JP2007188845A - Conductive powder, conductive paste and electrical circuit - Google Patents

Conductive powder, conductive paste and electrical circuit Download PDF

Info

Publication number
JP2007188845A
JP2007188845A JP2006007962A JP2006007962A JP2007188845A JP 2007188845 A JP2007188845 A JP 2007188845A JP 2006007962 A JP2006007962 A JP 2006007962A JP 2006007962 A JP2006007962 A JP 2006007962A JP 2007188845 A JP2007188845 A JP 2007188845A
Authority
JP
Japan
Prior art keywords
conductive
particles
flat
spherical
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006007962A
Other languages
Japanese (ja)
Other versions
JP4881013B2 (en
Inventor
Takashi Fujiwara
隆 藤原
Masahiro Miwa
昌宏 三輪
Shintaro Wachi
慎太郎 和地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006007962A priority Critical patent/JP4881013B2/en
Publication of JP2007188845A publication Critical patent/JP2007188845A/en
Application granted granted Critical
Publication of JP4881013B2 publication Critical patent/JP4881013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve electrical resistance characteristics for conductive powder made of coating powder equipped with a conductive coating on the surface of a core material. <P>SOLUTION: The conductive powder contains spherical conductive coating particles with an aspect ratio of 1.0 to 1.5 and flat conductive coating particles with an aspect ratio of 5.0 to 20.0, and also, the spherical conductive coating particles and the flat conductive coating particles are equipped with conductive coating layers made of the same composition on the surface of a core material made of the same or different materials. Without thickening the conductive coating layers, the excellent electric resistance characteristics can be realized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、導電性ペーストなどの構成材料として用いることができる導電性粉末、詳しくは、芯材の表面に導電性コート層を備えたコート粉からなる導電性粉末に関する。   The present invention relates to a conductive powder that can be used as a constituent material such as a conductive paste, and more particularly to a conductive powder made of a coated powder having a conductive coating layer on the surface of a core material.

金、銀、パラジウム、白金などの貴金属は導電性に優れているため、異方導電性フィルム、導電性ペースト、導電性接着剤など、各種導電性材料の主要構成材料として用いられている。例えば貴金属粒子に、結合剤および溶剤を混合して導電性ペーストとし、この導電性ペーストを用いて基板上に回路パターンを印刷し、焼き付けることでプリント配線板や電子部品の電気回路などを形成することができる。   Since noble metals such as gold, silver, palladium, and platinum are excellent in conductivity, they are used as main constituent materials of various conductive materials such as anisotropic conductive films, conductive pastes, and conductive adhesives. For example, a noble metal particle is mixed with a binder and a solvent to form a conductive paste, and a circuit pattern is printed on the substrate using this conductive paste and baked to form a printed wiring board or an electric circuit of an electronic component. be able to.

金、銀、パラジウム、白金などの貴金属はとても高価であるため、無電解メッキなどによって芯材粒子の表面に貴金属の膜をメッキしてなるコート粉と呼ばれる導電性粉末が開発され使用されている。例えば特許文献1には、相対的に融点が高い金属からなる核粒子と、その周囲に形成された相対的に融点が低い金属からなるコート層とからなる導電性粒子が開示されている。   Since noble metals such as gold, silver, palladium, and platinum are very expensive, conductive powder called coating powder, which is obtained by plating a noble metal film on the surface of core material particles by electroless plating or the like, has been developed and used. . For example, Patent Document 1 discloses conductive particles including core particles made of a metal having a relatively high melting point and a coating layer formed around the metal and having a relatively low melting point.

また、従来の導電性ペーストには、球状の貴金属粒子からなる導電性粉末が使用されることが一般的であったが、球状の貴金属粒子からなる導電性粉末は、粒子同士が互いに絡み合うことが少ないため、ペースト化する際及びペーストとしての使用時に流動性が大き過ぎたり、導電性ペーストを均一な厚みに塗布することが難しかったりするなどの課題を有していた。そこで、球状粒子とフレーク状粒子とを混合するなど、異種形状の粒子を混合することが提案されている。例えば特許文献2には、多角形板状からなる粉末と、球状粒子からなる粉末とを混合してなる金属粉末を含む導電性ペーストが開示されている。特許文献3には、アスペクト比が5以上の導電粉、アスペクト比が3以下の導電粉、バインダ及び溶剤を含む導電ペーストにおいて、バインダを導電ペーストの固形分に対して20〜50体積%含有してなる導電ペーストが開示されている。また、特許文献4には、フレーク形状の金属粉末に微小粒径の球状粉を加えることが開示されている。   In addition, conductive powder made of spherical noble metal particles is generally used for conventional conductive pastes, but conductive powder made of spherical noble metal particles may be entangled with each other. For this reason, there are problems such that the fluidity is too large when the paste is used or used as a paste, and it is difficult to apply the conductive paste to a uniform thickness. Therefore, it has been proposed to mix particles of different shapes, such as mixing spherical particles and flaky particles. For example, Patent Document 2 discloses a conductive paste containing a metal powder obtained by mixing a powder made of a polygonal plate and a powder made of spherical particles. In Patent Document 3, in a conductive paste containing conductive powder having an aspect ratio of 5 or more, conductive powder having an aspect ratio of 3 or less, a binder and a solvent, the binder is contained in an amount of 20 to 50% by volume based on the solid content of the conductive paste. An electrically conductive paste is disclosed. Patent Document 4 discloses that a spherical powder having a minute particle diameter is added to a flake-shaped metal powder.

特開2002−334614号公報JP 2002-334614 A 特開2003−59337号公報JP 2003-59337 A 特開平10−64331号公報JP-A-10-64331 特開2005−8930号公報JP 2005-8930 A

本発明の目的は、コート粉からなる導電性粉末を改良し、安価で且つ優れた導電性能を実現できる導電性粉末を提供することにある。   An object of the present invention is to provide an electrically conductive powder that can improve the electrically conductive powder made of a coated powder and can realize an excellent electrically conductive performance at low cost.

