JPH0992026A - Complex conductive powder, conductive paste, manufacture of conductive paste, electric circuit, and manufacture of electric circuit - Google Patents

Complex conductive powder, conductive paste, manufacture of conductive paste, electric circuit, and manufacture of electric circuit

Info

Publication number
JPH0992026A
JPH0992026A JP8019914A JP1991496A JPH0992026A JP H0992026 A JPH0992026 A JP H0992026A JP 8019914 A JP8019914 A JP 8019914A JP 1991496 A JP1991496 A JP 1991496A JP H0992026 A JPH0992026 A JP H0992026A
Authority
JP
Japan
Prior art keywords
powder
silver
conductive
conductive powder
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8019914A
Other languages
Japanese (ja)
Other versions
JP3513636B2 (en
Inventor
Shozo Yamana
章三 山名
秀次 ▲くわ▼島
Hideji Kuwashima
Junichi Kikuchi
純一 菊池
Riichi Ono
利一 小野
Yoshikatsu Mikami
喜勝 三上
Hisashi Dokochi
久司 堂河内
Hiroshi Wada
和田  弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP01991496A priority Critical patent/JP3513636B2/en
Publication of JPH0992026A publication Critical patent/JPH0992026A/en
Application granted granted Critical
Publication of JP3513636B2 publication Critical patent/JP3513636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a complex conductive powder having a low specific resistance and a high conductivity by preparing complex conductive powders containing flat conductive powders and amorphous conductive powders. SOLUTION: This complex conductive powder is prepared from 95 to 50wt.% flat conductive powders and 5 to 50wt.% amorphous conductive powders. The flat conductive powders (e.g. scale-shaped) are made up of silver, a silver alloy, or a silver-covered conducting material, with an aspect ratio of 6 or more and an average particle diameter of about 25μm or less, and the amorphous conductive powders are made up of silver, a silver alloy, or reduced silver powders, with an aspect ratio of 5 or less and an average particle diameter of about 3 to 20μm. The complex conductive powder is formed into a conductive paste with the use of a liquefied epoxy resin or the like as a binder and terpineol or the like as a solvent, whereby it can be used in the formation of an electronic circuit such as a printed wiring board or electronic parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は複合導電粉、導電ペ
ースト、導電ペーストの製造法、電気回路及び電気回路
の製造法に関する。
TECHNICAL FIELD The present invention relates to a composite conductive powder, a conductive paste, a method for manufacturing a conductive paste, an electric circuit and a method for manufacturing an electric circuit.

【0002】[0002]

【従来の技術】従来、プリント配線板、電子部品等の電
気回路(配線導体)を形成する方法として、電子材料、
1994年10月号の42〜46頁に記載されているよ
うに導電性に優れた銀粉を含有する導電ペーストを塗布
又は印刷する方法が一般的に知られている。
2. Description of the Related Art Conventionally, as a method of forming an electric circuit (wiring conductor) such as a printed wiring board or an electronic component, electronic materials,
As described in October 1994, pages 42 to 46, a method of coating or printing a conductive paste containing silver powder having excellent conductivity is generally known.

【0003】銀粉を含有する導電ペーストは、導電性が
良好なことから印刷配線板、電子部品等の電気回路や電
極の形成に用いられているが、このような導電ペースト
を用いて形成される電気回路の体積固有抵抗(比抵抗)
は、通常は50〜100μΩ・cmであり、優れているも
のでも30〜40μΩ・cmにすぎず、印刷回路の長さが
数cmと短い場合には障害になることは少ないが、10cm
以上になると導通抵抗が高くなり不具合が生じ易かっ
た。
A conductive paste containing silver powder is used for forming electric circuits and electrodes of printed wiring boards, electronic parts and the like because of its good conductivity. It is formed by using such a conductive paste. Volume resistivity of electrical circuit (specific resistance)
Is usually 50 to 100 μΩ · cm, and even excellent ones are only 30 to 40 μΩ · cm, and when the length of the printed circuit is as short as several cm, there is little trouble, but 10 cm
If it is above, the conduction resistance becomes high, and the problem is likely to occur.

【0004】導通抵抗の良好な導体を得るには銀粉の配
合量を増加させればよいが、25μΩ・cm以下の比抵抗
を安定して得ることはできない。また銀粉の配合量を単
純に増加させると他の特性、例えば接着性とのバランス
が悪くなるなどの欠点が生じる。
In order to obtain a conductor having good conduction resistance, the amount of silver powder blended may be increased, but a specific resistance of 25 μΩ · cm or less cannot be stably obtained. Further, if the amount of silver powder is simply increased, disadvantages such as poor balance with other properties, for example, adhesion, occur.

【0005】また銀、銅等の金属箔をエッチングする方
法では、高導電性で比抵抗は数μΩ・cmと低いが工程が
複雑であるため高価になるという欠点があった。また、
銀粉を用いた導電ペーストは、高温多湿の雰囲気下で電
界が印加されると、配線導体や電極にマイグレーション
と称する銀の電析が生じ電極間又は配線間が短絡すると
いう欠点が生じる。このマイグレーションを防止するた
めの方策はいくつか行われており、導体の表面に防湿塗
料を塗布するか又は導電ペーストに含窒素化合物などの
腐食抑制剤を添加するなどの方策が検討されているが十
分な効果が得られるものではなかった。
Further, the method of etching a metal foil of silver, copper or the like has a drawback in that it is highly conductive and has a low specific resistance of several μΩ · cm, but it is expensive due to the complicated process. Also,
The conductive paste using silver powder has a drawback that when an electric field is applied in a hot and humid atmosphere, electroplating of silver called migration occurs on wiring conductors and electrodes, and electrodes or wirings are short-circuited. Several measures have been taken to prevent this migration, and measures such as applying a moisture-proof coating to the surface of the conductor or adding a corrosion inhibitor such as a nitrogen-containing compound to the conductive paste have been studied. The effect was not sufficient.

【0006】さらにマイグレーションを防止するために
は、銀粉の代わりに銀−パラジュウムの合金粉末を使用
すれば良いが、このような合金粉末は銀粉末に比べて高
価でありハイブリッドICのような小型な配線板では実
用化されているが、配線板が大型である紙フェノール基
板、ガラスエポキシ基板、ポリエチレンテレフタレート
等のような基材ではいまだ実用化されていない。銀被覆
銅粉を使用すればマイグレーションを改善でき、これを
用いれば安価な導電ペーストが得られるが、銀被覆を均
一に、かつ厚く被覆するとマイグレーションの改善効果
はない。また被覆法としてめっき法は安価な方法であ
り、例えば安価な球状銅粉に対して銀めっきするのは凝
集も少なく容易に行えるが、これを用いた導電ペースト
は抵抗が高くなるという欠点があった。
Further, in order to prevent migration, silver-palladium alloy powder may be used in place of silver powder, but such alloy powder is more expensive than silver powder and has a small size such as a hybrid IC. Although it has been put to practical use in wiring boards, it has not yet been put to practical use in substrates such as paper phenol substrates, glass epoxy substrates, and polyethylene terephthalate, which have large wiring boards. If silver-coated copper powder is used, migration can be improved, and if this is used, an inexpensive conductive paste can be obtained, but if the silver coating is uniformly and thickly coated, there is no effect of improving migration. Further, the plating method is an inexpensive method as a coating method. For example, silver plating of inexpensive spherical copper powder can be easily performed with less aggregation, but the conductive paste using this has a drawback of high resistance. It was

【0007】[0007]

【発明が解決しようとする課題】請求項1記載の発明
は、比抵抗が低く、高導電性で、かつ冷熱衝撃試験や湿
中負荷試験後も比抵抗の変化の小さい電気回路形成用の
導電ペーストが得られる複合導電粉を提供する。請求項
2〜7記載の発明は、請求項1記載の発明のうち特に導
電性に優れ、さらに請求項1記載の発明に加えて耐酸化
性及び耐熱性に優れる導電ペーストが得られる複合導電
粉を提供する。請求項8〜10記載の発明は、加圧して
アンカー効果を有する導電ペーストが得られる複合導電
粉を提供する。請求項11記載の発明は、比抵抗が低
く、高導電性で、かつ耐マイグレーション性に優れる電
気回路形成用の導電ペーストが得られる複合導電粉を提
供する。
The invention according to claim 1 is a conductive material for forming an electric circuit, which has a low specific resistance, a high conductivity, and a small change in the specific resistance even after a thermal shock test or a humidity / humidity load test. Provided is a composite conductive powder from which a paste is obtained. The inventions described in claims 2 to 7 are particularly excellent in conductivity among the inventions described in claim 1, and in addition to the invention described in claim 1, a composite conductive powder capable of obtaining a conductive paste having excellent oxidation resistance and heat resistance. I will provide a. The invention according to claims 8 to 10 provides a composite conductive powder which can be pressed to obtain a conductive paste having an anchor effect. The invention according to claim 11 provides a composite conductive powder, which has a low specific resistance, a high conductivity, and a conductive paste for forming an electric circuit, which is excellent in migration resistance.

【0008】請求項12記載の発明は、比抵抗が低く、
高導電性で、かつ冷熱衝撃試験や湿中負荷試験後も比抵
抗の変化が小さく、また導電粉同士の接触確率を改善
し、電気回路の導電性が高くなり、特にシート状の基材
に回路を印刷し、印刷回路をプレス加工する場合の導電
性を高める導電ペーストが得られる複合導電粉を提供す
る。請求項13〜18記載の発明は、請求項12記載の
発明のうち特に導電性に優れ、さらに請求項12記載の
発明に加えて耐酸化性及び耐熱性に優れる導電ペースト
が得られる複合導電粉を提供する。請求項19〜21記
載の発明は、加圧してアンカー効果を有する導電ペース
トが得られる複合導電粉を提供する。請求項22記載の
発明は、比抵抗が低く、高導電性で、かつ耐マイグレー
ション性に優れる電気回路形成用の導電ペーストが得ら
れる複合導電粉を提供する。
According to the invention of claim 12, the specific resistance is low,
High conductivity, small change in resistivity even after thermal shock test or humidity / humidity load test, and improved contact probability between conductive powders, resulting in higher conductivity of electric circuits, especially for sheet-like base materials. Provided is a composite conductive powder which is capable of printing a circuit and obtaining a conductive paste that enhances conductivity when the printed circuit is pressed. The inventions according to claims 13 to 18 are particularly excellent in conductivity among the inventions according to claim 12, and in addition to the invention according to claim 12, a composite conductive powder capable of obtaining a conductive paste excellent in oxidation resistance and heat resistance. I will provide a. The invention described in claims 19 to 21 provides a composite conductive powder capable of obtaining a conductive paste having an anchor effect by pressurizing. The invention according to claim 22 provides a composite conductive powder, which has a low specific resistance, a high conductivity, and a conductive paste for forming an electric circuit, which is excellent in migration resistance.

【0009】請求項23〜25記載の発明は、比抵抗が
低く、高導電性で、かつ冷熱衝撃試験や湿中負荷試験後
も比抵抗の変化が小さい電気回路形成用の導電ペースト
を提供する。請求項26記載の発明は、比抵抗が低く、
導電粉同士の接触確率を改善し、電気回路の導電性が高
く、かつ耐マイグレーション性に優れる電気回路形成用
の導電ペーストを提供する。請求項27記載の発明は、
比抵抗が低く、高導電性で、かつ耐マイグレーション性
に優れる電気回路を提供する。請求項28記載の発明
は、請求項27記載の発明に加えて微細な回路を形成す
るのに優れる電気回路を提供する。請求項29記載の発
明は、比抵抗が低く、高導電性で、かつ耐マイグレーシ
ョン性に優れる電気回路の製造法を提供する。請求項3
0記載の発明は、請求項29記載の発明に加えて微細な
回路を形成するのに優れる電気回路の製造法を提供す
る。
The present invention provides a conductive paste for forming an electric circuit, which has a low specific resistance, a high conductivity, and a small change in the specific resistance even after a thermal shock test or a humidity / humidity load test. . The invention of claim 26 has a low specific resistance,
Provided is a conductive paste for forming an electric circuit, which improves the probability of contact between conductive powders, has a high electric circuit conductivity, and is excellent in migration resistance. The invention according to claim 27 is
Provided is an electric circuit having low specific resistance, high conductivity, and excellent migration resistance. The invention described in claim 28 provides an electric circuit excellent in forming a fine circuit in addition to the invention described in claim 27. The invention described in claim 29 provides a method for manufacturing an electric circuit having a low specific resistance, high conductivity, and excellent migration resistance. Claim 3
In addition to the invention described in claim 29, the invention described in 0 provides a method for manufacturing an electric circuit which is excellent in forming a fine circuit.

【0010】[0010]

【課題を解決するための手段】本発明は、次の事項に関
する。 (1)扁平状導電粉及び不定形状導電粉を含む複合導電
粉。 (2)扁平状導電粉の材質が銀、銀合金又は銀被覆導電
体である上記(1)記載の複合導電粉。 (3)扁平状導電粉が扁平状の銀被覆導電体粉である上
記(1)記載の複合導電粉。 (4)扁平状の銀被覆導電体粉が銀被覆銅粉又は銀被覆
銅合金粉である上記(3)記載の複合導電粉。 (5)扁平状の銀被覆導電体粉が被覆されている導電体
が露出している銀被覆銅粉である上記(3)又は(4)
記載の複合導電粉。 (6)不定形状導電粉の材質が銀又は銀合金である上記
(1)〜(5)のいずれかに記載の複合導電粉。
The present invention relates to the following items. (1) Composite conductive powder containing flat conductive powder and irregular-shaped conductive powder. (2) The composite conductive powder according to (1) above, wherein the material of the flat conductive powder is silver, a silver alloy or a silver-coated conductor. (3) The composite conductive powder as described in (1) above, wherein the flat conductive powder is a flat silver-coated conductive powder. (4) The composite conductive powder according to (3) above, wherein the flat silver-coated conductor powder is silver-coated copper powder or silver-coated copper alloy powder. (5) The above-mentioned (3) or (4), which is a silver-coated copper powder in which the conductor covered with the flat silver-coated conductor powder is exposed.
The described composite conductive powder. (6) The composite conductive powder as described in any one of (1) to (5) above, wherein the material of the irregular-shaped conductive powder is silver or a silver alloy.

【0011】(7)不定形状導電粉が還元銀粉である上
記(6)記載の複合導電粉。 (8)不定形状導電粉が、銀又は銀合金より硬度が高い
導電体が銀で被覆されたものである上記(6)記載の複
合導電粉。 (9)銀又は銀合金より硬度が高い導電体がCo、N
i、Cr、Cu、W粉又はこれらの合金粉である上記
(8)記載の複合導電粉。 (10)銀又は銀合金より硬度が高い導電体が銅粉又は
銅合金粉である上記(9)記載の複合導電粉。 (11)不定形状導電粉が、被覆された導電体が露出し
ている銀被覆銅粉又は銀被覆銅合金粉である上記(8)
〜(10)のいずれかに記載の複合導電粉。
(7) The composite conductive powder as described in (6) above, wherein the irregular-shaped conductive powder is reduced silver powder. (8) The composite conductive powder as described in (6) above, wherein the irregular-shaped conductive powder is a conductive material having a hardness higher than that of silver or a silver alloy coated with silver. (9) A conductor having hardness higher than that of silver or silver alloy is Co or N
The composite conductive powder according to (8) above, which is i, Cr, Cu, W powder or an alloy powder thereof. (10) The composite conductive powder according to (9), wherein the conductor having a hardness higher than that of silver or silver alloy is copper powder or copper alloy powder. (11) The irregular-shaped conductive powder is silver-coated copper powder or silver-coated copper alloy powder in which the coated conductor is exposed, (8)
~ The composite conductive powder according to any one of (10).

【0012】(12)アスペクト比が6以上の導電粉及
びアスペクト比が5以下の導電粉を含む複合導電粉。 (13)アスペクト比が6以上の導電粉の材質が銀、銀
合金又は銀被覆導電体である上記(12)記載の複合導
電粉。 (14)アスペクト比が6以上の導電粉がアスペクト比
が6以上の銀被覆導電体粉である上記(12)記載の複
合導電粉。 (15)アスペクト比が6以上の銀被覆導電体粉が銀被
覆銅粉又は銀被覆銅合金粉である上記(14)記載の複
合導電粉。 (16)アスペクト比が6以上の銀被覆導電体粉が、被
覆されている導電体が露出している銀被覆銅粉又は銀被
覆銅合金粉である上記(14)又は上記(15)記載の
複合導電粉。
(12) Composite conductive powder containing conductive powder having an aspect ratio of 6 or more and conductive powder having an aspect ratio of 5 or less. (13) The composite conductive powder as described in (12) above, wherein the material of the conductive powder having an aspect ratio of 6 or more is silver, a silver alloy, or a silver-coated conductor. (14) The composite conductive powder as described in (12) above, wherein the conductive powder having an aspect ratio of 6 or more is a silver-coated conductive powder having an aspect ratio of 6 or more. (15) The composite conductive powder according to (14), wherein the silver-coated conductor powder having an aspect ratio of 6 or more is silver-coated copper powder or silver-coated copper alloy powder. (16) The above-mentioned (14) or (15), wherein the silver-coated conductor powder having an aspect ratio of 6 or more is a silver-coated copper powder or a silver-coated copper alloy powder from which the coated conductor is exposed. Composite conductive powder.

【0013】(17)アスペクト比が5以下の導電粉の
材質が銀又は銀合金である上記(12)〜(16)のい
ずれかに記載の複合導電粉。 (18)アスペクト比が5以下の導電粉が還元銀粉であ
る上記17記載の複合導電粉。 (19)アスペクト比が5以下の導電粉が、銀又は銀合
金より硬度が高い導電体が銀で被覆されたものである上
記(17)記載の複合導電粉。 (20)銀又は銀合金より硬度が高い導電体がCo、N
i、Cr、Cu、W粉又はこれらの合金粉である上記
(19)記載の複合導電粉。 (21)銀又は銀合金より硬度が高い導電体が銅粉又は
銅合金粉である(19)記載の複合導電粉。 (22)不定形状導電粉が、被覆された導電体が露出し
ている銀被覆銅粉である上記(19)〜(21)のいず
れかに記載の複合導電粉。
(17) The composite conductive powder as described in any one of (12) to (16) above, wherein the material of the conductive powder having an aspect ratio of 5 or less is silver or a silver alloy. (18) The composite conductive powder as described in 17 above, wherein the conductive powder having an aspect ratio of 5 or less is reduced silver powder. (19) The composite conductive powder as described in (17) above, wherein the conductive powder having an aspect ratio of 5 or less is a conductive material having a hardness higher than that of silver or a silver alloy coated with silver. (20) A conductor having hardness higher than that of silver or silver alloy is Co or N
The composite conductive powder according to (19) above, which is i, Cr, Cu, W powder or an alloy powder thereof. (21) The composite conductive powder according to (19), wherein the conductor having a hardness higher than that of silver or silver alloy is copper powder or copper alloy powder. (22) The composite conductive powder as described in any of (19) to (21) above, wherein the irregular-shaped conductive powder is silver-coated copper powder in which the coated conductor is exposed.

