0〜70:30である請求項1、2、3又は4記載の溶
剤を含まない導電ペースト。
4. The epoxy resin composition contains a liquid epoxy resin at room temperature or an epoxy resin solid at room temperature and a reactive diluent, and the mixing ratio of the epoxy resin and the reactive diluent is weight ratio of the epoxy resin. : 50: 5 reactive diluent
The conductive paste containing no solvent according to claim 1, 2, 3 or 4, wherein the ratio is 0 to 70:30.
JP1898098A 1998-01-30 1998-01-30 Conductive paste Pending JPH11209662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1898098A JPH11209662A (en) 1998-01-30 1998-01-30 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1898098A JPH11209662A (en) 1998-01-30 1998-01-30 Conductive paste

Publications (1)

Publication Number Publication Date
JPH11209662A true JPH11209662A (en) 1999-08-03

Family

ID=11986771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1898098A Pending JPH11209662A (en) 1998-01-30 1998-01-30 Conductive paste

Country Status (1)

Country Link
JP (1) JPH11209662A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080197A1 (en) * 2001-03-28 2002-10-10 E.I. Du Pont De Nemours And Company Composition for filling through-holes in printed wiring boards

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080197A1 (en) * 2001-03-28 2002-10-10 E.I. Du Pont De Nemours And Company Composition for filling through-holes in printed wiring boards

Similar Documents

Publication Publication Date Title
US6515237B2 (en) Through-hole wiring board
JP4389148B2 (en) Conductive paste
JP2010021145A (en) Mixed conductive powder and use thereof
JP2003045228A (en) Conductive paste
JP2004063445A (en) Conductive paste
JP4235888B2 (en) Conductive paste
JP4224771B2 (en) Conductive paste
JPH11209662A (en) Conductive paste
JP2001236827A (en) Conductive paste
JPH10152630A (en) Conductive paste and composite conductive powder
JP2000322933A (en) Conductive paste and its manufacture
JP2002008444A (en) Conductive paste
JP4235885B2 (en) Conductive paste
JP2002164632A (en) Through hole wiring board
JP2002260443A (en) Conductive paste
JP2001093330A (en) Through-hole conductor forming conductive paste and its manufacturing method as well as both-side printed wiring board using through-hole conductor forming conductive paste
JP2001302884A (en) Electrodonductive paste
JP2002245852A (en) Conductive paste
JP3783788B2 (en) Manufacturing method of conductive paste and electric circuit forming substrate
JP4224772B2 (en) Conductive paste
JP4224774B2 (en) Conductive paste
JP2002245850A (en) Conductive paste
JP2002270034A (en) Conductive paste
JP2003068139A (en) Conductive paste
JP2023018665A (en) Conductive resin composition