近年、電子部品の小型化によって電極等のファインピッチ化や小面積化が進み、より優れた導電性能が求められている。そのために導電性コート層の膜厚を厚くしたのではコスト面でのメリットが希薄されてしまう。そこで、導電性コート層の膜厚を厚くすることなく、優れた電気抵抗特性を実現できる導電性粉末を提供せんとするものである。   In recent years, with the miniaturization of electronic components, fine pitches and small areas of electrodes and the like have advanced, and more excellent conductive performance has been demanded. Therefore, if the film thickness of the conductive coating layer is increased, the merit in terms of cost is diluted. Therefore, an object of the present invention is to provide a conductive powder that can realize excellent electrical resistance characteristics without increasing the thickness of the conductive coating layer.

本発明は、アスペクト比1.0〜1.5の球状導電性コート粒子とアスペクト比5.0〜20.0の扁平状導電性コート粒子とを含有し、且つ、これら球状導電性コート粒子及び扁平状導電性コート粒子は、同一又は異なる材質からなる芯材の表面に同一組成からなる導電性コート層を備えることを特徴とする導電性粉末を提案する。   The present invention comprises spherical conductive coat particles having an aspect ratio of 1.0 to 1.5 and flat conductive coat particles having an aspect ratio of 5.0 to 20.0, and these spherical conductive coat particles and The flat conductive coat particle proposes a conductive powder comprising a conductive coat layer having the same composition on the surface of a core material made of the same or different material.

このように球状導電性コート粒子と扁平状導電性コート粒子とを混合することで、導電性コート粒子の分散性を維持しながらも、優れた電気抵抗特性を実現することができる。しかも、同一組成からなる導電性コート層を備えた球状導電性コート粒子と扁平状導電性コート粒子とを混合することで、例えば導電性ペーストを調製して硬化させた時に球状導電性コート粒子と扁平状導電性コート粒子との間に同一組成からなる導電性ネットワークが形成され、導電性コート層の膜厚を厚くすることなくより一層優れた電気抵抗特性を実現することができる。   Thus, by mixing the spherical conductive coat particles and the flat conductive coat particles, excellent electrical resistance characteristics can be realized while maintaining the dispersibility of the conductive coat particles. Moreover, by mixing spherical conductive coat particles having a conductive coat layer having the same composition and flat conductive coat particles, for example, when the conductive paste is prepared and cured, the spherical conductive coat particles and A conductive network having the same composition is formed between the flat conductive coat particles, and even more excellent electrical resistance characteristics can be realized without increasing the thickness of the conductive coat layer.

中でも、球状の芯材粒子と扁平状の芯材粒子とを混合し、この混合状態の芯材粒子の表面に導電性コート層を形成して得られる導電性粉末は、本発明の導電性粉末として特に好ましい。このように球状の芯材粒子と扁平状の芯材粒子とを混合し、この混合状態の各芯材粒子の表面に導電性コート層を形成することにより、球状導電性コート粒子及び扁平状導電性コート粒子の導電性コート層を同一組成で且つ同じ膜厚に形成することができるから、導電性コート粒子と扁平状導電性コート粒子との間に同一組成でしかも均一な厚さの導電性ネットワークが形成され、より一層優れた電気抵抗特性を実現できる。   Among them, the conductive powder obtained by mixing spherical core particles and flat core particles and forming a conductive coat layer on the surface of the mixed core particles is the conductive powder of the present invention. Is particularly preferred. By mixing the spherical core particles and the flat core particles in this way, and forming the conductive coat layer on the surface of each of the mixed core particles, the spherical conductive coat particles and the flat conductive particles are formed. Since the conductive coating layer of the conductive coating particles can be formed with the same composition and the same film thickness, the conductive coating particles and the conductive conductive particles having the same composition and uniform thickness between the flat conductive coating particles. A network is formed, and even more excellent electrical resistance characteristics can be realized.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態について詳述するが、本発明の範囲が以下の実施形態に限定されるものではない。
なお、本明細書において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意であり、「好ましくはXより大きく、Yより小さい」の意を包含するものである。
Hereinafter, although embodiment of this invention is explained in full detail, the scope of the present invention is not limited to the following embodiment.
In this specification, “X to Y” (X and Y are arbitrary numbers) means “X or more and Y or less” unless otherwise specified, and “preferably larger than X, Y It includes the meaning of “smaller”.

本実施形態の導電性粉末は、球状の導電性コート粒子(「球状導電性コート粒子」とも言う)と扁平状の導電性コート粒子(「扁平状導電性コート粒子」)とを混合状態で含有する導電性粉末である。   The conductive powder of this embodiment contains spherical conductive coat particles (also referred to as “spherical conductive coat particles”) and flat conductive coat particles (“flat conductive coat particles”) in a mixed state. Conductive powder.

球状導電性コート粒子及び扁平状導電性コート粒子はいずれも、芯材の表面に導電性コート層を備えた積層構造の粒子である。導電性コート層は、最表面に形成されていればよく、芯材と導電性コート層との間に中間層を備えていてもよい。この中間層は、例えば導電性コート層をより安定化させるためならば、Sn-Pd系触媒や塩化Pd系触媒などからなる触媒層などを設ければよい。但し、これに限定するものではない。   Both spherical conductive coat particles and flat conductive coat particles are particles having a laminated structure in which a conductive coat layer is provided on the surface of a core material. The conductive coat layer may be formed on the outermost surface, and an intermediate layer may be provided between the core material and the conductive coat layer. This intermediate layer may be provided with a catalyst layer made of Sn—Pd catalyst or Pd chloride catalyst, for example, in order to further stabilize the conductive coating layer. However, the present invention is not limited to this.

球状導電性コート粒子及び扁平状導電性コート粒子の芯材は、その材質を特に限定するものではなく、例えば金属やセラミックス等からなる無機粒子、樹脂等からなる有機粒子でもよい。非金属の具体例としては例えば硫酸バリウム、炭酸カルシウム、酸化亜鉛、アルミナ等のセラミックスを挙げることができる。
なお、金属粒子を芯材とする場合は、導電性コート層の材料と固溶体を形成し難い材質の金属を選択することが好ましい。
また、球状導電性コート粒子の芯材と扁平状導電性コート粒子の芯材とは、同じ材質であっても異なる材質であってもよい。
The core material of the spherical conductive coat particle and the flat conductive coat particle is not particularly limited, and may be, for example, inorganic particles made of metal or ceramics, or organic particles made of resin. Specific examples of the nonmetal include ceramics such as barium sulfate, calcium carbonate, zinc oxide, and alumina.
When metal particles are used as the core material, it is preferable to select a metal that is difficult to form a solid solution with the material of the conductive coating layer.
The core material of the spherical conductive coat particle and the core material of the flat conductive coat particle may be the same material or different materials.