【0014】(23)上記(1)〜(22)のいずれか
に記載の複合導電粉、結合剤及び溶剤を含有してなる導
電ペースト。 (24)複合導電粉が導電ペーストの固形分に対して8
5〜93重量%含有される上記(23)記載の導電ペー
スト。 (25)上記(1)〜(11)のいずれかに記載の複合
導電粉、結合剤及び溶剤を含有してなり、扁平状導電粉
95〜50重量%に対し、不定形状導電粉5〜50重量
%を含有してなる上記(23)又は(24)記載の導電
ペースト。 (26)上記(12)〜(22)のいずれかに記載の複
合導電粉、結合剤及び溶剤を含有してなり、アスペクト
比が6以上の導電粉95〜50重量%に対し、アスペク
ト比が5以下の導電粉5〜50重量%を含有してなる請
求項(23)又は(24)記載の導電ペースト。
(23) A conductive paste containing the composite conductive powder according to any one of the above (1) to (22), a binder and a solvent. (24) The composite conductive powder is 8 with respect to the solid content of the conductive paste.
The electrically conductive paste as described in (23) above, which is contained in an amount of 5 to 93% by weight. (25) The composite electroconductive powder according to any one of (1) to (11) above, a binder, and a solvent are contained, and the flat electroconductive powder is included in an amount of 95 to 50% by weight, and the irregular electroconductive powder in an amount of 5 to 50. The electrically conductive paste as described in (23) or (24) above, wherein the electrically conductive paste contains the weight percent. (26) The composite electroconductive powder according to any of (12) to (22) above, a binder, and a solvent are contained, and the aspect ratio is 95 to 50% by weight of the electroconductive powder having an aspect ratio of 6 or more. The conductive paste according to claim (23) or (24), which comprises 5 to 50% by weight of a conductive powder of 5 or less.

【0015】(27)上記(23)〜(26)のいずれ
かに記載の導電ペーストを用いて基板の表面に形成され
た電気回路。 (28)基材の表面に形成された電気回路の比抵抗が2
5μΩ・cm以下である上記(27)記載の電気回路。 (29)基材の表面に上記(23)〜(26)のいずれ
かに記載の導電ペーストで回路パターンを形成した後、
加圧、硬化することを特徴とする電気回路の製造法。 (30)基材の表面に形成された電気回路の比抵抗が2
5μΩ・cm以下であることを特徴とする上記(29)記
載の電気回路の製造法。
(27) An electric circuit formed on the surface of a substrate using the conductive paste according to any one of (23) to (26). (28) The specific resistance of the electric circuit formed on the surface of the base material is 2
The electric circuit as described in (27) above, which has a resistance of 5 μΩ · cm or less. (29) After forming a circuit pattern on the surface of the base material with the conductive paste according to any one of (23) to (26),
A method for manufacturing an electric circuit, which comprises pressurizing and curing. (30) The specific resistance of the electric circuit formed on the surface of the base material is 2
The method for producing an electric circuit as described in (29) above, wherein the electric circuit has a thickness of 5 μΩ · cm or less.

【0016】[0016]

【発明の実施の形態】本発明において、扁平状導電粉と
不定形状導電粉の組み合わせ又はアスペクト比が6以上
の導電粉とアスペクト比が5以下の導電粉の組み合わせ
の場合、導電粉同士の接触確率が改善でき、電気回路の
導電性が高くなり、特にシート状の基材に回路を印刷
し、印刷回路をプレス加工する場合の導電性を高めるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in the case of a combination of flat conductive powder and irregular conductive powder or a combination of conductive powder having an aspect ratio of 6 or more and conductive powder having an aspect ratio of 5 or less, contact between the conductive powders The probability can be improved, and the conductivity of the electric circuit can be increased. In particular, when the circuit is printed on a sheet-shaped substrate and the printed circuit is pressed, the conductivity can be increased.

【0017】本発明における、導電粉のアスペクト比と
は、導電粉の粒子の長径と短径の比率(長径/短径)を
いう。本発明においては、粘度の低い硬化性樹脂中に導
電粉の粒子をよく混合し、静置して粒子を沈降させると
ともにそのまま樹脂を硬化させ、得られた硬化物を垂直
方向に切断し、その切断面に現れる粒子の形状を電子顕
微鏡で拡大して観察し、少なくとも100の粒子につい
て一つ一つの粒子の長径/短径を求め、それらの平均値
をもってアスペクト比とする。ここで、短径とは、前記
切断面に現れる粒子について、その粒子の外側に接する
二つの平行線の組合せを粒子を挾むように選択し、それ
らの組合せのうち最短間隔になる二つの平行線の距離で
ある。一方、長径とは、前記短径を決する平行線に直角
方向の二つの平行線であって、粒子の外側に接する二つ
の平行線の組合せのうち、最長間隔になる二つの平行線
の距離である。これらの四つの線で形成される長方形
は、粒子がちょうどその中に納まる大きさとなる。な
お、本発明において行った具体的方法については後述す
る。
In the present invention, the aspect ratio of the conductive powder means the ratio of the major axis and the minor axis of the particles of the conductive powder (major axis / minor axis). In the present invention, the particles of the conductive powder are mixed well in the curable resin having a low viscosity, and the resin is cured while allowing the particles to settle by standing, and the obtained cured product is cut in the vertical direction. The shape of the particles appearing on the cut surface is observed under magnification with an electron microscope, and the major axis / minor axis of each particle is obtained for at least 100 particles, and the average value thereof is defined as the aspect ratio. Here, the minor axis is defined as a combination of two parallel lines contacting the outside of the particle with respect to the particle appearing on the cut surface so as to sandwich the particle. Distance. On the other hand, the major axis is the two parallel lines perpendicular to the parallel line that determines the minor axis, and is the distance between the two parallel lines that are the longest among the combinations of the two parallel lines that contact the outside of the particle. is there. The rectangle formed by these four lines is sized to fit the particle exactly inside it. The specific method used in the present invention will be described later.

【0018】扁平状導電粉とは、形状としてほぼ平坦で
微細な小片からなる導電粉で、例えば、りん片状導電粉
がある。不定形状導電粉とは、扁平状以外の形状の導電
粉で、球状、立方体状、四面体状、塊状、略球状等と呼
ばれる粉体、こんぺい糖のように表面に突起のある形状
の粉体、これらの混合物等種々の導電粉のことである。
種々の形状の導電粉を含むものとしては、例えば還元銀
粉がある。扁平状導電粉及び不定形状導電粉のそれぞれ
に対応してアスペクト比が6以上の導電粉及びアスペク
ト比が5以下の導電粉を使用することができる。
The flat conductive powder is a conductive powder composed of fine pieces having a substantially flat shape, and for example, there is a flaky conductive powder. Irregularly shaped conductive powder is a conductive powder having a shape other than flat, and is called spherical, cubic, tetrahedral, lumpy, roughly spherical, etc., powder with a projection on the surface such as sucrose. It refers to various conductive powders such as a body and a mixture thereof.
Examples of the conductive powder containing various shapes of conductive powder include reduced silver powder. A conductive powder having an aspect ratio of 6 or more and a conductive powder having an aspect ratio of 5 or less can be used for each of the flat conductive powder and the irregular-shaped conductive powder.

【0019】アスペクト比が6以上の導電粉としては多
くの場合、扁平状導電粉が該当し、この他に樹枝状(デ
ンドライト状とも呼ばれる)などと呼ばれる形状のもの
があり、このものも併用して用いることができる。アス
ペクト比が6以上の導電粉としては、高導電性のペース
トが得られるという点で、アスペクト比が7以上が好ま
しく、アスペクト比が8以上がより好ましく、アスペク
ト比が10以上がさらに好ましい。よって、形状とアス
ペクト比の両面から述べると、高導電性、導電ペースト
の粘度等の面からアスペクト比が7以上の扁平状導電粉
がより好ましく、アスペクト比が8以上の扁平状導電粉
がさらに好ましく、アスペクト比が10以上の扁平状導
電粉が最も好ましい。
In many cases, the conductive powder having an aspect ratio of 6 or more corresponds to a flat conductive powder, and in addition to this, there is a shape called a dendritic shape (also called a dendrite shape). Can be used. As the conductive powder having an aspect ratio of 6 or more, an aspect ratio of 7 or more is preferable, an aspect ratio of 8 or more is more preferable, and an aspect ratio of 10 or more is further preferable, in that a highly conductive paste can be obtained. Therefore, from the viewpoint of both the shape and the aspect ratio, the flat conductive powder having an aspect ratio of 7 or more is more preferable in terms of high conductivity, the viscosity of the conductive paste, and the like, and the flat conductive powder having an aspect ratio of 8 or more is more preferable. A flat conductive powder having an aspect ratio of 10 or more is most preferable.

【0020】扁平状導電粉又はアスペクト比が6以上の
導電粉の粒子の平均粒子径としては、印刷性を低下させ
ないという観点から、25μm以下のものが好ましく、
20μm以下のものがより好ましく、10μm以下のも
のがさらに好ましい。なお、ここでいう平均粒子径は、
レーザー散乱型粒度分布測定装置により測定することが
できる。本発明においては、前記装置としてマスターサ
イザー(マルバン社製)を用いて測定した。
The average particle size of the particles of the flat conductive powder or the conductive powder having an aspect ratio of 6 or more is preferably 25 μm or less from the viewpoint of not impairing printability.
Those having a size of 20 μm or less are more preferable, and those having a size of 10 μm or less are still more preferable. The average particle size here is
It can be measured by a laser scattering type particle size distribution measuring device. In the present invention, the measurement was performed using a master sizer (manufactured by Malvern) as the device.

【0021】アスペクト比が5以下の導電粉としては、
前記した不定形状導電粉の多くが該当する。アスペクト
比が5以下の導電粉としては、高導電性のペーストが得
られるという点で、アスペクト比が4以下が好ましく、
アスペクト比が3以下がより好ましく、アスペクト比が
2.5以下がさらに好ましい。
As the conductive powder having an aspect ratio of 5 or less,
Many of the above-mentioned irregularly shaped conductive powders correspond to the above. As the conductive powder having an aspect ratio of 5 or less, an aspect ratio of 4 or less is preferable in that a highly conductive paste can be obtained,
The aspect ratio is more preferably 3 or less, further preferably 2.5 or less.

【0022】不定形状導電粉又はアスペクト比が5以下
の導電粉の平均粒子径は、印刷性に優れる点で、3〜2
0μmの範囲が好ましく、3〜10μmの範囲がより好
ましい。なお、ここでいう平均粒子径は、前記と同様
に、レーザー散乱型粒度分布測定装置により測定するこ
とができる。本発明においては、前記装置としてマスタ
ーサイザー(マルバン社製)を用いて測定した。
The average particle size of the irregular-shaped conductive powder or the conductive powder having an aspect ratio of 5 or less is 3 to 2 in terms of excellent printability.
The range of 0 μm is preferable, and the range of 3 to 10 μm is more preferable. Here, the average particle size can be measured by a laser scattering type particle size distribution measuring device in the same manner as described above. In the present invention, the measurement was performed using a master sizer (manufactured by Malvern) as the device.

【0023】各導電粉の材質は、銀又は銀合金が導電性
並びに耐酸化性の点で好ましい。上記の銀合金として
は、パラジウム(例えば銀合金中に1〜5重量%程
度)、白金(例えば銀合金中に1重量%程度)等との合
金を用いることが好ましい。また上記の銀粉を作製する
方法の1つに液中還元法があり、この方法によって作製
される銀粉は平均粒径が数μmの微粉末であることから
工業的な生産方法として広く利用されている。この液中
還元法とは、銀を酸で溶解した後、これをアルカリで中
和し、次いでこれにホルマリン、デンプン等の還元剤を
添加して液中で還元して微粉末とする方法であり、これ
によって得られる粉末を還元銀粉といい、その形状は、
塊状に近いが一定の形状ではなく不規則な形状をしてい
る。この還元銀粉は本発明において不定形状導電粉又は
アスペクト比が5以下の導電粉として使用できる。各導
電粉としては、銀又は銀合金以外の導電体が銀又は銀合
金で被覆されている銀被覆導電体粉であってもよい。
The material of each conductive powder is preferably silver or silver alloy in terms of conductivity and oxidation resistance. As the silver alloy, it is preferable to use an alloy with palladium (for example, about 1 to 5% by weight in a silver alloy), platinum (for example, about 1% by weight in a silver alloy), or the like. Further, one of the methods for producing the above-mentioned silver powder is an in-liquid reduction method, and since the silver powder produced by this method is a fine powder having an average particle size of several μm, it is widely used as an industrial production method. There is. This in-liquid reduction method is a method in which silver is dissolved in an acid, neutralized with an alkali, and then reduced with a reducing agent such as formalin or starch to obtain a fine powder. There, the powder obtained by this is called reduced silver powder, the shape of which is
It is close to lumpy but has an irregular shape instead of a constant shape. This reduced silver powder can be used as an irregularly shaped conductive powder or a conductive powder having an aspect ratio of 5 or less in the present invention. Each conductive powder may be a silver-coated conductive powder in which a conductor other than silver or a silver alloy is coated with silver or a silver alloy.

【0024】不定形状導電粉としては、上記したように
銀被覆導電体粉であってもよいが、被覆される導電体と
しては、銀又は銀合金より硬度の高い導電体が好まし
い。このような導電体としては、例えばCo、Ni、C
r、Cu、W等の金属粉又はこれらの合金粉を用いるこ
とができるが、この中で銅粉又は銅合金粉を用いること
が好ましい。これを使用することにより、電気回路を加
圧したとき、扁平状の銀粉又は銀合金粉に不定形状導電
粉がくい込み電気回路の導電性が高くなるので好まし
い。上記の銅合金粉としては、例えば銅とスズ、銅と亜
鉛等との合金粉が用いられる。
The irregular-shaped conductive powder may be silver-coated conductor powder as described above, but the conductor to be coated is preferably a conductor having a hardness higher than that of silver or silver alloy. As such a conductor, for example, Co, Ni, C
Metal powders such as r, Cu and W or alloy powders thereof can be used, but among these, it is preferable to use copper powder or copper alloy powder. It is preferable to use this because when the electric circuit is pressurized, the irregular-shaped conductive powder bites into the flat silver powder or the silver alloy powder to increase the conductivity of the electric circuit. As the above-mentioned copper alloy powder, for example, alloy powders of copper and tin, copper and zinc, etc. are used.

【0025】不定形状導電粉又はアスペクト比が5以下
の導電粉の表面に銀を被覆するには、置換めっき、電気
めっき、無電解めっき等の方法があり、不定形状導電粉
又はアスペクト比が5以下の導電粉と銀との付着力が高
いこと及びランニングコストが安価であることから、置
換めっき法で被覆することが好ましい。不定形状導電粉
又はアスペクト比が5以下の導電粉の表面への銀の被覆
量は、コスト、電食性の抑制効果などの点から不定形状
導電粉又はアスペクト比が5以下の導電粉に対して3〜
50重量%の範囲が好ましく、3〜20重量%の範囲が
さらに好ましい。
To coat the surface of the irregular-shaped conductive powder or the conductive powder having an aspect ratio of 5 or less with silver, there are methods such as displacement plating, electroplating, and electroless plating. Since the adhesion between the conductive powder and silver described below is high and the running cost is low, it is preferable to perform the coating by the displacement plating method. The amount of silver coated on the surface of the irregular-shaped conductive powder or the conductive powder having an aspect ratio of 5 or less is less than that of the irregular-shaped conductive powder or the conductive powder having an aspect ratio of 5 or less from the viewpoints of cost and the effect of suppressing electrolytic corrosion. 3-
The range of 50% by weight is preferable, and the range of 3 to 20% by weight is more preferable.

【0026】前記したいずれの銀被覆導電体粉を用いれ
ば、耐マイグレーション性に優れるので好ましい。銀被
覆導電体粉は導電体の一部が露出したもの(露出被覆導
電体粉と略す)を用いることができる。露出被覆導電体
粉は、扁平状導電体粉又はアスペクト比が6以上の導電
粉と不定形状導電粉又はアスペクト比が5以下の導電粉
のそれぞれに使用することができる。導電粉の露出面積
は、良好な導電性を得る点で50%以下が好ましく、2
0%以下がさらに好ましい。
It is preferable to use any of the above-mentioned silver-coated conductor powders because it has excellent migration resistance. As the silver-coated conductor powder, one in which a part of the conductor is exposed (abbreviated as exposed-cover conductor powder) can be used. The exposed coated conductor powder can be used for each of the flat conductor powder or the conductor powder having an aspect ratio of 6 or more and the irregularly shaped conductor powder or the conductor powder having an aspect ratio of 5 or less. The exposed area of the conductive powder is preferably 50% or less in order to obtain good conductivity, and 2
0% or less is more preferable.

【0027】置換めっき後の球状の銀被覆銅粉又は銀被
覆銅合金粉は接触点が少ないため抵抗が高くなりやす
い。そのため、置換めっき後の球状の銀被覆銅粉又は銀
被覆銅合金粉に衝撃を与え粒子の形状を扁平状又はアス
ペクト比を6以上に変形させればよい。具体的にはボー
ルミル、振動ミル等の方法で変形させることができる。
Since the spherical silver-coated copper powder or silver-coated copper alloy powder after displacement plating has few contact points, the resistance tends to increase. Therefore, the spherical silver-coated copper powder or silver-coated copper alloy powder after displacement plating may be impacted to change the shape of the particles to a flat shape or an aspect ratio of 6 or more. Specifically, it can be deformed by a method such as a ball mill or a vibration mill.

【0028】扁平状導電粉と不定形状導電粉又はアスペ
クト比が6以上の導電粉とアスペクト比が5以下の導電
粉との配合割合は、扁平状導電粉又はアスペクト比が6
以上の導電粉が95〜50重量%に対し不定形状導電粉
又はアスペクト比が5以下の導電粉が5〜50重量%の
範囲であることが導電性を高める点で好ましく、扁平状
導電粉又はアスペクト比が6以上の導電粉が80〜60
重量%に対し不定形状導電粉又はアスペクト比が5以下
の導電粉が20〜40重量%の範囲であればさらに好ま
しい。
The mixing ratio of the flat conductive powder and the irregular conductive powder or the conductive powder having an aspect ratio of 6 or more and the conductive powder having an aspect ratio of 5 or less is such that the flat conductive powder or the aspect ratio is 6
It is preferable that the above-mentioned conductive powder is in the range of 5 to 50% by weight with respect to 95 to 50% by weight of the irregular-shaped conductive powder or the conductive powder having an aspect ratio of 5 or less in order to enhance the conductivity. Conductive powder with an aspect ratio of 6 or more is 80 to 60
It is more preferable that the irregularly shaped conductive powder or the conductive powder having an aspect ratio of 5 or less is in the range of 20 to 40% by weight based on the weight%.

【0029】導電ペーストは、これらの複合導電粉、結
合剤及び溶剤を含有してなるものである。この導電ペー
ストにおいて複合導電粉の含有量は導電ペーストの固形
分に対して導体の抵抗、経済性及び接着性の点で85〜
93重量%であることが好ましく、87〜90重量%で
あることがさらに好ましい。
The conductive paste contains these composite conductive powders, a binder and a solvent. In this conductive paste, the content of the composite conductive powder is 85 to 85 in terms of the resistance, economy and adhesiveness of the conductor with respect to the solid content of the conductive paste.
It is preferably 93% by weight, more preferably 87 to 90% by weight.

【0030】結合剤としては、液状のエポキシ樹脂、フ
ェノール樹脂、不飽和ポリエステル樹脂等の有機質の接
着剤成分が用いられ、また溶剤としては、テルピネオー
ル、エチルカルビトール、カルビトールアセテート、ブ
チルセロソルブ等が用いられる。導電ペーストは上記の
材料以外に2エチルメチルイミダゾールなどの有機質の
接着剤成分の硬化剤及び必要に応じてベンゾチアゾー
ル、ベンゾイミダゾール等の腐食抑制剤、微小黒鉛粉末
などを添加して均一に混合して得られる。結合剤及び溶
剤の含有量は、導電性、接着性及び印刷性の点で導電ペ
ーストに対して結合剤が7〜15重量%及び溶剤が10
〜35重量%の範囲であることが好ましく、結合剤が7
〜12重量%及び溶剤が15〜25重量%の範囲である
ことがさらに好ましい。また硬化剤の含有量は、作業性
の点で結合剤100重量部に対して0.5〜10重量部
の範囲であることが好ましく、1〜8重量部の範囲であ
ることがさらに好ましい。腐食抑制剤及び微小黒鉛粉末
は必要に応じて添加されるが、もし添加する場合その含
有量は、腐食抑制剤は結合剤100重量部に対して0.
1〜3重量部の範囲であることが好ましい。微小黒鉛粉
末は導電ペーストに対して1〜10重量%の範囲である
ことが好ましい。
A liquid epoxy resin, a phenol resin, an unsaturated polyester resin or other organic adhesive component is used as the binder, and terpineol, ethyl carbitol, carbitol acetate, butyl cellosolve or the like is used as the solvent. To be In addition to the above materials, the conductive paste is added with a hardening agent for organic adhesive components such as 2-ethylmethylimidazole and, if necessary, a corrosion inhibitor such as benzothiazole and benzimidazole, and fine graphite powder, and uniformly mixed. Obtained. The content of the binder and the solvent is 7 to 15 wt% of the binder and 10 of the solvent with respect to the conductive paste in terms of conductivity, adhesiveness and printability.
Is preferably in the range of ~ 35 wt% and the binder is 7
It is more preferable that the range is -12 wt% and the solvent is 15-25 wt%. In addition, the content of the curing agent is preferably 0.5 to 10 parts by weight, more preferably 1 to 8 parts by weight with respect to 100 parts by weight of the binder in terms of workability. The corrosion inhibitor and the fine graphite powder are added as needed, but if added, the content of the corrosion inhibitor is 0.
It is preferably in the range of 1 to 3 parts by weight. The fine graphite powder is preferably in the range of 1 to 10% by weight with respect to the conductive paste.

【0031】電気回路の形成方法については特に制限は
なく、公知の方法、例えば導電ペーストをスクリーン印
刷、コンピュータでコントロールした描画機で形成する
ことができる。基材としては、ポリエチレンテレフタレ
ートフィルム、ポリイミドフィルム、ポリアミドイミド
フィルム、紙フェノール積層板、エポキシ樹脂ガラス布
基材積層板、ポリイミド樹脂ガラス布基材積層板等が用
いられる。
The method for forming the electric circuit is not particularly limited, and a known method, for example, a conductive paste can be formed by screen printing or a drawing machine controlled by a computer. As the substrate, a polyethylene terephthalate film, a polyimide film, a polyamideimide film, a paper phenol laminate, an epoxy resin glass cloth substrate laminate, a polyimide resin glass cloth substrate laminate, or the like is used.

【0032】本発明において、電気回路の比抵抗は、好
ましくは25μΩ・cm以下、より好ましくは15μΩ・
cm以下とされ、25μΩ・cmを超えると導電性が低下す
る傾向があるため、電気回路の電圧降下が大きくなり、
微細な電気回路にはしにくくなる。なお電気回路の比抵
抗が10μΩ・cm以下であれば、微細で、かつコイル状
の平面アンテナなどのような線の長さが長い電気回路に
用いることができるので特に好ましい。電気回路の比抵
抗を25μΩ・cm以下にするには、基材の表面に上記の
導電ペーストで回路パターンを形成した後、例えばプレ
スで加圧して回路パターンを緻密化することにより達成
できる。プレスの方法は、定盤を用いて圧力をかける方
法、ロールでプレスする方法等が適用され、導電ペース
トで形成した導電層中の粉末同士の接触効率を高めるこ
とができればよい。なおプレスするときに導電層中の結
合剤は軟化していることが好ましく、もし結合剤が半硬
化状態又は硬化している場合は加熱して軟化させてから
用いることが好ましい。結合剤の硬化はプレス後に硬化
させてもよく、プレス中に硬化させてもよい。
In the present invention, the specific resistance of the electric circuit is preferably 25 μΩ · cm or less, more preferably 15 μΩ · cm.
cm or less, and if it exceeds 25 μΩ · cm, conductivity tends to decrease, resulting in a large voltage drop in the electric circuit.
It becomes difficult to make a fine electric circuit. Note that it is particularly preferable that the specific resistance of the electric circuit be 10 μΩ · cm or less, since the electric circuit can be used for an electric circuit having a long wire such as a fine and coil-shaped planar antenna. The specific resistance of the electric circuit of 25 μΩ · cm or less can be achieved by forming a circuit pattern on the surface of the base material with the above-mentioned conductive paste, and then pressing it with a press to densify the circuit pattern. As a pressing method, a method of applying pressure using a surface plate, a method of pressing with a roll, or the like is applied, as long as the contact efficiency between powders in a conductive layer formed of a conductive paste can be increased. Note that the binder in the conductive layer is preferably softened during pressing, and if the binder is in a semi-cured state or hardened, it is preferably heated and softened before use. The binder may be cured after pressing or during pressing.

【0033】[0033]

【実施例】以下本発明の実施例を説明する。 実施例1 ビスフェノールA型エポキシ樹脂(油化シェルエポキシ
(株)製、商品名エピコート834)60重量部及びビス
フェノールA型エポキシ樹脂(油化シェルエポキシ(株)
製、商品名エピコート828)40重量部を予め加温溶
解させ、次いで室温に冷却した後、2エチル4メチルイ
ミダゾール(四国化成工業(株)製)5重量部、エチルカ
ルビトール20重量部及びブチルセロソルブ20重量部
を加えて均一に混合して樹脂組成物とした。
EXAMPLES Examples of the present invention will be described below. Example 1 Bisphenol A type epoxy resin (oiled shell epoxy)
Co., Ltd., trade name Epikote 834 60 parts by weight and bisphenol A type epoxy resin (Yukaka Shell Epoxy Co., Ltd.)
Manufactured by trade name Epikote 828) 40 parts by weight in advance by heating, and then cooled to room temperature, and then 5 parts by weight of 2 ethyl 4-methylimidazole (manufactured by Shikoku Chemicals Co., Ltd.), 20 parts by weight of ethyl carbitol and butyl cellosolve. 20 parts by weight were added and mixed uniformly to obtain a resin composition.

【0034】次にアスペクト比が8で長径の平均粒径が
8μmのりん片状の銀粉(徳力化学研究所製、商品名T
CG−1)210重量部(79.2重量%)及びアスペ
クト比が2.3で長径の平均粒径が7μmの銀粉(レア
メタリック社製)(以下アスペクト比が2.3の銀粉と
する)55重量部(20.8重量%)を配合し、次いで
このものを上記で得た樹脂組成物145重量部に添加
し、撹拌らいかい機及び三本ロールで均一に混合分散し
て導電ペーストを得た。なおりん片状還元銀粉とアスペ
クト比が2.3の銀粉との複合銀粉の含有量は導電ペー
ストの固形分に対して80重量%であった。
Next, a flaky silver powder having an aspect ratio of 8 and an average long diameter of 8 μm (trade name: T, manufactured by Tokuriki Kagaku Kenkyusho)
CG-1) 210 parts by weight (79.2% by weight) and a silver powder having an aspect ratio of 2.3 and a major axis having an average particle diameter of 7 μm (manufactured by Rare Metallic Co., Ltd.) (hereinafter, referred to as silver powder having an aspect ratio of 2.3). 55 parts by weight (20.8% by weight) was added, and then this was added to 145 parts by weight of the resin composition obtained above, and the mixture was uniformly mixed and dispersed with a stirrer and a triple roll to obtain a conductive paste. Obtained. The content of the composite silver powder of the flaky reduced silver powder and the silver powder having an aspect ratio of 2.3 was 80% by weight based on the solid content of the conductive paste.

【0035】この後、上記で得た導電ペーストを用い
て、厚さが125μmのポリエチレンテレフタレートフ
ィルム上に図1に示す銀導電体回路1を印刷したものを
大気中で60℃30分さらに145℃30分の条件で加
熱処理して配線板を得た。なお図1において2はポリエ
チレンテレフタレートフィルムである。次に得られた配
線板の比抵抗を測定したところ52μΩ・cmであった。
該配線板の冷熱衝撃試験を実施した結果、比抵抗の変化
率は5%であった。また該配線板の湿中負荷試験を実施
した結果、比抵抗の変化率は8%であった。なお冷熱試
験条件は125℃30分〜−65℃30分を100サイ
クル行い、湿中負荷試験は40℃90%RH中で100
0時間保持した。
Then, using the conductive paste obtained above, a silver conductor circuit 1 shown in FIG. 1 was printed on a polyethylene terephthalate film having a thickness of 125 μm in the air at 60 ° C. for 30 minutes and further at 145 ° C. A heat treatment was performed under the condition of 30 minutes to obtain a wiring board. In FIG. 1, 2 is a polyethylene terephthalate film. Then, the specific resistance of the obtained wiring board was measured and found to be 52 μΩ · cm.
As a result of the thermal shock test of the wiring board, the rate of change in specific resistance was 5%. Further, as a result of performing a wet and medium load test on the wiring board, the rate of change in specific resistance was 8%. The cooling and heating test conditions were 100 cycles of 125 ° C. for 30 minutes to −65 ° C. for 30 minutes, and the humidity and medium load test was 100 ° C. at 40 ° C. and 90% RH.
Hold for 0 hours.

【0036】なお、本実施例におけるアスペクト比の具
体的測定法を以下に示す。低粘度のエポキシ樹脂(ビュ
ーラー社製)の主剤(No.20-8130)8gと硬化剤(No.2
0-8132)2gを混合し、ここへ導電粉2gを混合して良
く分散させ、そのまま30℃で真空脱泡した後、6〜8
時間30℃で静置して粒子を沈降させ硬化させた。その
後、得られた硬化物を垂直方向に切断し、切断面を電子
顕微鏡で2000倍に拡大して切断面に現われた100
個の粒子について長径/短径を求め、それらの平均値を
もって、アスペクト比とした。
The specific measuring method of the aspect ratio in this embodiment is shown below. 8 g of base material (No.20-8130) of low-viscosity epoxy resin (manufactured by Buehler) and curing agent (No.2
0-8132) 2 g were mixed, and 2 g of the conductive powder was mixed and well dispersed therein, and then vacuum degassing was performed at 30 ° C., and then 6 to 8
The particles were allowed to settle and harden by standing at 30 ° C. for a time. Then, the obtained cured product was cut in the vertical direction, the cut surface was magnified 2000 times with an electron microscope, and the 100 appeared on the cut surface.
The major axis / minor axis was determined for each particle, and the average value thereof was defined as the aspect ratio.

【0037】実施例2 実施例1で用いたりん片状の銀粉400重量部(80重
量%)及びアスペクト比が2.3の銀粉100重量部
(20重量%)を配合した以外は実施例1と同様の工程
を経て導電ペーストを得た。なおりん片状還元銀粉とア
スペクト比が2.3の銀粉との複合銀粉の含有量は導電
ペーストの固形分に対して85重量%であった。以下実
施例1と同様の工程を経て配線板を作製してその特性を
評価した。その結果、配線板の比抵抗は43μΩ・cmで
あった。また該配線板の冷熱衝撃試験を実施した結果、
比抵抗の変化率は4%であり、湿中負荷試験の結果で
は、比抵抗の変化率は7%であった。
Example 2 Example 1 except that 400 parts by weight (80% by weight) of the flaky silver powder used in Example 1 and 100 parts by weight (20% by weight) of silver powder having an aspect ratio of 2.3 were blended. A conductive paste was obtained through the same steps as. The content of the composite silver powder of the flaky reduced silver powder and the silver powder having an aspect ratio of 2.3 was 85% by weight based on the solid content of the conductive paste. A wiring board was manufactured through the same steps as in Example 1 and the characteristics thereof were evaluated. As a result, the specific resistance of the wiring board was 43 μΩ · cm. As a result of conducting a thermal shock test of the wiring board,
The rate of change in resistivity was 4%, and the result of the wet and medium load test showed that the rate of change in resistivity was 7%.

【0038】実施例3 実施例1で用いたりん片状の銀粉320重量部(80重
量%)及びアスペクト比が2.3の銀粉80重量部(2
0重量%)を配合した以外は実施例1と同様の工程を経
て導電ペーストを得た。なおりん片状還元銀粉とアスペ
クト比が2.3の銀粉との複合銀粉の含有量は導電ペー
ストの固形分に対して86重量%であった。以下実施例
1と同様の工程を経て配線板を作製してその特性を評価
した。その結果、配線板の比抵抗は39μΩ・cmであっ
た。また該配線板の冷熱衝撃試験を実施した結果、比抵
抗の変化率は5%であり、湿中負荷試験の結果では、比
抵抗の変化率は6%であった。
Example 3 320 parts by weight (80% by weight) of the flaky silver powder used in Example 1 and 80 parts by weight of silver powder having an aspect ratio of 2.3 (2
A conductive paste was obtained through the same steps as in Example 1 except that 0% by weight) was blended. The content of the composite silver powder of the flaky reduced silver powder and the silver powder having an aspect ratio of 2.3 was 86% by weight based on the solid content of the conductive paste. A wiring board was manufactured through the same steps as in Example 1 and the characteristics thereof were evaluated. As a result, the specific resistance of the wiring board was 39 μΩ · cm. As a result of a thermal shock test of the wiring board, the rate of change in resistivity was 5%, and the result of the wet / medium load test showed a rate of change in resistivity of 6%.

【0039】実施例4 実施例3で得た配線板を熱圧プレスで、温度100℃及
び圧力10MPaの条件で加熱加圧して銀導電体回路を緻
密化してその特性を評価した。その結果、緻密化した配
線板の比抵抗は22μΩ・cmであった。また緻密化した
配線板の冷熱衝撃試験を実施した結果、比抵抗の変化率
は5%であり、湿中負荷試験の結果では、比抵抗の変化
率は4%であった。
Example 4 The wiring board obtained in Example 3 was heated and pressed with a hot press at a temperature of 100 ° C. and a pressure of 10 MPa to densify the silver conductor circuit and evaluate its characteristics. As a result, the specific resistance of the densified wiring board was 22 μΩ · cm. Further, as a result of a thermal shock test of the densified wiring board, the rate of change in resistivity was 5%, and the result of the wet / medium load test showed a rate of change in resistivity of 4%.

【0040】比較例1 実施例1で得た樹脂組成物145重量部に実施例1で用
いたりん片状還元銀粉400重量部を添加し、実施例1
と同様の方法で均一に混合分散して導電ペーストを得
た。以下実施例1と同様の工程を経て配線板を作製し、
その特性を評価した。その結果、配線板の比抵抗は62
μΩ・cmであった。また該配線板の冷熱衝撃試験を実施
した結果、比抵抗の変化率は10%であり、湿中負荷試
験の結果では、比抵抗の変化率は9%であった。
Comparative Example 1 400 parts by weight of the flaky reduced silver powder used in Example 1 was added to 145 parts by weight of the resin composition obtained in Example 1 to give Example 1.
A conductive paste was obtained by uniformly mixing and dispersing in the same manner as in. A wiring board is manufactured through the same steps as in Example 1 below.
Its characteristics were evaluated. As a result, the specific resistance of the wiring board is 62.
It was μΩ · cm. As a result of the thermal shock test of the wiring board, the rate of change of the specific resistance was 10%, and the result of the wet and medium load test showed the rate of change of the specific resistance to be 9%.

【0041】比較例2 比較例1で得た導電ペーストを用いた以外は実施例1と
同様の工程を経て配線板を得た。次いで該配線板を熱圧
プレスで実施例4と同様の条件で加熱加圧して銀導電体
回路を緻密化し、その特性を評価した。その結果、緻密
化した配線板の比抵抗は58μΩ・cmであった。また緻
密化した配線板の冷熱衝撃試験を実施した結果、比抵抗
の変化率は10%であり、湿中負荷試験の結果では、比
抵抗の変化率は9%であった。
Comparative Example 2 A wiring board was obtained through the same steps as in Example 1 except that the conductive paste obtained in Comparative Example 1 was used. Next, the wiring board was heated and pressed under the same conditions as in Example 4 using a hot press to densify the silver conductor circuit, and its characteristics were evaluated. As a result, the specific resistance of the densified wiring board was 58 μΩ · cm. As a result of a thermal shock test conducted on the densified wiring board, the rate of change in resistivity was 10%, and the result of the wet / medium load test showed a rate of change in resistivity of 9%.