球状導電性コート粒子及び扁平状導電性コート粒子の導電性コート層は、導電性を有する組成であれば特に組成を限定するものではない。例えば金、銀、白金、パラジウムなどの貴金属或いはこれらの合金を主成分として挙げることができる。
球状導電性コート粒子の導電性コート層と扁平状導電性コート粒子の導電性コート層の組成は同一であるのが好ましい。導電性コート層を同一組成とすることにより、例えば導電性ペーストを調製して硬化させた時に球状導電性コート粒子と扁平状導電性コート粒子との間に同一組成からなる均一な導電性ネットワークが形成され、導電性コート層の膜厚を厚くすることなく電気抵抗特性を高めることができる。
The conductive coating layer of the spherical conductive coat particle and the flat conductive coat particle is not particularly limited as long as it has a conductive composition. For example, a noble metal such as gold, silver, platinum, palladium, or an alloy thereof can be used as a main component.
The composition of the conductive coat layer of the spherical conductive coat particles and the conductive coat layer of the flat conductive coat particles are preferably the same. When the conductive coating layer has the same composition, for example, when a conductive paste is prepared and cured, a uniform conductive network having the same composition is formed between the spherical conductive coating particles and the flat conductive coating particles. The electrical resistance characteristics can be enhanced without increasing the thickness of the conductive coating layer formed.

導電性コート層の膜厚は、導電性コート層の組成にもよるが、球状導電性コート粒子及び扁平状導電性コート粒子のいずれも、0.01μm〜0.8μmであるのが好ましい。中でも、導電性コート層の主成分が金、白金、パラジウム、ロジウム或いはこれらの合金である場合は、0.01μm〜0.08μmであるのが好ましく、導電性コート層の主成分が銀或いはこの合金である場合は、0.1μm〜0.8μmであるのが好ましい。これらの範囲より薄いと、優れた導電特性が得られず抵抗が高くなってしまう。他方、これらの範囲より厚いと、コストメリットが希薄になってしまう。本発明の利益は、コート粉における導電性コート層の膜厚を厚くすることなく優れた電気抵抗特性を実現できることにある。
また、球状導電性コート粒子と扁平状導電性コート粒子との間に均一な導電性ネットワークを形成させる観点から、球状導電性コート粒子と扁平状導電性コート粒子の導電性コート層の膜厚は略同じであるのが好ましい。
The film thickness of the conductive coat layer depends on the composition of the conductive coat layer, but it is preferable that both the spherical conductive coat particles and the flat conductive coat particles are 0.01 μm to 0.8 μm. Among these, when the main component of the conductive coating layer is gold, platinum, palladium, rhodium or an alloy thereof, it is preferably 0.01 μm to 0.08 μm, and the main component of the conductive coating layer is silver or this. In the case of an alloy, it is preferably 0.1 μm to 0.8 μm. If the thickness is smaller than these ranges, excellent conductive properties cannot be obtained and the resistance becomes high. On the other hand, if it is thicker than these ranges, the cost merit becomes dilute. The advantage of the present invention is that excellent electrical resistance characteristics can be realized without increasing the thickness of the conductive coating layer in the coating powder.
In addition, from the viewpoint of forming a uniform conductive network between the spherical conductive coat particles and the flat conductive coat particles, the film thickness of the conductive coat layer of the spherical conductive coat particles and the flat conductive coat particles is It is preferable that they are substantially the same.

(球状導電性コート粒子)
球状導電性コート粒子は、芯材粒子の表面に導電性コート層を備えた球状の粒子であって、アスペクト比1.0〜1.5、特に1.0〜1.4、中でも特に1.0〜1.3であるのが好ましい。アスペクト比が1.0〜1.5であれば、扁平状導電性コート粒子との間に導電性ネットワークを効率的に形成でき、導電性を高めることができる。
球状導電性コート粒子の粒径は、中心粒径(D50)として1μm〜20μmが好ましく、より好ましくは1.5μm〜18μm、さらに好ましくは2μm〜15μmである。
(Spherical conductive coated particles)
The spherical conductive coat particle is a spherical particle having a conductive coat layer on the surface of the core material particle, and has an aspect ratio of 1.0 to 1.5, particularly 1.0 to 1.4, particularly 1. It is preferably 0 to 1.3. When the aspect ratio is 1.0 to 1.5, a conductive network can be efficiently formed between the flat conductive coat particles and the conductivity can be increased.
The particle diameter of the spherical conductive coat particles is preferably 1 μm to 20 μm, more preferably 1.5 μm to 18 μm, still more preferably 2 μm to 15 μm, as the center particle diameter (D50).

なお、「アスペクト比」とは、各粒子の最長径と最短径の比率(最長径/最短径)をいう。扁平状粒子の場合には、各粒子の最長径と厚みの比率(最長径/厚み)をいう。
また、本発明における中心粒径(D50)は、レーザー散乱型粒度分布測定装置により測定された中心粒径(D50)のことである。
The “aspect ratio” refers to the ratio between the longest diameter and the shortest diameter of each particle (longest diameter / shortest diameter). In the case of flat particles, it refers to the ratio of the longest diameter to the thickness of each particle (longest diameter / thickness).
Moreover, the center particle diameter (D50) in this invention is the center particle diameter (D50) measured with the laser scattering type particle size distribution measuring apparatus.

(扁平状導電性コート粒子)
扁平状導電性コート粒子は、芯材粒子の表面に導電性コート層を備えた扁平状の粒子であって、アスペクト比が5.0〜20.0、特に7.0〜18.0、中でも特に8.0〜15.0であるのが好ましい。アスペクト比が5.0より小さいと、球状導電性コート粒子との間に導電性ネットワークを効率的に形成できなくなり、導電性を高めることが難しくなる。また、20.0より大きいと、中心粒径比にも依るがコスト的に不利になる場合がある。
扁平状導電性コート粒子の粒径は、中心粒径(D50)として1.2μm〜25μmが好ましく、より好ましくは1.8μm〜22μm、さらに好ましくは2.5μm〜18μmである。
(Flat conductive coated particles)
The flat conductive coat particle is a flat particle having a conductive coat layer on the surface of the core material particle, and has an aspect ratio of 5.0 to 20.0, particularly 7.0 to 18.0, In particular, it is preferably 8.0 to 15.0. When the aspect ratio is less than 5.0, it becomes impossible to efficiently form a conductive network between the spherical conductive coat particles, and it becomes difficult to increase the conductivity. On the other hand, if it is larger than 20.0, it may be disadvantageous in terms of cost although it depends on the center particle size ratio.
The particle size of the flat conductive coat particles is preferably 1.2 μm to 25 μm, more preferably 1.8 μm to 22 μm, and even more preferably 2.5 μm to 18 μm, as the center particle size (D50).