【0042】実施例5 アスペクト比が2で長径の平均粒径が3μmのNi粉
(高純度化学製)を酸性クリーナ(日本マクダーミッド
製、商品名L−5B)で脱脂、水洗し、AgCN20g
/H2O1リットルとNaCN40g/H2O1リットル
との混合浴中で銀の量が上記のNi粉に対して15重量
%になるように無電解メッキを行い、水洗、乾燥して銀
被覆Ni粉を得た。
Example 5 Ni powder having an aspect ratio of 2 and an average long diameter of 3 μm (manufactured by Kojundo Chemical Co., Ltd.) was degreased with an acidic cleaner (manufactured by Nippon MacDermid, trade name L-5B), washed with water, and 20 g of AgCN was added.
/ H 2 O 1 liter and NaCN 40 g / H 2 O 1 liter, electroless plating was performed so that the amount of silver was 15% by weight based on the above Ni powder, and the silver-coated Ni was washed with water and dried. Got the powder.

【0043】次にアスペクト比が8で長径の平均粒径が
8μmのりん片状の銀粉(徳力化学研究所製、商品名T
CG−1)210重量部(91.3重量%)及び上記で
得た銀被覆Ni粉20重量部(8.7重量%)を配合
し、次いでこのものを実施例1で得た樹脂組成物145
重量部に添加し、撹拌らいかい機及び三本ロールで均一
に混合分散して導電ペーストを得た。なおりん片状の銀
粉と銀被覆Ni粉との複合導電粉の含有量は導電ペース
トの固形分に対して61.3重量%であった。以下実施
例1と同様の工程を経て配線板を作製してその特性を評
価した。その結果、配線板の比抵抗は43μΩ・cmであ
った。また配線板の冷熱衝撃試験を実施した結果、比抵
抗の変化率は5%であり、湿中負荷試験の結果では、比
抵抗の変化率は8%であった。
Next, a flaky silver powder having an aspect ratio of 8 and an average long diameter of 8 μm (trade name: T, manufactured by Tokuriki Kagaku Kenkyusho)
CG-1) 210 parts by weight (91.3% by weight) and 20 parts by weight (8.7% by weight) of the silver-coated Ni powder obtained above were blended, and this was then added to the resin composition obtained in Example 1. 145
It was added to parts by weight and uniformly mixed and dispersed with a stirrer and a triple roll to obtain a conductive paste. The content of the composite conductive powder of the flaky silver powder and the silver-coated Ni powder was 61.3% by weight based on the solid content of the conductive paste. A wiring board was manufactured through the same steps as in Example 1 and the characteristics thereof were evaluated. As a result, the specific resistance of the wiring board was 43 μΩ · cm. As a result of a thermal shock test of the wiring board, the rate of change in specific resistance was 5%, and the result of the wet and medium load test showed a rate of change in specific resistance of 8%.

【0044】実施例6 実施例5で用いたりん片状の銀粉400重量部(88.
9重量%)及び実施例5で得た銀被覆Ni粉50重量部
(11.1重量%)を配合した以外は実施例5と同様の
工程を経て導電ペーストを得た。なおりん片状の銀粉と
銀被覆Ni粉との複合導電粉の含有量は導電ペーストの
固形分に対して73.4重量%であった。以下実施例5
と同様の工程を経て配線板を作製してその特性を評価し
た。その結果、配線板の比抵抗は43μΩ・cmであっ
た。また該配線板の冷熱衝撃試験を実施した結果、比抵
抗の変化率は4%であり、湿中負荷試験の結果では、比
抵抗の変化率は7%であった。
Example 6 400 parts by weight of the flaky silver powder used in Example 5 (88.
9% by weight) and 50 parts by weight (11.1% by weight) of the silver-coated Ni powder obtained in Example 5 were mixed, and a conductive paste was obtained through the same steps as in Example 5. The content of the composite conductive powder of the flaky silver powder and the silver-coated Ni powder was 73.4% by weight based on the solid content of the conductive paste. Example 5 below
A wiring board was manufactured through the same steps as above, and its characteristics were evaluated. As a result, the specific resistance of the wiring board was 43 μΩ · cm. As a result of a thermal shock test of the wiring board, the rate of change in resistivity was 4%, and the result of the wet / medium load test showed a rate of change in resistivity of 7%.

【0045】実施例7 実施例5で用いたりん片状の銀粉320重量部(91.
4重量%)及び実施例5で得た銀被覆Ni粉30重量部
(8.6重量%)を配合した以外は実施例5と同様の工
程を経て導電ペーストを得た。なおりん片状の銀粉と銀
被覆Ni粉との複合導電粉の含有量は導電ペーストの固
形分に対して70.7重量%であった。以下実施例5と
同様の工程を経て配線板を作製してその特性を評価し
た。その結果、配線板の比抵抗は38μΩ・cmであっ
た。また該配線板の冷熱衝撃試験を実施した結果、比抵
抗の変化率は5%であり、湿中負荷試験の結果では、比
抵抗の変化率は6%であった。
Example 7 320 parts by weight of the flaky silver powder used in Example 5 (91.
4% by weight) and 30 parts by weight (8.6% by weight) of the silver-coated Ni powder obtained in Example 5 were blended to obtain a conductive paste through the same steps as in Example 5. The content of the composite conductive powder of the flaky silver powder and the silver-coated Ni powder was 70.7% by weight based on the solid content of the conductive paste. A wiring board was manufactured through the same steps as in Example 5 and the characteristics thereof were evaluated. As a result, the specific resistance of the wiring board was 38 μΩ · cm. As a result of a thermal shock test of the wiring board, the rate of change in resistivity was 5%, and the result of the wet / medium load test showed a rate of change in resistivity of 6%.

【0046】実施例8 実施例5で用いたりん片状の銀粉320重量部(80.
0重量%)及び実施例5で得た銀被覆Ni粉80重量部
(20.0重量%)を配合した以外は実施例5と同様の
工程を経て導電ペーストを得た。なおりん片状の銀粉と
銀被覆Ni粉との複合導電粉の含有量は導電ペーストの
固形分に対して89.9重量%であった。以下実施例5
と同様の工程を経て配線板を作製した。次いで該配線板
を熱圧プレスで、温度100℃及び圧力10MPaの条件
で加熱加圧して印刷回路を緻密化してその特性を評価し
た。その結果、緻密化した配線板の比抵抗は20μΩ・
cmであった。また緻密化した配線板の冷熱衝撃試験を実
施した結果、比抵抗の変化率は5%であり、湿中負荷試
験の結果では、比抵抗の変化率は4%であった。
Example 8 320 parts by weight of the flaky silver powder used in Example 5 (80.
0% by weight) and 80 parts by weight (20.0% by weight) of the silver-coated Ni powder obtained in Example 5 were blended to obtain a conductive paste through the same steps as in Example 5. The content of the composite electroconductive powder of the flaky silver powder and the silver-coated Ni powder was 89.9% by weight based on the solid content of the electroconductive paste. Example 5 below
A wiring board was produced through the same steps as in. Then, the printed circuit was densified by heating and pressing the wiring board with a hot press under the conditions of a temperature of 100 ° C. and a pressure of 10 MPa, and its characteristics were evaluated. As a result, the specific resistance of the densified wiring board is 20 μΩ ・
It was cm. Further, as a result of a thermal shock test of the densified wiring board, the rate of change in resistivity was 5%, and the result of the wet / medium load test showed a rate of change in resistivity of 4%.

【0047】実施例9 アスペクト比が8で長径の平均粒径が8μmのりん片状
の銀粉A(徳力化学研究所製、商品名TCG−1)をア
トライター(三井鉱山(株)製)で潰して、アスペクト比
を11、平均粒径を20μmとしたりん片状の銀粉B4
00重量部(66.7重量%)及びアスペクト比が2.
3で平均粒径が7μmの銀粉(レアメタリック社製)
(以下アスペクト比が2.3の銀粉とする)200重量
部(33.3重量%)を配合し、次いでこのものを実施
例1で得た樹脂組成物145重量部に添加し、撹拌らい
かい機及び三本ロールで均一に混合、分散して導電ペー
ストを得た。なおりん片状の銀粉Bとアスペクト比が
2.3の銀粉の割合は体積比で6.67:3.33(り
ん片状の銀粉B:アスペクト比が2.3の銀粉)であっ
た。また複合導電(銀)粉は導電ペーストの固形分に対
して85.1重量%含有していた。
Example 9 A flaky silver powder A (manufactured by Tokuriki Kagaku Kenkyusho, trade name TCG-1) having an aspect ratio of 8 and an average long diameter of 8 μm was used in an attritor (manufactured by Mitsui Mining Co., Ltd.). Crushed, flaky silver powder B4 with aspect ratio of 11 and average particle size of 20 μm
00 parts by weight (66.7% by weight) and an aspect ratio of 2.
Silver powder with an average particle size of 3 and 7 μm (made by Rare Metallic Co., Ltd.)
200 parts by weight (hereinafter referred to as silver powder having an aspect ratio of 2.3) (33.3% by weight) was blended, and this was added to 145 parts by weight of the resin composition obtained in Example 1 and stirred. The mixture was uniformly mixed and dispersed by a machine and a triple roll to obtain a conductive paste. The ratio of the scaly silver powder B to the silver powder having an aspect ratio of 2.3 was 6.67: 3.33 in a volume ratio (scaly silver powder B: silver powder having an aspect ratio of 2.3). The composite conductive (silver) powder was contained in an amount of 85.1% by weight based on the solid content of the conductive paste.

【0048】次に上記で得た導電ペーストを図2に示す
テストパターンに印刷した後、加熱硬化させて厚さが2
5μmの回路4を形成した回路板6を得た。なお基板3
はポリエチレンテレフタレートフィルム(厚さ:125
μm)を用い、加熱硬化条件は60℃30分+145℃
45分で行った。得られた回路板6の比抵抗は42μΩ
・cmであった。また該回路板6の冷熱衝撃試験を実施し
た結果、比抵抗の変化率は5%であった。さらに該回路
板6の湿中負荷試験を実施した結果、比抵抗の変化率は
8%であった。なお、冷熱試験条件は125℃30分〜
−65℃30分を100サイクル行い、湿中負荷試験は
40℃90%RH中で1000時間保持した。一方、該
回路板6のチップ搭載部5の上面に、図3に示すシリコ
ン基板9にテスト回路7を形成したICチップ8を図4
に示すようにテスト回路7が下側になるように異方導電
性シート(日立化成工業(株)製、商品名アニソルム82
01)(図示せず)を介して載置して接続した。異方導
電性シートを含めた接続抵抗の平均値は45mΩであ
り、最大値は63mΩであった。
Next, the conductive paste obtained above was printed on the test pattern shown in FIG.
A circuit board 6 having a 5 μm circuit 4 formed thereon was obtained. Board 3
Is a polyethylene terephthalate film (thickness: 125
μm) and heat curing conditions are 60 ° C. for 30 minutes + 145 ° C.
It took 45 minutes. The specific resistance of the obtained circuit board 6 is 42 μΩ.
・ It was cm. As a result of the thermal shock test of the circuit board 6, the rate of change in specific resistance was 5%. Further, as a result of performing a humidity and medium load test on the circuit board 6, the rate of change in specific resistance was 8%. The cold heat test conditions are 125 ° C. for 30 minutes
100 cycles of −65 ° C. for 30 minutes were performed, and the humidity and humidity load test was held at 40 ° C. and 90% RH for 1000 hours. On the other hand, on the upper surface of the chip mounting portion 5 of the circuit board 6, the IC chip 8 in which the test circuit 7 is formed on the silicon substrate 9 shown in FIG.
As shown in Fig. 2, an anisotropic conductive sheet (manufactured by Hitachi Chemical Co., Ltd., trade name Anisolm 82) is placed so that the test circuit 7 is on the lower side.
01) (not shown) and placed and connected. The average value of the connection resistance including the anisotropic conductive sheet was 45 mΩ, and the maximum value was 63 mΩ.

【0049】実施例10 実施例9で用いたりん片状の銀粉B350重量部(50
重量%)及びアスペクト比が2.3の銀粉350重量部
(50重量%)配合したものを実施例1で得た樹脂組成
物145重量部に添加し、実施例9と同様の方法で均一
に混合、分散して導電ペーストを得た。なおりん片状の
銀粉Bとアスペクト比が2.3の銀粉の割合は体積比で
5:5(りん片状の銀粉B:アスペクト比が2.3の銀
粉)であった。また複合導電(銀)粉は導電ペーストの
固形分に対して43.2体積%(86.9重量%)含有
していた。以下実施例9と同様の工程を経て回路板を作
製し、その特性を評価した。その結果、比抵抗は41μ
Ω・cmであった。また該回路板の冷熱衝撃試験を実施し
た結果、比抵抗の変化率は4%であり、湿中負荷試験の
結果では、比抵抗の変化率は7%であった。さらに実施
例9と同様に異方導電性シートを用いてテスト回路を接
続した際の接続抵抗の平均値は40mΩであり、最大値
は55mΩであった。
Example 10 350 parts by weight of the flaky silver powder B used in Example 9 (50
%) And 350 parts by weight (50% by weight) of silver powder having an aspect ratio of 2.3 were added to 145 parts by weight of the resin composition obtained in Example 1 and then uniformly mixed in the same manner as in Example 9. A conductive paste was obtained by mixing and dispersing. The ratio of the flaky silver powder B to the silver powder having an aspect ratio of 2.3 was 5: 5 by volume ratio (scaly silver powder B: silver powder having an aspect ratio of 2.3). The composite conductive (silver) powder was contained in an amount of 43.2% by volume (86.9% by weight) based on the solid content of the conductive paste. A circuit board was manufactured through the same steps as in Example 9 below, and the characteristics thereof were evaluated. As a result, the specific resistance is 41μ.
Ω · cm. As a result of the thermal shock test of the circuit board, the rate of change of the specific resistance was 4%, and the result of the wet and medium load test showed the rate of change of the specific resistance to be 7%. Further, as in Example 9, the average value of the connection resistance when the test circuit was connected using the anisotropic conductive sheet was 40 mΩ, and the maximum value was 55 mΩ.

【0050】実施例11 実施例9で用いたりん片状の銀粉650重量部(72.
2重量%)及びアスペクト比が2.3の銀粉250重量
部(27.8重量%)配合したものを実施例1で得た樹
脂組成物145重量部に添加し、実施例9と同様の方法
で均一に混合、分散して導電ペーストを得た。なおりん
片状の銀粉Bとアスペクト比が2.3の銀粉の割合は体
積比で7.22:2.78(りん片状の銀粉B:アスペ
クト比が2.3の銀粉)であった。また複合導電(銀)
粉は導電ペーストの固形分に対して49.5体積%(8
9.6重量%)含有していた。以下実施例9と同様の工
程を経て回路板を作製し、その特性を評価した。その結
果、比抵抗は39μΩ・cmであった。また該回路板の冷
熱衝撃試験を実施した結果、比抵抗の変化率は5%であ
り、湿中負荷試験の結果では、比抵抗の変化率は6%で
あった。さらに実施例9と同様に異方導電性シートを用
いてテスト回路を接続した際の接続抵抗の平均値は38
mΩであり、最大値は58mΩであった。
Example 11 650 parts by weight of the flaky silver powder used in Example 9 (72.
2% by weight) and 250 parts by weight (27.8% by weight) of silver powder having an aspect ratio of 2.3 were added to 145 parts by weight of the resin composition obtained in Example 1, and the same method as in Example 9 was performed. Were uniformly mixed and dispersed to obtain a conductive paste. The volume ratio of the flaky silver powder B to the silver powder having an aspect ratio of 7.2 was 7.22: 2.78 (scaly silver powder B: silver powder having an aspect ratio of 2.3). Composite conductivity (silver)
The powder is 49.5% by volume (8% with respect to the solid content of the conductive paste).
9.6% by weight). A circuit board was manufactured through the same steps as in Example 9 below, and the characteristics thereof were evaluated. As a result, the specific resistance was 39 μΩ · cm. As a result of the thermal shock test of the circuit board, the rate of change in specific resistance was 5%, and the result of the wet and intermediate load test showed a rate of change in specific resistance of 6%. Furthermore, as in Example 9, the average value of the connection resistance when the test circuit was connected using the anisotropic conductive sheet was 38.
mΩ, and the maximum value was 58 mΩ.

【0051】実施例12 実施例9で用いたりん片状の銀粉B700重量部(5
8.3重量%)及びアスペクト比が2.3の銀粉500
重量部(41.7重量%)配合したものを実施例1で用
いた樹脂組成物145重量部に添加し、実施例9と同様
の方法で均一に混合、分散して導電ペーストを得た。な
おりん片状の銀粉Bとアスペクト比が2.3の銀粉の割
合は体積比で5.83:4.17(りん片状の銀粉B:
アスペクト比が2.3の銀粉)であった。また複合導電
(銀)粉は導電ペーストの固形分に対して56.6体積
%(91.9重量%)含有していた。以下加熱硬化条件
を60℃30分+110℃1時間で行った以外は実施例
9と同様の工程を経て回路板を作製し、次いで熱圧プレ
スで100℃、9.8MPaの条件で加熱加圧して回路を
緻密化しその特性を評価した。その結果、比抵抗は9.
1μΩ・cmであった。また該回路板の冷熱衝撃試験を実
施した結果、比抵抗の変化率は5%であり、湿中負荷試
験の結果では、比抵抗の変化率は4%であった。さらに
実施例9と同様に異方導電性シートを用いて接続した際
の接続抵抗の平均値は32mΩであり、最大値は42m
Ωであった。
Example 12 700 parts by weight of the flaky silver powder B used in Example 9 (5
8.3% by weight) and an aspect ratio of 2.3 silver powder 500
145 parts by weight of the resin composition used in Example 1 was added to a mixture of 4 parts by weight (41.7% by weight), and uniformly mixed and dispersed in the same manner as in Example 9 to obtain a conductive paste. The ratio of the flake-shaped silver powder B to the silver powder having an aspect ratio of 2.3 is 5.83: 4.17 (flake-shaped silver powder B:
The silver powder had an aspect ratio of 2.3. The composite conductive (silver) powder was contained in an amount of 56.6% by volume (91.9% by weight) based on the solid content of the conductive paste. A circuit board was prepared through the same steps as in Example 9 except that the heating and curing conditions were 60 ° C. for 30 minutes and 110 ° C. for 1 hour, and then the circuit board was heated and pressed under the conditions of 100 ° C. and 9.8 MPa with a hot press. The circuit was densified to evaluate its characteristics. As a result, the specific resistance was 9.
It was 1 μΩ · cm. As a result of the thermal shock test of the circuit board, the rate of change of the specific resistance was 5%, and the result of the wet and medium load test was that the rate of change of the specific resistance was 4%. Furthermore, as in Example 9, the average value of the connection resistance when connecting using the anisotropic conductive sheet was 32 mΩ, and the maximum value was 42 m.
Ω.