ここで、「扁平状」とは、最長径と最短径との差が大きな形状を包括的に包含するものであり、例えば平板状、フレーク状、棒状、りん片状などの形状を含むものである。   Here, the “flat shape” comprehensively includes shapes having a large difference between the longest diameter and the shortest diameter, and includes shapes such as a flat plate shape, a flake shape, a rod shape, and a flake shape.

なお、球状導電性コート粒子のアスペクト比に対する扁平状導電性コート粒子のアスペクト比の比率(:アスペクト比比率)は、2〜20であるのが好ましく、特に3〜15、中でも特に5〜13であるのがさらに好ましい。   The ratio of the aspect ratio of the flat conductive coat particle to the aspect ratio of the spherical conductive coat particle (: aspect ratio ratio) is preferably 2 to 20, particularly 3 to 15, particularly 5 to 13. More preferably.

(導電性粉末(混合粉))
扁平状導電コート粒子と球状導電性コート粒子の混合粉の粒径は、中心粒径(D50)として25μm以下であるのが好ましく、より好ましくは20μm以下、さらに好ましくは15μm以下である。
(Conductive powder (mixed powder))
The particle size of the mixed powder of flat conductive coat particles and spherical conductive coat particles is preferably 25 μm or less, more preferably 20 μm or less, and even more preferably 15 μm or less, as the center particle size (D50).

扁平状導電コート粒子と球状導電性コート粒子との中心粒径比率は、(扁平状導電性コート粒子D50/球状導電性コート粒子D50)=1.2〜10であるのが好ましく、より好ましくは1.3〜9、さらに好ましくは1.4〜8である。   The center particle diameter ratio between the flat conductive coat particles and the spherical conductive coat particles is preferably (flat conductive coat particles D50 / spherical conductive coat particles D50) = 1.2 to 10, more preferably. It is 1.3-9, More preferably, it is 1.4-8.

扁平状導電性コート粒子と球状導電性コート粒子の混合比率は、質量比で(扁平状導電性コート粒子/球状導電性コート粒子)=1.0〜12であるのが好ましく、特に1.1〜11、中でも特に1.2〜10あるのが好ましい。
扁平状導電性コート粒子/球状導電性コート粒子の混合比率を1.0〜12とすることで、導電性コート層の膜厚を厚くすることなく優れた電気抵抗特性を実現できるという利益を享受することができる。
The mixing ratio of the flat conductive coat particles and the spherical conductive coat particles is preferably (flat conductive coat particles / spherical conductive coat particles) = 1.0 to 12, particularly 1.1. ˜11, especially 1.2˜10 is preferred.
By making the mixing ratio of flat conductive coat particles / spherical conductive coat particles 1.0 to 12, it is possible to enjoy the advantage that excellent electrical resistance characteristics can be realized without increasing the thickness of the conductive coat layer. can do.

なお、本実施形態の導電性粉末は、本発明の効果を阻害しない範囲で、球状導電性コート粒子及び扁平状導電性コート粒子以外の他の成分(粒子)を含んでもよい。   In addition, the electroconductive powder of this embodiment may contain other components (particles) other than the spherical electroconductive coat particle and the flat electroconductive coat particle as long as the effects of the present invention are not impaired.

(製造方法)
本実施形態の導電性粉末は、次のようにして製造することができる。但し、次の製造方法に限定されるものではない。
(Production method)
The conductive powder of this embodiment can be manufactured as follows. However, it is not limited to the following manufacturing method.

すなわち、本実施形態の導電性粉末は、球状の芯材粒子と扁平状の芯材粒子とを混合し、この混合状態の各芯材粒子の表面に導電性コート層を形成して製造するのが好ましい。このように製造すれば、球状導電性コート粒子及び扁平状導電性コート粒子の導電性コート層を同一組成で且つ同じ膜厚に形成することができ、例えば導電性ペーストを調製して硬化させた時に球状導電性コート粒子と扁平状導電性コート粒子との間に同一組成で且つ同一厚みからなる均一な導電性ネットワークを形成できるから、導電性コート層の膜厚を厚くすることなく電気抵抗特性を高めることができる。これに対し、導電性コート層を形成した後に混合すると、扁平状粒子、球状粒子それぞれが凝集体を形成してしまい、球状導電性コート粒子と扁平状導電性コート粒子とを均一に混合することが困難になる上、ファインピッチ化した電極用途で不具合を生じ易い。   That is, the conductive powder of the present embodiment is manufactured by mixing spherical core particles and flat core particles, and forming a conductive coat layer on the surface of each mixed core particle. Is preferred. If manufactured in this way, the conductive coating layers of the spherical conductive coating particles and the flat conductive coating particles can be formed with the same composition and the same film thickness. For example, a conductive paste was prepared and cured. Sometimes it is possible to form a uniform conductive network with the same composition and the same thickness between the spherical conductive coat particles and the flat conductive coat particles, so that the electric resistance characteristics can be achieved without increasing the thickness of the conductive coat layer. Can be increased. On the other hand, when the conductive coating layer is formed and then mixed, the flat particles and spherical particles each form an aggregate, and the spherical conductive coating particles and the flat conductive coating particles are uniformly mixed. In addition, it is difficult to cause problems in electrode applications with fine pitches.

球状の芯材粒子は、球状導電性コート粒子に準じて、アスペクト比1.0〜1.5、特に1.0〜1.4、中でも特に1.0〜1.3であるのが好ましい。
球状の芯材粒子の粒径は、中心粒径(D50)として1μm〜20μmが好ましく、より好ましくは1.5μm〜18μm、さらに好ましくは2μm〜15μmである。
このような球状の芯材粒子は、例えば各種アトマイズ法などの公知の方法で得ることができるが、この方法に限定するものではない。
The spherical core material particles preferably have an aspect ratio of 1.0 to 1.5, particularly 1.0 to 1.4, and more preferably 1.0 to 1.3, according to the spherical conductive coat particles.
The particle diameter of the spherical core particles is preferably 1 μm to 20 μm, more preferably 1.5 μm to 18 μm, still more preferably 2 μm to 15 μm, as the center particle diameter (D50).
Such spherical core particles can be obtained by known methods such as various atomizing methods, but are not limited to this method.