【0052】比較例3 実施例9で用いたりん片状の銀粉B600重量部を実施
例1で得た樹脂組成物145重量部に添加し、以下実施
例9と同様の方法で均一に混合、分散して導電ペースト
を得た。以下実施例9と同様の工程を経て回路板を作製
し、その特性を評価した。その結果、比抵抗は46μΩ
・cmであった。また該回路板の冷熱衝撃試験を実施した
結果、比抵抗の変化率は10%であり、湿中負荷試験の
結果では、比抵抗の変化率は9%であった。さらに実施
例9と同様に異方導電性シートを用いて接続した際の接
続抵抗の平均値は1.05Ωであり、最大値は12mΩ
であった。
Comparative Example 3 600 parts by weight of the flaky silver powder B used in Example 9 was added to 145 parts by weight of the resin composition obtained in Example 1, and the mixture was uniformly mixed in the same manner as in Example 9 below. Dispersed to obtain a conductive paste. A circuit board was manufactured through the same steps as in Example 9 below, and the characteristics thereof were evaluated. As a result, the specific resistance is 46 μΩ.
・ It was cm. As a result of the thermal shock test of the circuit board, the rate of change in resistivity was 10%, and the result of the wet and medium load test showed a rate of change in resistivity of 9%. Furthermore, as in Example 9, the average value of the connection resistance when connecting using the anisotropic conductive sheet was 1.05Ω, and the maximum value was 12 mΩ.
Met.

【0053】実施例13 実施例9で用いたりん片状の銀粉B380重量部(6
3.3重量%)及びアスペクト比が2.3の銀粉220
重量部(36.7重量%)を配合したものを実施例1で
得た樹脂組成物145重量部に添加し、実施例9と同様
の方法で均一に混合、分散して導電ペーストを得た。な
おりん片状の銀粉Bとアスペクト比が2.3の銀粉の割
合は体積比で6.33:3.67(りん片状の銀粉B:
アスペクト比が2.3の銀粉)であった。また複合導電
(銀)粉は導電ペーストの固形分に対して39.5体積
%(85.1重量%)含有していた。以下実施例9と同
様の工程を経て回路板を作製し、その特性を評価した。
その結果、比抵抗は43μΩ・cmであった。また該回路
板の冷熱衝撃試験を実施した結果、比抵抗の変化率は5
%であり、湿中負荷試験の結果では、比抵抗の変化率は
8%であった。さらに実施例9と同様に異方導電性シー
トを用いてテスト回路を接続した際の接続抵抗の平均値
は42mΩであり、最大値は60mΩであった。
Example 13 380 parts by weight of the flaky silver powder B used in Example 9 (6
Silver powder 220 having an aspect ratio of 2.3)
A mixture containing 1 part by weight (36.7% by weight) was added to 145 parts by weight of the resin composition obtained in Example 1, and the mixture was uniformly mixed and dispersed in the same manner as in Example 9 to obtain a conductive paste. . The volume ratio of the flaky silver powder B to the silver powder having an aspect ratio of 6.33: 3.67 (scaly silver powder B:
The silver powder had an aspect ratio of 2.3. The composite conductive (silver) powder was contained in an amount of 39.5% by volume (85.1% by weight) based on the solid content of the conductive paste. A circuit board was manufactured through the same steps as in Example 9 below, and the characteristics thereof were evaluated.
As a result, the specific resistance was 43 μΩ · cm. As a result of the thermal shock test of the circuit board, the rate of change in resistivity was 5
%, And the rate of change in specific resistance was 8% as a result of the wet and medium load test. Further, as in Example 9, the average value of the connection resistance when the test circuit was connected using the anisotropic conductive sheet was 42 mΩ, and the maximum value was 60 mΩ.

【0054】実施例14 実施例9で用いたりん片状の銀粉B380重量部(5
4.2重量%)及びアスペクト比が2.3の銀粉320
重量部(45.8重量%)配合したものを実施例1で得
た樹脂組成物145重量部に添加し、実施例9と同様の
方法で均一に混合、分散して導電ペーストを得た。なお
りん片状の銀粉Bとアスペクト比が2.3の銀粉の割合
は体積比で5.42:4.58(りん片状の銀粉B:ア
スペクト比が2.3の銀粉)であった。また複合導電
(銀)粉は導電ペーストの固形分に対して43.2体積
%(86.9重量%)含有していた。以下実施例9と同
様の工程を経て回路板を作製し、その特性を評価した。
その結果、比抵抗は43μΩ・cmであった。また該回路
板の冷熱衝撃試験を実施した結果、比抵抗の変化率は4
%であり、湿中負荷試験の結果では、比抵抗の変化率は
7%であった。さらに実施例9と同様に異方導電性シー
トを用いてテスト回路を接続した際の接続抵抗の平均値
は38mΩであり、最大値は52mΩであった。
Example 14 380 parts by weight of the flaky silver powder B used in Example 9 (5
4.2% by weight) and an aspect ratio of 2.3 silver powder 320
145 parts by weight of the resin composition obtained in Example 1 was added with a mixture of 4 parts by weight (45.8% by weight), and uniformly mixed and dispersed in the same manner as in Example 9 to obtain a conductive paste. The ratio of the flaky silver powder B to the silver powder having an aspect ratio of 2.3 was 5.42: 4.58 by volume (scaly silver powder B: silver powder having an aspect ratio of 2.3). The composite conductive (silver) powder was contained in an amount of 43.2% by volume (86.9% by weight) based on the solid content of the conductive paste. A circuit board was manufactured through the same steps as in Example 9 below, and the characteristics thereof were evaluated.
As a result, the specific resistance was 43 μΩ · cm. As a result of the thermal shock test of the circuit board, the rate of change in resistivity was 4
%, And the rate of change in specific resistance was 7% as a result of the wet and medium load test. Further, as in Example 9, the average value of the connection resistance when the test circuit was connected using the anisotropic conductive sheet was 38 mΩ, and the maximum value was 52 mΩ.

【0055】実施例15 実施例9で用いたりん片状の銀粉B600重量部(6
6.7重量%)及びアスペクト比が2.3の銀粉300
重量部(33.3重量%)配合したものを実施例1で得
た樹脂組成物145重量部に添加し、実施例9と同様の
方法で均一に混合、分散して導電ペーストを得た。なお
りん片状の銀粉Bとアスペクト比が2.3の銀粉の割合
は体積比で6.67:3.33(りん片状の銀粉B:ア
スペクト比が2.3の銀粉)であった。また複合導電
(銀)粉は導電ペーストの固形分に対して49.5体積
%(89.6重量%)含有していた。以下実施例9と同
様の工程を経て回路板を作製し、その特性を評価した。
その結果、比抵抗は35μΩ・cmであった。また該回路
板の冷熱衝撃試験を実施した結果、比抵抗の変化率は5
%であり、湿中負荷試験の結果では、比抵抗の変化率は
6%であった。さらに実施例9と同様に異方導電性シー
トを用いてテスト回路を接続した際の接続抵抗の平均値
は36mΩであり、最大値は56mΩであった。
Example 15 600 parts by weight of the flaky silver powder B used in Example 9 (6
6.7 wt%) and an aspect ratio of 2.3 silver powder 300
145 parts by weight of the resin composition obtained in Example 1 was added with the mixture of 3 parts by weight (33.3% by weight), and uniformly mixed and dispersed in the same manner as in Example 9 to obtain a conductive paste. The ratio of the scaly silver powder B to the silver powder having an aspect ratio of 2.3 was 6.67: 3.33 in a volume ratio (scaly silver powder B: silver powder having an aspect ratio of 2.3). The composite conductive (silver) powder was contained in an amount of 49.5% by volume (89.6% by weight) based on the solid content of the conductive paste. A circuit board was manufactured through the same steps as in Example 9 below, and the characteristics thereof were evaluated.
As a result, the specific resistance was 35 μΩ · cm. As a result of the thermal shock test of the circuit board, the rate of change in resistivity was 5
%, And the rate of change in specific resistance was 6% as a result of the wet and medium load test. Furthermore, as in Example 9, the average value of the connection resistance when the test circuit was connected using the anisotropic conductive sheet was 36 mΩ, and the maximum value was 56 mΩ.

【0056】実施例16 実施例9で用いたりん片状の銀粉B650重量部(5
4.2重量%)及びアスペクト比が2.3の銀粉550
重量部(45.8重量%)配合したものを実施例1で用
いた樹脂組成物145重量部に添加し、実施例9と同様
の方法で均一に混合、分散して導電ペーストを得た。な
おりん片状の銀粉Bとアスペクト比が2.3の銀粉の割
合は体積比で5.42:4.58(りん片状の銀粉B:
アスペクト比が2.3の銀粉)であった。また複合導電
(銀)粉は導電ペーストの固形分に対して56.6体積
%(91.9重量%)含有していた。以下実施例9と同
様の工程を経て回路板を作製し、次いで熱圧プレスで1
00℃、9.8MPaの条件で加熱加圧して回路を緻密化
しその特性を評価した。その結果、比抵抗は8.7μΩ
・cmであった。また該回路板の冷熱衝撃試験を実施した
結果、比抵抗の変化率は5%であり、湿中負荷試験の結
果では、比抵抗の変化率は4%であった。さらに実施例
9と同様に異方導電性シートを用いて接続した際の接続
抵抗の平均値は30mΩであり、最大値は40mΩであ
った。
Example 16 650 parts by weight of the flaky silver powder B used in Example 9 (5
4.2% by weight) and an aspect ratio of 2.3 silver powder 550
145 parts by weight of the resin composition used in Example 1 was added to the resin composition used in Example 1, and uniformly mixed and dispersed in the same manner as in Example 9 to obtain a conductive paste. The volume ratio of the flaky silver powder B to the silver powder having an aspect ratio of 2.32: 4.58 (scaly silver powder B:
The silver powder had an aspect ratio of 2.3. The composite conductive (silver) powder was contained in an amount of 56.6% by volume (91.9% by weight) based on the solid content of the conductive paste. Thereafter, a circuit board is manufactured through the same steps as in Example 9, and then 1 by a hot press.
The circuit was densified by heating and pressurizing under the conditions of 00 ° C. and 9.8 MPa, and its characteristics were evaluated. As a result, the specific resistance is 8.7 μΩ.
・ It was cm. As a result of the thermal shock test of the circuit board, the rate of change of the specific resistance was 5%, and the result of the wet and medium load test was that the rate of change of the specific resistance was 4%. Furthermore, as in Example 9, the average value of the connection resistance when connecting using the anisotropic conductive sheet was 30 mΩ, and the maximum value was 40 mΩ.

【0057】実施例17 アスペクト比が8で長径の平均粒径が8μmのりん片状
の銀粉(徳力化学研究所製、商品名TCG−1)450
重量部(75重量%)及びアスペクト比が2.3で長径
の平均粒径が7μmの銀粉(レアメタリック社製)(以
下アスペクト比が2.3の銀粉とする)150重量部
(25重量%)を配合し、次いでこのものを実施例1で
得た樹脂組成物145重量部に添加し、撹拌らいかい機
及び三本ロールで均一に混合分散して導電ペーストを得
た。なおりん片状の銀粉とアスペクト比が2.3の銀粉
との含有量は導電ペーストの固形分に対して39.5体
積%(85.1重量%)であった。
Example 17 A flaky silver powder having an aspect ratio of 8 and an average long diameter of 8 μm (manufactured by Tokuriki Kagaku Kenkyusho, trade name TCG-1) 450
150 parts by weight (75% by weight) and 150 parts by weight (25% by weight) of silver powder (produced by Rare Metallic Co., Ltd.) having an aspect ratio of 2.3 and an average major axis diameter of 7 μm (hereinafter, referred to as silver powder having an aspect ratio of 2.3). ) Was blended and then added to 145 parts by weight of the resin composition obtained in Example 1 and uniformly mixed and dispersed with a stirrer and a triple roll to obtain a conductive paste. The content of the flaky silver powder and the silver powder having an aspect ratio of 2.3 was 39.5% by volume (85.1% by weight) based on the solid content of the conductive paste.

【0058】以下実施例1と同様の工程を経て配線板を
作製した後、該配線板を熱圧プレスで、温度110℃及
び圧力10MPaの条件で2分間加熱加圧した後、145
℃で30分間硬化させ、回路パターンを緻密化した電気
回路を形成した。この電気回路の比抵抗を測定したとこ
ろ13μΩ・cmであった。該配線板の冷熱衝撃試験を実
施した結果、比抵抗の変化率は5%であった。また該配
線板の湿中負荷試験を実施した結果、比抵抗の変化率は
7%であった。なお冷熱試験条件は125℃30分〜−
65℃30分を100サイクル行い、湿中負荷試験は4
0℃、90%RH中で1000時間保持した。
After manufacturing a wiring board through the same steps as in Example 1, the wiring board was heated and pressed by a hot press at a temperature of 110 ° C. and a pressure of 10 MPa for 2 minutes, and then 145
It was cured at 30 ° C. for 30 minutes to form an electric circuit having a dense circuit pattern. The specific resistance of this electric circuit was measured and found to be 13 μΩ · cm. As a result of the thermal shock test of the wiring board, the rate of change in specific resistance was 5%. Moreover, as a result of performing a humidity and medium load test on the wiring board, the rate of change in specific resistance was 7%. The cooling test conditions are 125 ° C for 30 minutes-
100 cycles of 65 ° C. for 30 minutes, 4 in humidity and medium load test
It was kept at 0 ° C. and 90% RH for 1000 hours.

【0059】実施例18 実施例17で用いたりん片状の銀粉550重量部(8
4.6重量%)及びアスペクト比が2.3の銀粉100
重量部(15.4重量%)を配合した以外は実施例17
と同様の工程を経て導電ペーストを得た。なおりん片状
の銀粉とアスペクト比が2.3の銀粉との含有量は導電
ペーストの固形分に対して41.4体積%(86.1重
量%)であった。以下実施例17と同様の工程を経て配
線板を作製し、さらに電気回路を形成してその特性を評
価した。その結果、電気回路の比抵抗は10μΩ・cmで
あった。また該配線板の冷熱衝撃試験を実施した結果、
比抵抗の変化率は4%であり、湿中負荷試験の結果で
は、比抵抗の変化率は7%であった。
Example 18 550 parts by weight of the flaky silver powder used in Example 17 (8
4.6% by weight) and an aspect ratio of 2.3 silver powder 100
Example 17 except that parts by weight (15.4% by weight) were blended.
A conductive paste was obtained through the same steps as. The content of the flaky silver powder and the silver powder having an aspect ratio of 2.3 was 41.4% by volume (86.1% by weight) based on the solid content of the conductive paste. A wiring board was manufactured through the same steps as in Example 17, and an electric circuit was further formed to evaluate the characteristics. As a result, the specific resistance of the electric circuit was 10 μΩ · cm. As a result of conducting a thermal shock test of the wiring board,
The rate of change in resistivity was 4%, and the result of the wet and medium load test showed that the rate of change in resistivity was 7%.

【0060】実施例19 実施例17で用いたりん片状の銀粉900重量部(8
1.8重量%)及びアスペクト比が2.3の銀粉200
重量部(18.2重量%)を配合した以外は実施例17
と同様の工程を経て導電ペーストを得た。なおりん片状
の銀粉とアスペクト比が2.3の銀粉との含有量は導電
ペーストの固形分に対して55体積%(91.5重量
%)であった。以下実施例17と同様の工程を経て配線
板を作製し、さらに電気回路を形成してその特性を評価
した。その結果、電気回路の比抵抗は8.2μΩ・cmで
あった。また該配線板の冷熱衝撃試験を実施した結果、
比抵抗の変化率は5%であり、湿中負荷試験の結果で
は、比抵抗の変化率は6%であった。
Example 19 900 parts by weight of the flaky silver powder used in Example 17 (8
Silver powder 200 having an aspect ratio of 2.3)
Example 17 except that parts by weight (18.2% by weight) were blended.
A conductive paste was obtained through the same steps as. The content of the flaky silver powder and the silver powder having an aspect ratio of 2.3 was 55% by volume (91.5% by weight) based on the solid content of the conductive paste. A wiring board was manufactured through the same steps as in Example 17, and an electric circuit was further formed to evaluate the characteristics. As a result, the specific resistance of the electric circuit was 8.2 μΩ · cm. As a result of conducting a thermal shock test of the wiring board,
The rate of change in resistivity was 5%, and the result of the wet and medium load test showed that the rate of change in resistivity was 6%.

【0061】実施例20 実施例19で得た配線板を熱ロールで、30cm/分の速
度で、かつ温度125℃及び圧力980N/cmの条件で加
熱加圧した後、145℃で30分間硬化させ、回路パタ
ーンを緻密化した電気回路を形成した。この電気回路の
比抵抗を測定したところ8.3μΩ・cmであった。また
該配線板の冷熱衝撃試験を実施した結果、比抵抗の変化
率は5%であり、湿中負荷試験の結果では、比抵抗の変
化率は4%であった。
Example 20 The wiring board obtained in Example 19 was heated and pressed with a hot roll at a speed of 30 cm / min at a temperature of 125 ° C. and a pressure of 980 N / cm, and then cured at 145 ° C. for 30 minutes. Then, an electric circuit having a dense circuit pattern was formed. The specific resistance of this electric circuit was measured and found to be 8.3 μΩ · cm. As a result of the thermal shock test of the wiring board, the rate of change in resistivity was 5%, and the result of the wet / medium load test showed a rate of change in resistivity of 4%.

【0062】実施例21 実施例17で用いたりん片状の銀粉410重量部(6
6.7重量%)及びアスペクト比が2.3の銀粉205
重量部(33.3重量%)を配合した以外は実施例17
と同様の工程を経て導電ペーストを得た。なおりん片状
の銀粉とアスペクト比が2.3の銀粉との含有量は導電
ペーストの固形分に対して40体積%(85.4重量
%)であった。以下実施例17と同様の工程を経て配線
板を得た。次いで上記で得た配線板を熱圧プレスで、温
度100℃及び圧力5MPaの条件で2分間加熱加圧した
後、145℃で30分間硬化させ、回路パターンを緻密
化した電気回路を形成した。この電気回路の比抵抗を測
定したところ12μΩ・cmであった。該配線板の冷熱衝
撃試験を実施した結果、比抵抗の変化率は5%であっ
た。また該配線板の湿中負荷試験を実施した結果、比抵
抗の変化率は8%であった。なお冷熱試験条件は125
℃30分〜−65℃30分を100サイクル行い、湿中
負荷試験は40℃、90%RH中で1000時間保持し
た。
Example 21 410 parts by weight of the flaky silver powder used in Example 17 (6
6.7 wt%) and silver powder 205 having an aspect ratio of 2.3
Example 17 except that parts by weight (33.3% by weight) were blended.
A conductive paste was obtained through the same steps as. The content of the flaky silver powder and the silver powder having an aspect ratio of 2.3 was 40% by volume (85.4% by weight) based on the solid content of the conductive paste. A wiring board was obtained through the same steps as in Example 17 below. Next, the wiring board obtained above was heated and pressed for 2 minutes at a temperature of 100 ° C. and a pressure of 5 MPa with a hot press, and then cured at 145 ° C. for 30 minutes to form an electric circuit with a dense circuit pattern. When the specific resistance of this electric circuit was measured, it was 12 μΩ · cm. As a result of the thermal shock test of the wiring board, the rate of change in specific resistance was 5%. Further, as a result of performing a wet and medium load test on the wiring board, the rate of change in specific resistance was 8%. The cooling test condition is 125
100 cycles of 30 ° C. to −65 ° C. for 30 minutes were performed, and the humidity and medium load test was held at 40 ° C. and 90% RH for 1000 hours.

【0063】実施例22 実施例17で用いたりん片状の銀粉600重量部(80
重量%)及びアスペクト比が2.3の銀粉150重量部
(20重量%)を配合した以外は実施例17と同様の工
程を経て導電ペーストを得た。なおりん片状の銀粉とア
スペクト比が2.3の銀粉との含有量は導電ペーストの
固形分に対して45体積%(87.7重量%)であっ
た。以下実施例17と同様の工程を経て配線板を作製
し、その後実施例21と同様の工程を経て電気回路を形
成してその特性を評価した。その結果、電気回路の比抵
抗は10μΩ・cmであった。また該配線板の冷熱衝撃試
験を実施した結果、比抵抗の変化率は4%であり、湿中
負荷試験の結果では、比抵抗の変化率は7%であった。
Example 22 600 parts by weight of the flaky silver powder used in Example 17 (80
Wt%) and 150 parts by weight (20% by weight) of silver powder having an aspect ratio of 2.3 were added, and a conductive paste was obtained through the same steps as in Example 17. The content of the flaky silver powder and the silver powder having an aspect ratio of 2.3 was 45% by volume (87.7% by weight) based on the solid content of the conductive paste. Hereinafter, a wiring board was manufactured through the same steps as in Example 17, then an electric circuit was formed through the same steps as in Example 21, and the characteristics thereof were evaluated. As a result, the specific resistance of the electric circuit was 10 μΩ · cm. As a result of a thermal shock test of the wiring board, the rate of change in resistivity was 4%, and the result of the wet / medium load test showed a rate of change in resistivity of 7%.

【0064】実施例23 実施例17で用いたりん片状の銀粉800重量部(7
2.7重量%)及び不定形の銀粉300重量部(27.
3重量%)を配合した以外は実施例17と同様の工程を
経て導電ペーストを得た。なおりん片状の銀粉とアスペ
クト比が2.3の銀粉との複合銀粉の含有量は導電ペー
ストの固形分に対して54.5体積%(91.3重量
%)であった。以下実施例17と同様の工程を経て配線
板を作製し、さらに電気回路を形成してその特性を評価
した。その結果、電気回路の比抵抗は8.5μΩ・cmで
あった。また該配線板の冷熱衝撃試験を実施した結果、
比抵抗の変化率は5%であり、湿中負荷試験の結果で
は、比抵抗の変化率は6%であった。
Example 23 800 parts by weight of the flaky silver powder used in Example 17 (7
2.7% by weight) and 300 parts by weight of amorphous silver powder (27.
(3 wt%) except that the conductive paste was obtained through the same steps as in Example 17. The content of the composite silver powder of the flaky silver powder and the silver powder having an aspect ratio of 2.3 was 54.5% by volume (91.3% by weight) based on the solid content of the conductive paste. A wiring board was manufactured through the same steps as in Example 17, and an electric circuit was further formed to evaluate the characteristics. As a result, the specific resistance of the electric circuit was 8.5 μΩ · cm. As a result of conducting a thermal shock test of the wiring board,
The rate of change in resistivity was 5%, and the result of the wet and medium load test showed that the rate of change in resistivity was 6%.

【0065】実施例24 実施例23で得た配線板を熱ロールで30cm/分の速度
で、かつ温度125℃及び圧力980N/cmの条件で加熱
加圧した後、145℃で30分間硬化させ、回路パター
ンを緻密化した電気回路を形成した。この電気回路の比
抵抗を測定したところ8.4μΩ・cmであった。また該
配線板の冷熱衝撃試験を実施した結果、比抵抗の変化率
は5%であり、湿中負荷試験の結果では、比抵抗の変化
率は4%であった。
Example 24 The wiring board obtained in Example 23 was heated and pressed with a hot roll at a speed of 30 cm / min at a temperature of 125 ° C. and a pressure of 980 N / cm, and then cured at 145 ° C. for 30 minutes. An electric circuit having a dense circuit pattern was formed. When the specific resistance of this electric circuit was measured, it was 8.4 μΩ · cm. As a result of the thermal shock test of the wiring board, the rate of change in resistivity was 5%, and the result of the wet / medium load test showed a rate of change in resistivity of 4%.

【0066】実施例25 実施例17で用いたりん片状の銀粉550重量部(8
4.6重量%)及びアスペクト比が3で平均粒径が5μ
mのNi粉100重量部(15.4重量%)を配合し、
次いでこのものを実施例1で得た樹脂組成物145重量
部に添加し、撹拌らいかい機及び三本ロールで均一に混
合分散して導電ペーストを得た。なおりん片状の銀粉と
Ni粉との含有量は導電ペーストの固形分に対して4
2.5体積%(86.6重量%)であった。以下実施例
17と同様の工程を経て配線板を得た。
Example 25 550 parts by weight of the flaky silver powder used in Example 17 (8
4.6% by weight), aspect ratio 3 and average particle size 5μ
m Ni powder 100 parts by weight (15.4% by weight) was added,
Then, this was added to 145 parts by weight of the resin composition obtained in Example 1 and uniformly mixed and dispersed with a stirrer and a triple roll to obtain a conductive paste. The content of the flaky silver powder and Ni powder was 4 with respect to the solid content of the conductive paste.
It was 2.5 volume% (86.6 weight%). A wiring board was obtained through the same steps as in Example 17 below.

【0067】次いで上記で得た配線板を熱圧プレスで、
温度110℃及び圧力10MPaの条件で2分間加熱加圧
した後、145℃で30分間硬化させ、回路パターンを
緻密化した電気回路を形成した。この電気回路の比抵抗
を測定したところ12μΩ・cmであった。該配線板の冷
熱衝撃試験を実施した結果、比抵抗の変化率は7%であ
った。また該配線板の湿中負荷試験を実施した結果、比
抵抗の変化率は6%であった。なお冷熱試験条件は12
5℃30分〜−65℃30分を100サイクル行い、湿
中負荷試験は40℃、90%RH中で1000時間保持
した。
Then, the wiring board obtained above was hot-pressed by
After heating and pressurizing for 2 minutes at a temperature of 110 ° C. and a pressure of 10 MPa, it was cured at 145 ° C. for 30 minutes to form an electric circuit having a dense circuit pattern. When the specific resistance of this electric circuit was measured, it was 12 μΩ · cm. As a result of the thermal shock test of the wiring board, the rate of change in specific resistance was 7%. Further, as a result of performing a wet and medium load test on the wiring board, the rate of change in specific resistance was 6%. The cooling test condition is 12
100 cycles of 30 minutes from 5 ° C. to 30 minutes at −65 ° C. were carried out, and the humidity load test was held at 40 ° C. and 90% RH for 1000 hours.

【0068】実施例26 実施例17で用いたりん片状の銀粉650重量部(8
6.7重量%)及びNi粉100重量部(13.3重量
%)を配合た以外は実施例17と同様の工程を経て導電
ペーストを得た。なおりん片状の銀粉とNi粉との含有
量は導電ペーストの固形分に対して45.5体積%(8
8重量%)であった。以下実施例17と同様の工程を経
て配線板を作製し、さらに実施例25と同様の工程を経
て電気回路を形成してその特性を評価した。その結果、
電気回路の比抵抗は10μΩ・cmであった。また該配線
板の冷熱衝撃試験を実施した結果、比抵抗の変化率は4
%であり、湿中負荷試験の結果では、比抵抗の変化率は
5%であった。
Example 26 650 parts by weight of the flaky silver powder used in Example 17 (8
6.7% by weight) and 100 parts by weight of Ni powder (13.3% by weight) were added, and a conductive paste was obtained through the same steps as in Example 17. The content of the flaky silver powder and the Ni powder was 45.5% by volume (8%) with respect to the solid content of the conductive paste.
8% by weight). A wiring board was manufactured through the same steps as in Example 17, and an electric circuit was formed through the same steps as in Example 25, and the characteristics thereof were evaluated. as a result,
The specific resistance of the electric circuit was 10 μΩ · cm. As a result of the thermal shock test of the wiring board, the rate of change in resistivity was 4
%, And the rate of change in specific resistance was 5% as a result of the wet and intermediate load test.

【0069】実施例27 実施例17で用いたりん片状の銀粉900重量部(8
7.4重量%)及び表面に10重量%銀メッキ処理した
Ni粉130重量部(12.6重量%)を配合した以外
は実施例17と同様の工程を経て導電ペーストを得た。
なおりん片状の銀粉とNi粉との含有量は導電ペースト
の固形分に対して53.5体積%(91重量%)であっ
た。以下実施例17と同様の工程を経て配線板を作製
し、さらに実施例25と同様の工程を経て電気回路を形
成してその特性を評価した。その結果、電気回路の比抵
抗は8.2μΩ・cmであった。また該配線板の冷熱衝撃
試験を実施した結果、比抵抗の変化率は5%であり、湿
中負荷試験の結果では、比抵抗の変化率は5%であっ
た。
Example 27 900 parts by weight of the flaky silver powder used in Example 17 (8
(7.4% by weight) and 130 parts by weight (12.6% by weight) of Ni powder having a surface plated with 10% by weight of silver were blended to obtain a conductive paste through the same steps as in Example 17.
The content of the flaky silver powder and the Ni powder was 53.5% by volume (91% by weight) based on the solid content of the conductive paste. A wiring board was manufactured through the same steps as in Example 17, and an electric circuit was formed through the same steps as in Example 25, and the characteristics thereof were evaluated. As a result, the specific resistance of the electric circuit was 8.2 μΩ · cm. As a result of performing a thermal shock test on the wiring board, the rate of change in resistivity was 5%, and the result of the wet / medium load test showed a rate of change in resistivity of 5%.

【0070】実施例28 実施例27で得た配線板を熱ロールで、30cm/分の速
度で、かつ温度125℃及び圧力980N/cmの条件で加
熱加圧した後、145℃で30分間硬化させ、回路パタ
ーンを緻密化した電気回路を形成した。この電気回路の
比抵抗を測定したところ8.5μΩ・cmであった。また
該配線板の冷熱衝撃試験を実施した結果、比抵抗の変化
率は5%であり、湿中負荷試験の結果では、比抵抗の変
化率は5%であった。
Example 28 The wiring board obtained in Example 27 was heated and pressed with a hot roll at a rate of 30 cm / min at a temperature of 125 ° C. and a pressure of 980 N / cm, and then cured at 145 ° C. for 30 minutes. Then, an electric circuit having a dense circuit pattern was formed. The specific resistance of this electric circuit was measured and found to be 8.5 μΩ · cm. As a result of performing a thermal shock test on the wiring board, the rate of change in resistivity was 5%, and the result of the wet / medium load test showed a rate of change in resistivity of 5%.

【0071】実施例29 実施例17で用いたりん片状の銀粉410重量部(6
6.7重量%)及びNi粉205重量部(33.3重量
%)を配合した以外は実施例17と同様の工程を経て導
電ペーストを得た。なおりん片状の銀粉とNi粉との含
有量は導電ペーストの固形分に対して41.5体積%
(86.1重量%)であった。以下実施例17と同様の
工程を経て配線板を得た。次いで上記で得た配線板を熱
圧プレスで、温度100℃及び圧力5MPaの条件で2分
間加熱加圧した後、145℃で30分間硬化させ、回路
パターンを緻密化した電気回路を形成した。この電気回
路の比抵抗を測定したところ12.5μΩ・cmであっ
た。該配線板の冷熱衝撃試験を実施した結果、比抵抗の
変化率は5%であった。また該配線板の湿中負荷試験を
実施した結果、比抵抗の変化率は6%であった。なお冷
熱試験条件は125℃30分〜−65℃30分を100
サイクル行い、湿中負荷試験は40℃、90%RH中で
1000時間保持した。
Example 29 410 parts by weight of the flaky silver powder used in Example 17 (6
6.7% by weight) and 205 parts by weight of Ni powder (33.3% by weight) were added, and a conductive paste was obtained through the same steps as in Example 17. The content of flaky silver powder and Ni powder is 41.5% by volume based on the solid content of the conductive paste.
(86.1% by weight). A wiring board was obtained through the same steps as in Example 17 below. Next, the wiring board obtained above was heated and pressed for 2 minutes at a temperature of 100 ° C. and a pressure of 5 MPa by a hot press, and then cured at 145 ° C. for 30 minutes to form an electric circuit having a dense circuit pattern. When the specific resistance of this electric circuit was measured, it was 12.5 μΩ · cm. As a result of the thermal shock test of the wiring board, the rate of change in specific resistance was 5%. Further, as a result of performing a wet and medium load test on the wiring board, the rate of change in specific resistance was 6%. The cold heat test conditions are 125 ° C. for 30 minutes to −65 ° C. for 30 minutes.
Cycling was performed, and the humidity and medium load test was held at 40 ° C. and 90% RH for 1000 hours.

【0072】実施例30 実施例17で用いたりん片状の銀粉700重量部(8
7.5重量%)及びNi粉100重量部(12.5重量
%)を配合した以外は実施例17と同様の工程を経て導
電ペーストを得た。なおりん片状の銀粉とNi粉との含
有量は導電ペーストの固形分に対して54.0体積%
(91.1重量%)であった。以下実施例17と同様の
工程を経て配線板を作製し、その後実施例29と同様の
工程を経て電気回路を形成してその特性を評価した。そ
の結果、電気回路の比抵抗は9.5μΩ・cmであった。
また該配線板の冷熱衝撃試験を実施した結果、比抵抗の
変化率は4%であり、湿中負荷試験の結果では、比抵抗
の変化率は5%であった。
Example 30 700 parts by weight of the flaky silver powder used in Example 17 (8
(7.5% by weight) and 100 parts by weight of Ni powder (12.5% by weight) were added, and a conductive paste was obtained through the same steps as in Example 17. The content of the flaky silver powder and Ni powder was 54.0% by volume based on the solid content of the conductive paste.
(91.1% by weight). Hereinafter, a wiring board was manufactured through the same steps as in Example 17, then an electric circuit was formed through the same steps as in Example 29, and the characteristics thereof were evaluated. As a result, the specific resistance of the electric circuit was 9.5 μΩ · cm.
As a result of the thermal shock test of the wiring board, the rate of change of the specific resistance was 4%, and the result of the wet and medium load test showed the rate of change of the specific resistance to be 5%.

【0073】実施例31 実施例17で用いたりん片状の銀粉750重量部(8
3.3重量%)及び表面に10重量%銀メッキ処理した
Ni粉150重量部(16.7重量%)を配合した以外
は実施例17と同様の工程を経て導電ペーストを得た。
なおりん片状の銀粉と銀メッキ処理したNi粉との複合
導電粉の含有量は導電ペーストの固形分に対して50.
0体積%(89.7重量%)であった。以下実施例17
と同様の工程を経て配線板を作製し、さらに実施例29
と同様の工程を経て電気回路を形成してその特性を評価
した。その結果、電気回路の比抵抗は8.3μΩ・cmで
あった。また該配線板の冷熱衝撃試験を実施した結果、
比抵抗の変化率は5%であり、湿中負荷試験の結果で
は、比抵抗の変化率は4%であった。
Example 31 750 parts by weight of the flaky silver powder used in Example 17 (8
3.3 wt%) and 150 wt parts (16.7 wt%) of Ni powder having a surface plated with 10 wt% silver were blended to obtain a conductive paste through the same steps as in Example 17.
The content of the composite conductive powder of the flaky silver powder and the silver powdered Ni powder was 50.50 with respect to the solid content of the conductive paste.
It was 0% by volume (89.7% by weight). Example 17 below
A wiring board was prepared through the steps similar to those of Example 29.
An electric circuit was formed through the same steps as above, and its characteristics were evaluated. As a result, the specific resistance of the electric circuit was 8.3 μΩ · cm. As a result of conducting a thermal shock test of the wiring board,
The rate of change in resistivity was 5%, and the result of the wet and medium load test showed that the rate of change in resistivity was 4%.

【0074】実施例32 実施例31で得た配線板を熱ロールで30cm/分の速度
で、かつ温度125℃及び圧力980N/cmの条件で加熱
加圧した後、145℃で30分間硬化させ、回路パター
ンを緻密化した電気回路を形成した。この電気回路の比
抵抗を測定したところ8.4μΩ・cmであった。また該
配線板の冷熱衝撃試験を実施した結果、比抵抗の変化率
は4%であり、湿中負荷試験の結果では、比抵抗の変化
率は4%であった。
Example 32 The wiring board obtained in Example 31 was heated and pressed with a hot roll at a speed of 30 cm / min at a temperature of 125 ° C. and a pressure of 980 N / cm, and then cured at 145 ° C. for 30 minutes. An electric circuit having a dense circuit pattern was formed. When the specific resistance of this electric circuit was measured, it was 8.4 μΩ · cm. As a result of the thermal shock test of the wiring board, the rate of change of the specific resistance was 4%, and the result of the wet and medium load test showed the rate of change of the specific resistance to be 4%.