他方、扁平状の芯材粒子は、扁平状導電性コート粒子に準じて、アスペクト比5〜20、特に7〜18、中でも特に8〜15であるのが好ましい。
扁平状の芯材粒子の粒径は、中心粒径(D50)として1.2μm〜25μmが好ましく、より好ましくは1.8μm〜22μm、さらに好ましくは2.5μm〜18μmである。
このような扁平状の芯材粒子は、一般的な機械的加工技術により得ることができるが、この方法に限定するものではない。
On the other hand, the flat core material particles preferably have an aspect ratio of 5 to 20, particularly 7 to 18, especially 8 to 15, in accordance with the flat conductive coat particles.
The particle diameter of the flat core particles is preferably 1.2 μm to 25 μm, more preferably 1.8 μm to 22 μm, and even more preferably 2.5 μm to 18 μm, as the center particle diameter (D50).
Such flat core particles can be obtained by a general mechanical processing technique, but are not limited to this method.

なお、球状芯材粒子のアスペクト比に対する扁平状芯材粒子のアスペクト比の比率(:アスペクト比比率)は、2〜20であるのが好ましく、特に3〜15、中でも特に5〜13であるのがさらに好ましい。   The ratio of the aspect ratio of the flat core particles to the aspect ratio of the spherical core particles (: aspect ratio) is preferably 2 to 20, particularly 3 to 15, and especially 5 to 13. Is more preferable.

球状の芯材粒子と扁平状の芯材粒子との混合比率は、質量比で、(扁平状芯材/球状芯材)=1.0〜12であるのが好ましく、特に1.1〜11、中でも特に1.2〜10あるのが好ましい。   The mixing ratio of the spherical core material particles to the flat core material particles is preferably a mass ratio of (flat core material / spherical core material) = 1.0 to 12, particularly 1.1 to 11. Among these, 1.2 to 10 is particularly preferable.

球状の芯材粒子と扁平状の芯材粒子とを混合する際、これを分散媒、例えば水に添加し攪拌混合してスラリー化するのが好ましい。中でも、置換法によって導電性コート層をメッキする場合は、還元処理や酸洗浄処理時、還元法によって導電性コート層をメッキする場合は、触媒活性化処理時に混合しスラリー化しておくのがよい。   When the spherical core material particles and the flat core material particles are mixed, it is preferably added to a dispersion medium, for example, water, and mixed by stirring to form a slurry. In particular, when plating the conductive coating layer by the substitution method, it is preferable to mix and slurry in the catalyst activation treatment when plating the conductive coating layer by the reduction treatment or acid cleaning treatment, or when the conductive coating layer is plated by the reduction method. .

球状の芯材粒子及び扁平状の芯材粒子の表面に導電性コート層を形成する方法は、特に限定するものではないが、各種メッキ法を採用することができる。芯材粒子が金属粒子である場合、置換法、還元法いずれのメッキ法も採用可能である。芯材が非金属の場合には還元法を採用する必要がある。
置換法によって導電性コート層をメッキする場、市販のメッキ液を用いることもできる。
還元法によって導電性コート層をメッキする場合は、芯材の表面にPdを付与させて活性化処理をすることが好ましい。
The method for forming the conductive coating layer on the surface of the spherical core particles and the flat core particles is not particularly limited, but various plating methods can be employed. When the core particle is a metal particle, either a substitution method or a reduction method can be employed. When the core material is non-metallic, it is necessary to adopt a reduction method.
A commercially available plating solution can also be used when the conductive coating layer is plated by a substitution method.
When the conductive coating layer is plated by the reduction method, it is preferable to perform activation by imparting Pd to the surface of the core material.

また、メッキ処理する際、芯材の素材に応じて、Sn-Pd系触媒、塩化Pd系触媒を使用するのが好ましい。また、メッキ処理する前に、ヒドラジン、ホウ化水素ナトリウム(SBHと称する)などの還元剤を用いた還元処理や、硫酸などの酸を用いて酸処理することにより、芯材表面の酸化物層を除去するのが好ましい。
このようなメッキ処理の前処理の段階から球状の芯材粒子及び扁平状の芯材粒子を混合するのが好ましい。
また、無電解メッキした際には、処理後に固液分離し、50〜80℃の雰囲気にて乾燥させるのが好ましい。
なお、芯材粒子の表面に導電性コート層を形成した後、凝集している場合は、超音波やホモジナイザー等を用いて分散処理するのが好ましい。
In addition, it is preferable to use a Sn—Pd catalyst or a Pd chloride catalyst depending on the material of the core material when plating. In addition, the oxide layer on the surface of the core material is obtained by performing a reduction treatment using a reducing agent such as hydrazine or sodium borohydride (SBH) or an acid treatment using an acid such as sulfuric acid before plating. Is preferably removed.
It is preferable to mix the spherical core material particles and the flat core material particles from the pretreatment stage of the plating process.
Moreover, when electroless plating is performed, it is preferable to separate the solid and liquid after the treatment and dry in an atmosphere of 50 to 80 ° C.
In addition, after forming the conductive coat layer on the surface of the core material particles, when the particles are aggregated, it is preferable to perform a dispersion treatment using an ultrasonic wave, a homogenizer, or the like.