【0075】実施例33 平均粒径が6.2μmの球状銅粉(日本アトマイズ加工
(株)製、SF−Cu)に置換めっき法で銀を25重量%
被覆した後、ジルコニアボールと共にボールミルで毎分
60回転の条件で30分間回転させて形状を変形させ、
長径の平均粒径が10.3μm、アスペクト比が6及び
銅の露出面積が3〜18%の範囲で平均が7%のりん片
状の銀被覆銅粉を得た。また上記とは別に、上記と同様
の銅粉に置換めっき法で銀を25重量%被覆した後、ガ
ラスボールと共にボールミルで毎分60回転の条件で2
0分間回転させて形状を変形させ、長径の平均粒径が
7.5μm、アスペクト比が2及び銅の露出面積が2〜
7%の範囲で平均が3%の不定形状の銀被覆銅粉を得
た。次いでりん片状の銀被覆銅粉410重量部(66.
7重量%)及び不定形状の銀被覆銅粉205重量部(3
3.3重量%)を実施例1で得た樹脂組成物145重量
部に添加し、撹拌らいかい機及び三本ロールで均一に混
合分散して導電ペーストを得た。なおりん片状の銀被覆
銅粉と不定形状の銀被覆銅粉の含有量は導電ペーストの
固形分に対して86重量%であった。上記の銅の露出面
積は、次のようにして求めた。すなわち、走査型電子顕
微鏡(SEM)で銀被覆銅粉のSEM写真をとり、ここ
から無作為に銀被覆銅粉の粒子を20個選択して、X線
マイクロアナライザーで銀及び銅の面分析を行って、銀
で覆われている部分と銅が露出している部分の面積割合
から銅の露出している割合を算出し、その平均値を求
め、この平均値を被覆面積とした。以下の実施例及び比
較例においても上記と同様の方法で銅の被覆面積を算出
した。
Example 33 Spherical copper powder having an average particle size of 6.2 μm (Japan atomized
Co., Ltd., SF-Cu) 25 wt% silver by displacement plating method
After coating, the shape is deformed by rotating with a zirconia ball in a ball mill for 30 minutes under the condition of 60 rpm,
A flaky silver-coated copper powder having an average major axis diameter of 10.3 μm, an aspect ratio of 6 and an average exposed area of copper of 3 to 18% and a mean of 7% was obtained. Separately from the above, the same copper powder as above was coated with 25% by weight of silver by the displacement plating method, and then the glass ball and the ball mill were operated at 60 rpm for 2 minutes.
The shape is deformed by rotating for 0 minutes, the average diameter of major axis is 7.5 μm, the aspect ratio is 2 and the exposed area of copper is 2 to 2.
An irregularly shaped silver-coated copper powder with an average of 3% was obtained in the range of 7%. Next, 410 parts by weight of scaly silver-coated copper powder (66.
7% by weight) and 205 parts by weight of irregularly shaped silver-coated copper powder (3
(3.3 wt%) was added to 145 parts by weight of the resin composition obtained in Example 1, and the mixture was uniformly mixed and dispersed with a stirrer and a triple roll to obtain a conductive paste. The content of the flaky silver-coated copper powder and the irregular-shaped silver-coated copper powder was 86% by weight based on the solid content of the conductive paste. The exposed area of copper was determined as follows. That is, a SEM photograph of silver-coated copper powder is taken with a scanning electron microscope (SEM), 20 particles of the silver-coated copper powder are randomly selected from this, and surface analysis of silver and copper is performed by an X-ray microanalyzer. The exposed area of copper was calculated from the area ratio of the area covered with silver and the area exposed with copper, the average value was calculated, and this average value was used as the covered area. Also in the following examples and comparative examples, the copper coating area was calculated by the same method as described above.

【0076】この後、上記で得た導電ペーストを用い
て、厚さが125μmのポリエチレンテレフタレートフ
ィルム上に図1及び図5に示す銀導電体回路1を印刷し
たものを大気中で80℃30分さらに100℃に加熱し
たプレスを用いて5MPaの圧力で2分間加熱加圧し、次
いで145℃30分の条件で加熱処理して電気回路を得
た。なお図5におけるAの寸法は100μmである。次
に得られた図1に示す電気回路の比抵抗を測定したとこ
ろ11.5μΩ・cmであった。また電気回路の冷熱衝撃
試験を実施した結果、比抵抗の変化率は5%であった。
さらに図5に示すくし型電気回路の湿中負荷試験を実施
した結果、配線間の絶縁抵抗は108Ω以上であった。
なお冷熱試験条件は125℃30分〜−65℃30分を
100サイクル行い、湿中負荷試験は40℃90%RH
中で隣あうライン間に50Vの電圧を印加して2000
時間保持した。
Thereafter, using the conductive paste obtained above, a silver conductor circuit 1 shown in FIGS. 1 and 5 was printed on a polyethylene terephthalate film having a thickness of 125 μm, and the product was printed at 80 ° C. for 30 minutes in the atmosphere. Further, a press heated to 100 ° C. was used to heat and pressurize at a pressure of 5 MPa for 2 minutes, and then heat treatment was performed at 145 ° C. for 30 minutes to obtain an electric circuit. The size of A in FIG. 5 is 100 μm. Then, the specific resistance of the obtained electric circuit shown in FIG. 1 was measured and found to be 11.5 μΩ · cm. As a result of a thermal shock test of the electric circuit, the rate of change in specific resistance was 5%.
Further, as a result of performing a wet and medium load test of the comb-shaped electric circuit shown in FIG. 5, the insulation resistance between the wirings was 10 8 Ω or more.
In addition, the cooling / heating test condition is 100 cycles of 125 ° C. 30 minutes to −65 ° C. 30 minutes, and the humidity medium load test is 40 ° C. 90% RH.
Apply a voltage of 50V between the lines that are adjacent to each other in 2000
Hold for hours.

【0077】実施例34 実施例33で得たりん片状の銀被覆銅粉700重量部
(87.5重量%)及び実施例33で得た不定形状の銀
被覆銅粉100重量部(12.5重量%)を実施例1で
得た樹脂組成物145重量部に添加し、撹拌らいかい機
及び三本ロールで均一に混合分散して導電ペーストを得
た。なおりん片状の銀被覆銅粉と不定形状の銀被覆銅粉
の含有量は導電ペーストの固形分に対して89重量%で
あった。以下実施例33と同様の工程を経て電気回路を
作製してその特性を評価した。その結果、電気回路の比
抵抗は9.5μΩ・cmであった。また電気回路の冷熱衝
撃試験を実施した結果、比抵抗の変化率は4%であり、
くし型電気回路の湿中負荷試験では配線間の絶縁抵抗は
108Ω以上であった。
Example 34 700 parts by weight (87.5% by weight) of the flaky silver-coated copper powder obtained in Example 33 and 100 parts by weight of the irregularly-shaped silver-coated copper powder obtained in Example 33 (12. 5% by weight) was added to 145 parts by weight of the resin composition obtained in Example 1 and uniformly mixed and dispersed with a stirrer and a triple roll to obtain a conductive paste. The content of the flaky silver-coated copper powder and the irregular-shaped silver-coated copper powder was 89% by weight based on the solid content of the conductive paste. Then, an electric circuit was produced through the same steps as in Example 33, and the characteristics thereof were evaluated. As a result, the specific resistance of the electric circuit was 9.5 μΩ · cm. Moreover, as a result of conducting a thermal shock test of the electric circuit, the rate of change in specific resistance is 4%,
The insulation resistance between the wirings was 10 8 Ω or more in the humidity and humidity load test of the comb-type electric circuit.

【0078】実施例35 実施例33で得たりん片状の銀被覆銅粉750重量部
(83.3重量%)及び実施例33で用いた銅粉の表面
に置換めっき法で銀を10重量%被覆した後、実施例3
3と同様の工程を経て得た長径の平均粒径が6.0μ
m、アスペクト比が2及び銅の露出面積が3〜13%の
範囲で平均が7%の不定形状銀被覆銅粉150重量部
(16.7重量%)を実施例1で得た樹脂組成物145
重量部に添加し、撹拌らいかい機及び三本ロールで均一
に混合分散して導電ペーストを得た。なおりん片状の銀
被覆銅粉と不定形状の銀被覆銅粉の含有量は導電ペース
トの固形分に対して89重量%であった。以下プレスの
圧力を20MPaの条件で行った以外は実施例33と同様
の工程を経て電気回路を作製してその特性を評価した。
その結果、電気回路の比抵抗は8.3μΩ・cmであっ
た。また電気回路の冷熱衝撃試験を実施した結果、比抵
抗の変化率は5%であり、くし型電気回路の湿中負荷試
験では、配線間の絶縁抵抗は108Ω以上であった。
Example 35 750 parts by weight (83.3% by weight) of the flaky silver-coated copper powder obtained in Example 33 and the surface of the copper powder used in Example 33 were subjected to displacement plating to obtain 10 parts by weight of silver. % After coating, Example 3
The average particle diameter of the major axis obtained through the same process as in No. 3 is 6.0 μ.
m, an aspect ratio of 2, and an exposed area of copper in the range of 3 to 13%, the resin composition obtained in Example 1 with 150 parts by weight (16.7% by weight) of irregular shaped silver-coated copper powder having an average of 7%. 145
It was added to parts by weight and uniformly mixed and dispersed with a stirrer and a triple roll to obtain a conductive paste. The content of the flaky silver-coated copper powder and the irregular-shaped silver-coated copper powder was 89% by weight based on the solid content of the conductive paste. Hereinafter, an electric circuit was produced through the same steps as in Example 33 except that the press was performed under the conditions of 20 MPa, and the characteristics thereof were evaluated.
As a result, the specific resistance of the electric circuit was 8.3 μΩ · cm. As a result of the thermal shock test of the electric circuit, the rate of change of the specific resistance was 5%, and in the wet and medium load test of the comb-shaped electric circuit, the insulation resistance between the wirings was 10 8 Ω or more.

【0079】実施例36 実施例35で得た導電ペーストを用いて実施例33と同
様の工程を経て電気回路を作製し、次いで熱ロール、温
度100℃及び圧力10MPaの条件で加熱加圧して印刷
回路を緻密化してその特性を評価した。その結果、緻密
化した電気回路の比抵抗は8.4μΩ・cmであった。ま
た緻密化した電気回路の冷熱衝撃試験を実施した結果、
比抵抗の変化率は4%であり、くし型電気回路の湿中負
荷試験では、配線間の絶縁抵抗は108Ω以上であっ
た。
Example 36 An electric circuit was produced using the conductive paste obtained in Example 35 through the same steps as in Example 33, and then heated and pressed under the conditions of a hot roll, a temperature of 100 ° C. and a pressure of 10 MPa to print. The circuit was densified and its characteristics were evaluated. As a result, the specific resistance of the densified electric circuit was 8.4 μΩ · cm. As a result of conducting a thermal shock test on the densified electric circuit,
The rate of change of the specific resistance was 4%, and the insulation resistance between the wirings was 10 8 Ω or more in the wet and medium load test of the comb-type electric circuit.

【0080】比較例4 実施例1で得た樹脂組成物145重量部に実施例33で
得たりん片状の銀被覆銅粉を400重量部添加し、撹拌
らいかい機及び三本ロールで均一に混合分散して導電ペ
ーストを得た。次にプレスでの加熱加圧工程を除いた以
外は実施例33と同様の工程を経て電気回路を作製して
その特性を評価した。その結果、電気回路の比抵抗は6
2μΩ・cmであった。また電気回路の冷熱衝撃試験を実
施した結果、比抵抗の変化率は10%であり、くし型電
気回路の湿中負荷試験では、配線間の絶縁抵抗は108
Ω以上であった。
Comparative Example 4 To 145 parts by weight of the resin composition obtained in Example 1, 400 parts by weight of the flaky silver-coated copper powder obtained in Example 33 was added, and the mixture was homogenized with a stirrer and a triple roll mill. Was mixed and dispersed into a conductive paste. Next, an electric circuit was produced through the same steps as in Example 33 except that the heating and pressing step with a press was omitted, and the characteristics thereof were evaluated. As a result, the specific resistance of the electric circuit is 6
It was 2 μΩ · cm. As a result of a thermal shock test of the electric circuit, the rate of change of the specific resistance was 10%, and in the wet and medium load test of the comb-shaped electric circuit, the insulation resistance between the wirings was 10 8
It was more than Ω.

【0081】比較例5 実施例1で得た樹脂組成物145重量部にアスペクト比
が8で長径の平均粒径が8μmのりん片状の銀粉(徳力
化学研究所製、商品名TCG−1)を400重量部添加
し、撹拌らいかい機及び三本ロールで均一に混合分散し
て導電ペーストを得た。次にプレスでの加熱加圧工程を
除いた以外は実施例33と同様の工程を経て電気回路を
作製してその特性を評価した。その結果、電気回路の比
抵抗は62μΩ・cmであった。また電気回路の冷熱衝撃
試験を実施した結果、比抵抗の変化率は10%であり、
くし型電気回路の湿中負荷試験では、試験時間370時
間で配線間の絶縁抵抗は108Ω以下に低下し、配線間
に銀のマイグレーションが発生していた。
Comparative Example 5 145 parts by weight of the resin composition obtained in Example 1 had a flaky silver powder having an aspect ratio of 8 and a long diameter of 8 μm (trade name: TCG-1 manufactured by Tokuriki Kagaku Kenkyusho). Was added to 400 parts by weight and uniformly mixed and dispersed with a stirrer and a triple roll to obtain a conductive paste. Next, an electric circuit was produced through the same steps as in Example 33 except that the heating and pressing step with a press was omitted, and the characteristics thereof were evaluated. As a result, the specific resistance of the electric circuit was 62 μΩ · cm. Moreover, as a result of the thermal shock test of the electric circuit, the rate of change of the specific resistance is 10%,
In the wet / humidity load test of the comb-shaped electric circuit, the insulation resistance between the wirings decreased to 10 8 Ω or less after the test time of 370 hours, and silver migration occurred between the wirings.

【0082】比較例6 実施例1で得た樹脂組成物145重量部に実施例33で
得たりん片状に変形する前の表面を銀で被覆した銅粉
(銅の露出面積が1%未満で、ほぼ0%)を400重量
部を添加し、撹拌らいかい機及び三本ロールで均一に混
合分散して導電ペーストを得た。次にプレスでの加熱加
圧工程を除いた以外は実施例33と同様の工程を経て電
気回路を作製してその特性を評価した。その結果、電気
回路の比抵抗は65μΩ・cmであった。また電気回路の
冷熱衝撃試験を実施した結果、比抵抗の変化率は12%
であり、くし型電気回路の湿中負荷試験では、試験時間
530時間で配線間の絶縁抵抗は108Ω以下に低下
し、配線間に銀のマイグレーションが発生していた。
Comparative Example 6 145 parts by weight of the resin composition obtained in Example 1 was coated with silver on the surface before being transformed into the scaly pieces obtained in Example 33 with copper powder (exposed area of copper was less than 1%. Then, about 0%) was added in an amount of 400 parts by weight, and the mixture was uniformly mixed and dispersed with a stirrer and a triple roll to obtain a conductive paste. Next, an electric circuit was produced through the same steps as in Example 33 except that the heating and pressing step with a press was omitted, and the characteristics thereof were evaluated. As a result, the specific resistance of the electric circuit was 65 μΩ · cm. As a result of the thermal shock test of the electric circuit, the change rate of the specific resistance is 12%.
In the wet / humidity load test of the comb-shaped electric circuit, the insulation resistance between the wirings decreased to 10 8 Ω or less after a test time of 530 hours, and silver migration occurred between the wirings.

【0083】[0083]

【発明の効果】請求項1記載の複合導電粉は、比抵抗が
低く、高導電性で、かつ冷熱衝撃試験や湿中負荷試験後
も比抵抗の変化の小さい電気回路形成用の導電ペースト
が得られる。請求項2〜7記載の複合導電粉は、請求項
1記載の複合導電粉のうち特に導電性に優れ、さらに請
求項1記載の複合導電粉に加えて耐酸化性及び耐熱性に
優れる導電ペーストが得られる。請求項8〜10記載の
複合導電粉は、加圧してアンカー効果を有する導電ペー
ストが得られる。請求項11記載の複合導電粉は、比抵
抗が低く、高導電性で、かつ耐マイグレーション性に優
れる電気回路形成用の導電ペーストが得られる。
The composite conductive powder according to claim 1 is a conductive paste for forming an electric circuit, which has a low specific resistance, high conductivity, and a small change in specific resistance even after a thermal shock test or a humidity / humidity load test. can get. The composite conductive powders according to claims 2 to 7 are particularly excellent in conductivity among the composite conductive powders according to claim 1, and in addition to the composite conductive powder according to claim 1, a conductive paste having excellent oxidation resistance and heat resistance. Is obtained. The composite conductive powder according to claims 8 to 10 is pressed to obtain a conductive paste having an anchor effect. With the composite conductive powder according to claim 11, a conductive paste for forming an electric circuit, which has a low specific resistance, high conductivity, and excellent migration resistance, can be obtained.

【0084】請求項12記載の複合導電粉は、比抵抗が
低く、高導電性で、かつ冷熱衝撃試験や湿中負荷試験後
も比抵抗の変化が小さく、また導電粉同士の接触確率を
改善し、電気回路の導電性が高くなり、特にシート状の
基材に回路を印刷し、印刷回路をプレス加工する場合の
導電性を高める導電ペーストが得られる。請求項13〜
18記載の複合導電粉は、請求項12記載の複合導電粉
のうち特に導電性に優れ、さらに請求項12記載の複合
導電粉に加えて耐酸化性及び耐熱性に優れる導電ペース
トが得られる。請求項19〜21記載の複合導電粉は、
加圧してアンカー効果を有する導電ペーストが得られ
る。請求項22記載の複合導電粉は、比抵抗が低く、高
導電性で、かつ耐マイグレーション性に優れる電気回路
形成用の導電ペーストが得られる。
The composite conductive powder according to claim 12 has a low specific resistance, high conductivity, a small change in specific resistance even after a thermal shock test or a humidity / humidity load test, and improves the contact probability between conductive powders. However, the conductivity of the electric circuit is increased, and in particular, a conductive paste can be obtained that enhances the conductivity when the circuit is printed on a sheet-shaped substrate and the printed circuit is pressed. Claim 13-
The composite conductive powder according to claim 18 is particularly excellent in conductivity among the composite conductive powder according to claim 12, and in addition to the composite conductive powder according to claim 12, a conductive paste having excellent oxidation resistance and heat resistance can be obtained. The composite conductive powder according to claims 19 to 21,
By applying pressure, a conductive paste having an anchor effect is obtained. With the composite conductive powder according to claim 22, a conductive paste for forming an electric circuit, which has a low specific resistance, high conductivity, and excellent migration resistance, can be obtained.