(用途)
本発明の導電性粉末は、導電特性に優れているため、異方導電性フィルム、導電性ペースト、導電性接着剤など、各種導電性材料の主要構成材料として好適に用いることができる。
例えば導電性ペーストを調製するには、本発明の導電性粉末をバインダ及び溶剤、さらに必要に応じて硬化剤やカップリング剤、腐食抑制剤などと混合して導電性ペーストを作製することができる。
この際、バインダとしては、液状のエポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂等を挙げることができるが、これらに限定するものではない。
溶剤としては、テルピネオール、エチルカルビトール、カルビトールアセテート、ブチルセロソルブ等が挙げることができる。
硬化剤としては、2エチル4メチルイミダゾールなどを挙げることができる。
腐食抑制剤としては、ベンゾチアゾール、ベンゾイミダゾール等を挙げることができる。
(Use)
Since the conductive powder of the present invention is excellent in conductive properties, it can be suitably used as a main constituent material of various conductive materials such as anisotropic conductive films, conductive pastes, and conductive adhesives.
For example, in order to prepare a conductive paste, the conductive powder of the present invention can be mixed with a binder and a solvent, and further, if necessary, a curing agent, a coupling agent, a corrosion inhibitor, etc., to produce a conductive paste. .
In this case, examples of the binder include liquid epoxy resins, phenol resins, unsaturated polyester resins, and the like, but are not limited thereto.
Examples of the solvent include terpineol, ethyl carbitol, carbitol acetate, butyl cellosolve and the like.
Examples of the curing agent include 2-ethyl 4-methylimidazole.
Examples of the corrosion inhibitor include benzothiazole and benzimidazole.

導電性ペーストは、これを用いて基板上に回路パターンを形成して各種電気回路を形成することができる。例えば焼成済み基板或いは未焼成基板に塗布又は印刷し、加熱し、必要に応じて加圧して焼き付けることでプリント配線板や各種電子部品の電気回路や外部電極などを形成することができる。   The conductive paste can be used to form a circuit pattern on a substrate to form various electric circuits. For example, it is possible to form a printed wiring board, an electric circuit of various electronic components, external electrodes, and the like by applying or printing on a fired substrate or an unfired substrate, heating, pressurizing and baking as necessary.

以下、本発明の実施例について説明するが、本発明が以下の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

<粒子のアスペクト比の測定>
透過型電子顕微鏡(TEM)にて1200倍の写真を撮影し、任意の100個の粒子の最長径を測定し、その平均長径(A)を求めた。また、エポキシ樹脂にて測定サンプルを樹脂埋めし、耐水サンドペーパーP400、P800、P1500、純アルミナ粉末20%スラリーを用いて段階的に樹脂埋めされた粉末断面を研磨した後、走査電子顕微鏡(SEM)にて1000倍の写真を撮影し、任意の100個の粒子の最短径を測定し、その平均短径(B)を求めた。そして、このようにして得られた(A)及び(B)よりアスペクト比(A/B)を算出した。
なお、扁平状の粒子の場合には、任意の100個の粒子の厚みを測定し、その平均厚み(B)を求め、アスペクト比(A/B)を算出した。
<Measurement of particle aspect ratio>
The photograph of 1200 times was taken with a transmission electron microscope (TEM), the longest diameter of arbitrary 100 particles was measured, and the average long diameter (A) was obtained. In addition, the measurement sample was filled with an epoxy resin, and the cross section of the powder filled with resin was polished stepwise using a water-resistant sandpaper P400, P800, P1500, and a pure alumina powder 20% slurry, followed by a scanning electron microscope (SEM). ) Was taken 1000 times, the shortest diameter of any 100 particles was measured, and the average short diameter (B) was determined. Then, the aspect ratio (A / B) was calculated from (A) and (B) thus obtained.
In the case of flat particles, the thickness of arbitrary 100 particles was measured, the average thickness (B) was determined, and the aspect ratio (A / B) was calculated.

<中心粒径測定方法>
測定対象である粉末を少量ビーカーに取り、3%トリトンX溶液(関東化学製)を2、3滴添加し、粉末になじませてから、0.1%SNディスパーサント41溶液(サンノプコ製)50mLを添加し、その後、超音波分散器TIPφ20(日本精機製作所製、OUTPUT:8、TUNING:5)を用いて2分間分散処理して測定用サンプルを調製した。この測定用サンプルを、レーザー回折散乱式粒度分布測定装置MT3300 (日機装製)を用いて、中心粒径(D50)を求めた。
<Center particle size measurement method>
Take a small amount of the powder to be measured in a beaker, add 2 or 3 drops of 3% Triton X solution (Kanto Chemical), and mix with the powder, then add 0.1% SN Dispersant 41 solution (San Nopco) 50mL Then, using a ultrasonic disperser TIPφ20 (Nippon Seiki Seisakusho, OUTPUT: 8, TUNING: 5), dispersion treatment was performed for 2 minutes to prepare a measurement sample. The center particle size (D50) of this measurement sample was determined using a laser diffraction / scattering particle size distribution analyzer MT3300 (manufactured by Nikkiso).

<導電性ペーストの導電性(比抵抗)評価>
エチルセルロース:ターピネオール:粉末を質量比率2:28:70の割合で混合し、3本ロールミルで混合した後、ガラス板状にスクリーン印刷により1cm×5cmの帯状のパターンを印刷した。そのペーストを大気中にて70℃で60分間乾燥させ後、150℃で39分間硬化させ、デジタルボルトメーター(YOKOGAWA ELECTRIC WORKS製)にて電気抵抗を測定し、比抵抗を求めた。
また、マイクロメーターにて膜厚を測定し、
比抵抗(Ω・cm)=幅(cm)×膜厚(μm)×抵抗(Ω)/(長さ(cm)×104
という式にて、導電性ペーストの導電性(比抵抗)を算出した。
<Evaluation of conductivity (specific resistance) of conductive paste>
Ethylcellulose: terpineol: powder was mixed at a mass ratio of 2:28:70, mixed with a three roll mill, and then a 1 cm × 5 cm strip pattern was printed on a glass plate by screen printing. The paste was dried at 70 ° C. for 60 minutes in the air, then cured at 150 ° C. for 39 minutes, and the electrical resistance was measured with a digital voltmeter (manufactured by Yokogawa Electronics Works) to determine the specific resistance.
Also, measure the film thickness with a micrometer,
Specific resistance (Ω · cm) = width (cm) × film thickness (μm) × resistance (Ω) / (length (cm) × 10 4 )
The conductivity (specific resistance) of the conductive paste was calculated by the following formula.

(実施例1)
(1)芯材前処理
扁平状のニッケル粒子からなる扁平状ニッケル粉(三井金属製、D50:12.2μm、アスペクト比:10.4)30g及び球状のニッケル粒子からなる球状ニッケル粉(インコ社製、D50:6.9μm、アスペクト比:1.2)6gを、40℃に保温した500mLの純水中に投入し、5分間攪拌混合させてスラリー化させた。次いで、SBHを5g投入し、30分間攪拌を維持させて還元処理を行った。その後、ブフナー漏斗にて固液分離し、500mLの純水で洗浄した後、メタノールを100mL添加し脱水処理を行い、ケーキ状の混合粒子(芯材)を得た。得られたケーキの水分を測定し、乾粉換算で30g秤量した。
Example 1
(1) Pretreatment of core material Flat nickel powder made of flat nickel particles (Mitsui Metals, D50: 12.2 μm, aspect ratio: 10.4) 30 g and spherical nickel powder made of spherical nickel particles (Inco Corporation) Manufactured, D50: 6.9 μm, aspect ratio: 1.2) 6 g was put into 500 mL of pure water kept at 40 ° C. and stirred for 5 minutes to make a slurry. Next, 5 g of SBH was added, and the reduction treatment was performed while maintaining stirring for 30 minutes. Then, after separating into solid and liquid with a Buchner funnel and washing with 500 mL of pure water, 100 mL of methanol was added and dehydration was performed to obtain cake-like mixed particles (core material). The moisture of the obtained cake was measured and weighed 30 g in terms of dry powder.

(2)無電解メッキ処理
1200mLの純水を80℃に加熱させ、奥野製薬製無電解メッキ液(ムデンゴールド)を69mL添加し、次いでシアン化金カリウムを7.56g添加した。次に、上記で得られたケーキ状の混合粒子(芯材)を投入してスラリー化させ、30分間攪拌を保持した後、固液分離し、1000mLの温純水にて洗浄し、吸引させながらメタノール100mL、アセトン100mLを順次添加して、脱水処理を行った。得られたケーキをステンレス製のバットに移し変えて、70℃の雰囲気で12時間保持し乾燥させ、導電性粉末を得た。
(2) Electroless plating treatment 1200 mL of pure water was heated to 80 ° C., 69 mL of electroless plating solution (Muden Gold) manufactured by Okuno Pharmaceutical Co., Ltd. was added, and then 7.56 g of potassium gold cyanide was added. Next, the cake-like mixed particles (core material) obtained above are put into a slurry, and after stirring for 30 minutes, the mixture is solid-liquid separated, washed with 1000 mL of warm pure water, and methanol while sucking. 100 mL and 100 mL of acetone were sequentially added to perform dehydration treatment. The obtained cake was transferred to a stainless steel vat, held in a 70 ° C. atmosphere for 12 hours and dried to obtain a conductive powder.

得られた導電性粉末の比抵抗(Ω・cm)を測定すると共に、アスペクト比、導電性コート層の膜厚などを算出し、表1及び表2に示した。   While measuring the specific resistance (ohm * cm) of the obtained electroconductive powder, the aspect ratio, the film thickness of the electroconductive coating layer, etc. were calculated and shown in Table 1 and Table 2.

金膜厚、すなわち導電性コート層の膜厚(A)は、次の計算式で算出した。以下同様。
膜厚(A)={貴金属含有率/(貴金属比重×100)}/{芯材比表面積×(1−貴金属含有率/100)}
なお、上記式中の「芯材比表面積」とは、芯材扁平状粒子及び芯材球状粒子それぞれの芯材比表面積に質量比率を掛け合わせた算術平均値である。
The gold film thickness, that is, the film thickness (A) of the conductive coating layer was calculated by the following calculation formula. The same applies below.
Film thickness (A) = {noble metal content / (noble metal specific gravity × 100)} / {core specific surface area × (1−noble metal content / 100)}
The “core material specific surface area” in the above formula is an arithmetic average value obtained by multiplying the core material specific surface areas of the core material flat particles and the core material spherical particles by the mass ratio.

扁平状導電性コート粒子と球状導電性コート粒子の質量比(扁平状/球状)は、次の計算式により算出した。以下同様。
扁平状導電性コート粒子質量/球状導電性コート粒子質量={芯材扁平状粒子質量+(貴金属比重×膜厚(A)×芯材扁平状粒子比表面積×芯材扁平状粒子質量)}/{芯材球状粒子質量+(貴金属比重×膜厚(A)×芯材球状粒子比表面積×芯材球状粒子質量)}
The mass ratio (flat / spherical) between the flat conductive coat particles and the spherical conductive coat particles was calculated by the following formula. The same applies below.
Flat conductive coat particle mass / spherical conductive coat particle mass = {core material flat particle mass + (noble metal specific gravity × film thickness (A) × core flat particle specific surface area × core flat particle mass)} / {Mass of core material spherical particles + (noble metal specific gravity x film thickness (A) x core material spherical particle specific surface area x core material spherical particle mass)}

(実施例2)
実施例1と同様の扁平状ニッケル粉を24gと、球状ニッケル粉を12gとを用いて、実施例1と同様の処理を行い、導電性粉末を得た。
(Example 2)
The same treatment as in Example 1 was performed using 24 g of the same flat nickel powder as in Example 1 and 12 g of the spherical nickel powder to obtain a conductive powder.

得られた導電性粉末の比抵抗(Ω・cm)を測定すると共に、導電性コート層の膜厚、アスペクト比、扁平状導電性コート粒子と球状導電性コート粒子との質量比(扁平状/球状)などを算出し、表1及び表2に示した。   While measuring the specific resistance (Ω · cm) of the obtained conductive powder, the film thickness of the conductive coating layer, the aspect ratio, the mass ratio of the flat conductive coated particles to the spherical conductive coated particles (flat / Sphere) etc. were calculated and shown in Tables 1 and 2.

(実施例3)
実施例1と同様の扁平状ニッケル粉を32gと、球状ニッケル粉を4gとを用いて、実施例1と同様の処理を行い、導電性粉末を得た。
(Example 3)
The same treatment as in Example 1 was performed using 32 g of flat nickel powder similar to that in Example 1 and 4 g of spherical nickel powder to obtain a conductive powder.

得られた導電性粉末の比抵抗(Ω・cm)を測定すると共に、アスペクト比、導電性コート層の膜厚、扁平状導電性コート粒子と球状導電性コート粒子との質量比(扁平状/球状)などを算出し、表1及び表2に示した。   The specific resistance (Ω · cm) of the obtained conductive powder was measured, and the aspect ratio, the film thickness of the conductive coating layer, and the mass ratio of the flat conductive coating particles to the spherical conductive coating particles (flat / Sphere) etc. were calculated and shown in Tables 1 and 2.