【0085】請求項23〜25記載の導電ペーストは、
比抵抗が低く、高導電性で、かつ冷熱衝撃試験や湿中負
荷試験後も比抵抗の変化が小さい電気回路形成用に好適
である。請求項26記載の導電ペーストは、比抵抗が低
く、導電粉同士の接触確率を改善し、電気回路の導電性
が高く、かつ耐マイグレーション性に優れる電気回路形
成用に好適である。請求項27記載の電気回路は、比抵
抗が低く、高導電性で、かつ耐マイグレーション性に優
れる。請求項28記載の電気回路は、請求項27記載の
電気回路に加えて微細な回路を形成するのに優れる。請
求項29記載の電気回路の製造法は、比抵抗が低く、高
導電性で、かつ耐マイグレーション性に優れる電気回路
が製造できる。請求項30記載の電気回路の製造法は、
請求項29記載の電気回路の製造法に加えて微細な回路
を形成するのに優れる電気回路が製造できる。
The conductive paste according to claims 23 to 25 is
It is suitable for forming an electric circuit having a low specific resistance, high conductivity, and a small change in specific resistance even after a thermal shock test or a humidity / humidity load test. The conductive paste according to claim 26 is suitable for forming an electric circuit which has a low specific resistance, improves the probability of contact between conductive powders, has a high electric circuit conductivity, and is excellent in migration resistance. The electric circuit according to claim 27 has a low specific resistance, high conductivity, and excellent migration resistance. The electric circuit according to claim 28 is excellent in forming a fine circuit in addition to the electric circuit according to claim 27. According to the method for producing an electric circuit as claimed in claim 29, an electric circuit having a low specific resistance, high conductivity and excellent migration resistance can be produced. A method of manufacturing an electric circuit according to claim 30,
In addition to the method of manufacturing an electric circuit according to claim 29, an electric circuit excellent in forming a fine circuit can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】ポリエチレンテレフタレートフィルムに銀導電
体回路を印刷した状態を示す平面図である。
FIG. 1 is a plan view showing a state in which a silver conductor circuit is printed on a polyethylene terephthalate film.

【図2】本発明の実施例になる回路板の平面図である。FIG. 2 is a plan view of a circuit board according to an embodiment of the present invention.

【図3】ICチップの平面図である。FIG. 3 is a plan view of an IC chip.

【図4】回路板のチップ搭載部にICチップを搭載した
状態を示す概略図である。
FIG. 4 is a schematic view showing a state where an IC chip is mounted on a chip mounting portion of a circuit board.

【図5】ポリエチレンテレフタレートフィルムに銀導電
体回路をくし型状に印刷した状態を示す平面図である。
FIG. 5 is a plan view showing a state in which a silver conductor circuit is printed in a comb shape on a polyethylene terephthalate film.

【符号の説明】[Explanation of symbols]

1 銀導電体回路 2 ポリエチレンテレフタレートフィルム 3 基板 4 回路 5 チップ搭載部 6 回路板 7 テスト回路 8 ICチップ 9 シリコン基板 1 silver conductor circuit 2 polyethylene terephthalate film 3 substrate 4 circuit 5 chip mounting part 6 circuit board 7 test circuit 8 IC chip 9 silicon substrate

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平7−140495 (32)優先日 平7(1995)6月7日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平7−181473 (32)優先日 平7(1995)7月18日 (33)優先権主張国 日本(JP) (72)発明者 小野 利一 茨城県日立市鮎川町三丁目3番1号 桜川 産業株式会社内 (72)発明者 三上 喜勝 東京都新宿区西新宿二丁目1番1号 日立 化成工業株式会社内 (72)発明者 堂河内 久司 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社結城工場内 (72)発明者 和田 弘 茨城県ひたちなか市大字足崎字西原1380番 地1 日立化成工業株式会社山崎工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (31) Priority claim number Japanese Patent Application No. 7-140495 (32) Priority date Hei 7 (1995) June 7 (33) Country of priority claim Japan (JP) (31) Priority Claim Number Japanese Patent Application No. 7-181473 (32) Priority Date July 7 (1995) July 18 (33) Country of priority claim Japan (JP) (72) Inventor Riichi Ono 3-3 Ayukawacho, Hitachi City, Ibaraki Prefecture No. 1 in Sakuragawa Sangyo Co., Ltd. (72) Inventor Yoshikatsu Mikami 2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo Inside Hitachi Chemical Co., Ltd. (72) Inventor Kuji Dogawachi 1150 Goshomiya, Shimodate-shi, Ibaraki Prefecture Hitachi Chemical Co., Ltd., Yuki Plant (72) Inventor Hiroshi Wada 1380 Nishihara, Ashikaga, Hitachinaka City, Ibaraki Prefecture 1 Hitachi Chemical Co., Ltd., Yamazaki Plant

Claims (30)

【特許請求の範囲】[Claims] 【請求項1】 扁平状導電粉及び不定形状導電粉を含む
複合導電粉。
1. A composite conductive powder containing flat conductive powder and irregular-shaped conductive powder.
【請求項2】 扁平状導電粉の材質が銀、銀合金又は銀
被覆導電体である請求項1記載の複合導電粉。
2. The composite conductive powder according to claim 1, wherein the material of the flat conductive powder is silver, a silver alloy or a silver-coated conductor.
【請求項3】 扁平状導電粉が扁平状の銀被覆導電体粉
である請求項1記載の複合導電粉。
3. The composite conductive powder according to claim 1, wherein the flat conductive powder is a flat silver-coated conductive powder.
【請求項4】 扁平状の銀被覆導電体粉が銀被覆銅粉又
は銀被覆銅合金粉である請求項3記載の複合導電粉。
4. The composite conductive powder according to claim 3, wherein the flat silver-coated conductor powder is silver-coated copper powder or silver-coated copper alloy powder.
【請求項5】 扁平状の銀被覆導電体粉が被覆されてい
る導電体が露出している銀被覆銅粉である請求項3又は
請求項4記載の複合導電粉。
5. The composite conductive powder according to claim 3, which is a silver-coated copper powder in which the conductor covered with the flat silver-coated conductor powder is exposed.
【請求項6】 不定形状導電粉の材質が銀又は銀合金で
ある請求項1〜5のいずれかに記載の複合導電粉。
6. The composite conductive powder according to claim 1, wherein the material of the irregular-shaped conductive powder is silver or a silver alloy.
【請求項7】 不定形状導電粉が還元銀粉である請求項
6記載の複合導電粉。
7. The composite conductive powder according to claim 6, wherein the irregular-shaped conductive powder is reduced silver powder.
【請求項8】 不定形状導電粉が、銀又は銀合金より硬
度が高い導電体が銀で被覆されたものである請求項6記
載の複合導電粉。
8. The composite conductive powder according to claim 6, wherein the irregular-shaped conductive powder is a conductive material having a hardness higher than that of silver or a silver alloy coated with silver.
【請求項9】 銀又は銀合金より硬度が高い導電体がC
o、Ni、Cr、Cu、W粉又はこれらの合金粉である
請求項8記載の複合導電粉。
9. A conductor having a hardness higher than that of silver or a silver alloy is C.
The composite conductive powder according to claim 8, which is o, Ni, Cr, Cu, W powder or an alloy powder thereof.
【請求項10】 銀又は銀合金より硬度が高い導電体が
銅粉又は銅合金粉である請求項9記載の複合導電粉。
10. The composite conductive powder according to claim 9, wherein the conductor having a hardness higher than that of silver or silver alloy is copper powder or copper alloy powder.
【請求項11】 不定形状導電粉が、被覆された導電体
が露出している銀被覆銅粉又は銀被覆銅合金粉である請
求項8〜10のいずれかに記載の複合導電粉。
11. The composite conductive powder according to claim 8, wherein the irregular-shaped conductive powder is silver-coated copper powder or silver-coated copper alloy powder in which the coated conductor is exposed.
【請求項12】 アスペクト比が6以上の導電粉及びア
スペクト比が5以下の導電粉を含む複合導電粉。
12. A composite conductive powder containing conductive powder having an aspect ratio of 6 or more and conductive powder having an aspect ratio of 5 or less.
【請求項13】 アスペクト比が6以上の導電粉の材質
が銀、銀合金又は銀被覆導電体である請求項12記載の
複合導電粉。
13. The composite conductive powder according to claim 12, wherein the material of the conductive powder having an aspect ratio of 6 or more is silver, a silver alloy, or a silver-coated conductor.
【請求項14】 アスペクト比が6以上の導電粉がアス
ペクト比が6以上の銀被覆導電体粉である請求項12記
載の複合導電粉。
14. The composite conductive powder according to claim 12, wherein the conductive powder having an aspect ratio of 6 or more is silver-coated conductive powder having an aspect ratio of 6 or more.
【請求項15】 アスペクト比が6以上の銀被覆導電体
粉が銀被覆銅粉又は銀被覆銅合金粉である請求項14記
載の複合導電粉。
15. The composite conductive powder according to claim 14, wherein the silver-coated conductor powder having an aspect ratio of 6 or more is silver-coated copper powder or silver-coated copper alloy powder.
【請求項16】 アスペクト比が6以上の銀被覆導電体
粉が、被覆されている導電体が露出している銀被覆銅粉
又は銀被覆銅合金粉である請求項14又は請求項15記
載の複合導電粉。
16. The silver-coated conductor powder having an aspect ratio of 6 or more is silver-coated copper powder or silver-coated copper alloy powder in which the coated conductor is exposed. Composite conductive powder.
【請求項17】 アスペクト比が5以下の導電粉の材質
が銀又は銀合金である請求項12〜16のいずれかに記
載の複合導電粉。
17. The composite conductive powder according to claim 12, wherein the material of the conductive powder having an aspect ratio of 5 or less is silver or a silver alloy.
【請求項18】 アスペクト比が5以下の導電粉が還元
銀粉である請求項17記載の複合導電粉。
18. The composite conductive powder according to claim 17, wherein the conductive powder having an aspect ratio of 5 or less is reduced silver powder.
【請求項19】 アスペクト比が5以下の導電粉が、銀
又は銀合金より硬度が高い導電体が銀で被覆されたもの
である請求項17記載の複合導電粉。
19. The composite conductive powder according to claim 17, wherein the conductive powder having an aspect ratio of 5 or less is obtained by coating a conductor having a hardness higher than that of silver or a silver alloy with silver.
【請求項20】 銀又は銀合金より硬度が高い導電体が
Co、Ni、Cr、Cu、W粉又はこれらの合金粉であ
る請求項19記載の複合導電粉。
20. The composite conductive powder according to claim 19, wherein the conductor having a hardness higher than that of silver or silver alloy is Co, Ni, Cr, Cu, W powder or alloy powder thereof.
【請求項21】 銀又は銀合金より硬度が高い導電体が
銅粉又は銅合金粉である請求項19記載の複合導電粉。
21. The composite conductive powder according to claim 19, wherein the conductor having a hardness higher than that of silver or silver alloy is copper powder or copper alloy powder.
【請求項22】 不定形状導電粉が、被覆された導電体
が露出している銀被覆銅粉である請求項19〜21のい
ずれかに記載の複合導電粉。
22. The composite conductive powder according to claim 19, wherein the irregular-shaped conductive powder is a silver-coated copper powder in which the coated conductor is exposed.
【請求項23】 請求項1〜22のいずれかに記載の複
合導電粉、結合剤及び溶剤を含有してなる導電ペース
ト。
23. A conductive paste containing the composite conductive powder according to claim 1, a binder and a solvent.
【請求項24】 複合導電粉が導電ペーストの固形分に
対して85〜93重量%含有される請求項23記載の導
電ペースト。
24. The conductive paste according to claim 23, wherein the composite conductive powder is contained in an amount of 85 to 93% by weight based on the solid content of the conductive paste.
【請求項25】 請求項1〜11のいずれかに記載の複
合導電粉、結合剤及び溶剤を含有してなり、扁平状導電
粉95〜50重量%に対し、不定形状導電粉5〜50重
量%を含有してなる請求項23又は請求項24記載の導
電ペースト。
25. The composite conductive powder according to any one of claims 1 to 11, a binder and a solvent are contained, and 5 to 50 weight% of irregular conductive powder to 95 to 50 weight% of flat conductive powder. 25. The conductive paste according to claim 23 or 24, wherein the conductive paste contains 20%.
【請求項26】 請求項12〜22のいずれかに記載の
複合導電粉、結合剤及び溶剤を含有してなり、アスペク
ト比が6以上の導電粉95〜50重量%に対し、アスペ
クト比が5以下の導電粉5〜50重量%を含有してなる
請求項23又は請求項24記載の導電ペースト。
26. Aspect ratio of 5 to 95% by weight of the electroconductive powder containing the composite electroconductive powder according to any one of claims 12 to 22, a binder and a solvent and having an aspect ratio of 6 or more. 25. The conductive paste according to claim 23 or 24, which contains 5 to 50% by weight of the following conductive powder.
【請求項27】 請求項23〜26のいずれかに記載の
導電ペーストを用いて基板の表面に形成された電気回
路。
27. An electric circuit formed on the surface of a substrate using the conductive paste according to claim 23.
【請求項28】 基材の表面に形成された電気回路の比
抵抗が25μΩ・cm以下である請求項27記載の電気回
路。
28. The electric circuit according to claim 27, wherein the electric circuit formed on the surface of the substrate has a specific resistance of 25 μΩ · cm or less.
【請求項29】 基材の表面に請求項23〜26のいず
れかに記載の導電ペーストで回路パターンを形成した
後、加圧、硬化することを特徴とする電気回路の製造
法。
29. A method of manufacturing an electric circuit, comprising forming a circuit pattern on the surface of a base material with the conductive paste according to claim 23, and then pressing and curing the circuit pattern.
【請求項30】 基材の表面に形成された電気回路の比
抵抗が25μΩ・cm以下であることを特徴とする請求項
29記載の電気回路の製造法。
30. The method for producing an electric circuit according to claim 29, wherein the electric circuit formed on the surface of the substrate has a specific resistance of 25 μΩ · cm or less.
JP01991496A 1995-02-08 1996-02-06 Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit Expired - Fee Related JP3513636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01991496A JP3513636B2 (en) 1995-02-08 1996-02-06 Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2026895 1995-02-08
JP2026995 1995-02-08
JP4695395 1995-03-07
JP14049595 1995-06-07
JP7-20269 1995-07-18
JP18147395 1995-07-18
JP7-181473 1995-07-18
JP7-140495 1995-07-18
JP7-46953 1995-07-18
JP7-20268 1995-07-18
JP01991496A JP3513636B2 (en) 1995-02-08 1996-02-06 Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003329831A Division JP2004079545A (en) 1995-02-08 2003-09-22 Compound electroconductive powder, electroconductive paste, electric circuit, and manufacturing method of electric circuit

Publications (2)

Publication Number Publication Date
JPH0992026A true JPH0992026A (en) 1997-04-04
JP3513636B2 JP3513636B2 (en) 2004-03-31

Family

ID=27548893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01991496A Expired - Fee Related JP3513636B2 (en) 1995-02-08 1996-02-06 Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit

Country Status (1)

Country Link
JP (1) JP3513636B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027102A (en) * 2001-07-06 2003-01-29 Mitsui Mining & Smelting Co Ltd Silver-coated metal powder, method for manufacturing the same, conductive paste using the same, and printed wiring board containing conductor formed by using the conductive paste
JP2007188845A (en) * 2006-01-16 2007-07-26 Mitsui Mining & Smelting Co Ltd Conductive powder, conductive paste and electrical circuit
KR100844970B1 (en) * 2001-02-13 2008-07-11 내쇼날 스타치 앤드 케미칼 인베스트멘트 홀딩 코포레이션 Conductive and resistive materials with electrical stability for use in electronics devices
JP2008223058A (en) * 2007-03-09 2008-09-25 Alpha Scientific Kk Mixed conductive powder and its manufacturing method, and conductive paste and its manufacturing method
JP2010123457A (en) * 2008-11-20 2010-06-03 Panasonic Electric Works Co Ltd Conductive paste, and conductor pattern
JP2016204687A (en) * 2015-04-17 2016-12-08 住友金属鉱山株式会社 Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP2018526526A (en) * 2015-09-04 2018-09-13 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Metal paste and its use for joining components
JP2019012663A (en) * 2017-06-30 2019-01-24 東洋インキScホールディングス株式会社 Conductive composition and method for producing conductor film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844970B1 (en) * 2001-02-13 2008-07-11 내쇼날 스타치 앤드 케미칼 인베스트멘트 홀딩 코포레이션 Conductive and resistive materials with electrical stability for use in electronics devices
JP2003027102A (en) * 2001-07-06 2003-01-29 Mitsui Mining & Smelting Co Ltd Silver-coated metal powder, method for manufacturing the same, conductive paste using the same, and printed wiring board containing conductor formed by using the conductive paste
JP2007188845A (en) * 2006-01-16 2007-07-26 Mitsui Mining & Smelting Co Ltd Conductive powder, conductive paste and electrical circuit
JP2008223058A (en) * 2007-03-09 2008-09-25 Alpha Scientific Kk Mixed conductive powder and its manufacturing method, and conductive paste and its manufacturing method
JP2010123457A (en) * 2008-11-20 2010-06-03 Panasonic Electric Works Co Ltd Conductive paste, and conductor pattern
JP2016204687A (en) * 2015-04-17 2016-12-08 住友金属鉱山株式会社 Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP2018526526A (en) * 2015-09-04 2018-09-13 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Metal paste and its use for joining components
JP2019012663A (en) * 2017-06-30 2019-01-24 東洋インキScホールディングス株式会社 Conductive composition and method for producing conductor film

Also Published As

Publication number Publication date
JP3513636B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
US5951918A (en) Composite electroconductive powder, electroconductive paste, process for producing electroconductive paste, electric circuit and process for producing electric circuit
JP4677900B2 (en) Mixed conductive powder and its use
US10550291B2 (en) Core-shell, oxidation-resistant, electrically conducting particles for low temperature conductive applications
JP3599149B2 (en) Conductive paste, electric circuit using conductive paste, and method of manufacturing electric circuit
JP3879749B2 (en) Conductive powder and method for producing the same
JP3513636B2 (en) Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit
JP2004165357A (en) Film-laced heat-conducting sheet
JPH1021740A (en) Anisotropic conductive composition and film
JP3598631B2 (en) Conductive paste, method for producing the same, electric circuit device using conductive paste, and method for producing the same
JPH10152630A (en) Conductive paste and composite conductive powder
JP3952004B2 (en) Conductive paste
JP4354047B2 (en) Conductive paste composition for via filling
JP3596563B2 (en) Conductive paste
JPH0714427A (en) Conductive paste
JPH10188670A (en) Flat conductive metal powder, its manufacture, and conductive paste with flat conductive metal powder
JP2004079545A (en) Compound electroconductive powder, electroconductive paste, electric circuit, and manufacturing method of electric circuit
JPH06333417A (en) Conductive paste
JP2003253239A (en) Method for connecting circuit and adhesive therefor
JPH08335406A (en) Conductive composite metallic powder, and manufacture thereof
JPH07307110A (en) Conductive paste
JPH0953032A (en) Conductive paste and production of electrical circuit board
JPH07307109A (en) Conductive paste
JPH07307112A (en) Conductive paste
JPH07262820A (en) Conductive paste
JP2021089894A (en) Anisotropically conducting film and connection structure

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

LAPS Cancellation because of no payment of annual fees