(実施例4)
扁平状のニッケル粒子からなる扁平状ニッケル粉(三井金属製、D50:9.8μm、アスペクト比:6.5)30gと球状のニッケル粒子からなる球状ニッケル粉(インコ社製、D50:6.9μm、アスペクト比:1.2)6gを用いて、実施例1と同様の処理を行い、導電性粉末を得た。
Example 4
Flat nickel powder made of flat nickel particles (Mitsui Metals, D50: 9.8 μm, aspect ratio: 6.5) and spherical nickel powder made of spherical nickel particles (Inco, D50: 6.9 μm) , Aspect ratio: 1.2) Using 6 g, the same treatment as in Example 1 was performed to obtain a conductive powder.

得られた導電性粉末の比抵抗(Ω・cm)を測定すると共に、アスペクト比、導電性コート層の膜厚、扁平状導電性コート粒子と球状導電性コート粒子との質量比(扁平状/球状)などを算出し、表1及び表2に示した。   The specific resistance (Ω · cm) of the obtained conductive powder was measured, and the aspect ratio, the film thickness of the conductive coating layer, and the mass ratio of the flat conductive coating particles to the spherical conductive coating particles (flat / Sphere) etc. were calculated and shown in Tables 1 and 2.

(実施例5)
扁平状のニッケル粒子からなる扁平状ニッケル粉(三井金属製、D50:14.4μm、アスペクト比:15.3)30gと球状のニッケル粒子からなる球状ニッケル粉(インコ社製、D50:6.9μm、アスペクト比:1.2)6gを用いて、実施例1と同様の処理を行い、導電性粉末を得た。
(Example 5)
Flat nickel powder composed of flat nickel particles (Mitsui Metals, D50: 14.4 μm, aspect ratio: 15.3) and spherical nickel powder composed of spherical nickel particles (Inco, D50: 6.9 μm) , Aspect ratio: 1.2) Using 6 g, the same treatment as in Example 1 was performed to obtain a conductive powder.

得られた導電性粉末の比抵抗(Ω・cm)を測定すると共に、アスペクト比、導電性コート層の膜厚、扁平状導電性コート粒子と球状導電性コート粒子との質量比(扁平状/球状)などを算出し、表1及び表2に示した。   The specific resistance (Ω · cm) of the obtained conductive powder was measured, and the aspect ratio, the film thickness of the conductive coating layer, and the mass ratio of the flat conductive coating particles to the spherical conductive coating particles (flat / Sphere) etc. were calculated and shown in Tables 1 and 2.

(実施例6)
扁平状のニッケル粒子からなる扁平状ニッケル粉(三井金属製、D50:4.9μm、アスペクト比:9.5)30gと球状のニッケル粒子からなる球状ニッケル粉(三井金属製、D50:2.6μm、アスペクト比:1.1)6gを用いて、実施例1と同様の処理を行い、導電性粉末を得た。
(Example 6)
Flat nickel powder made of flat nickel particles (Mitsui Metals, D50: 4.9 μm, aspect ratio: 9.5) and spherical nickel powder made of spherical nickel particles (Mitsui Metals, D50: 2.6 μm) , Aspect ratio: 1.1) Using 6 g, the same treatment as in Example 1 was performed to obtain a conductive powder.

得られた導電性粉末の比抵抗(Ω・cm)を測定すると共に、アスペクト比、導電性コート層の膜厚、扁平状導電性コート粒子と球状導電性コート粒子との質量比(扁平状/球状)などを算出し、表1及び表2に示した。   The specific resistance (Ω · cm) of the obtained conductive powder was measured, and the aspect ratio, the film thickness of the conductive coating layer, and the mass ratio of the flat conductive coating particles to the spherical conductive coating particles (flat / Sphere) etc. were calculated and shown in Tables 1 and 2.

(実施例7)
(1)芯材前処理
扁平状の硫酸バリウム粒子からなる扁平状硫酸バリウム粉(堺化学社製、D50:8.5μm、アスペクト比:9.1)30g及び球状のアルミナ粒子からなる球状アルミナ粉(D50:2.5μm、アスペクト比:1.5)6gを準備した。
140mLの純水に、17.5mLの塩酸、及びPd濃度3.8g/L、Sn塩含有量35%のOPC−80キャタリスト(奥野製薬製)を15mL添加し、液温を40℃に保った後、これに前記扁平状硫酸バリウム粉及び球状アルミナ粉を添加しスラリー化させ、15分間攪拌して触媒活性処理を行った。
処理済のスラリーをブフナー漏斗にてろ過し、400mLの純水にて洗浄し、再度ろ過し、脱水処理して触媒活性処理済ケーキを得た。
(Example 7)
(1) Pretreatment of core material Flat alumina bar powder made of flat barium sulfate powder made of flat barium sulfate particles (manufactured by Sakai Chemical Co., Ltd., D50: 8.5 μm, aspect ratio: 9.1) and spherical alumina particles 6 g (D50: 2.5 μm, aspect ratio: 1.5) was prepared.
15 mL of 17.5 mL of hydrochloric acid, and OPC-80 catalyst (Okuno Pharmaceutical Co., Ltd.) with Sn salt content of 35% were added to 140 mL of pure water, and the liquid temperature was kept at 40 ° C. Thereafter, the flat barium sulfate powder and the spherical alumina powder were added thereto to make a slurry, followed by stirring for 15 minutes to carry out a catalytic activity treatment.
The treated slurry was filtered with a Buchner funnel, washed with 400 mL of pure water, filtered again, and dehydrated to obtain a catalyst active treated cake.

(2)無電解メッキ処理
385mLの純水に硝酸銀45.5gを溶解し、25%アンモニア水を60mL添加し、さらに硫酸アンモニウムを25g添加し、pH9.4に調整した銀アンミン錯体水溶液を準備した。
この銀アンミン錯体水溶液に、上記触媒活性処理済ケーキ全量を添加し、40℃で5分間攪拌分散させ、反応用スラリーを得た。そして、この反応用スラリーに、ヒドラジン−水和物4mLを320mLの純水に溶解させた還元剤溶液を、100分間で定量的に投入し、完全に投入してから7分間攪拌して、芯材への銀コート反応を終了させた。次いで、このスラリーをブフナー漏斗にてろ過し、1000mLの純水を用いて70℃で洗浄を行った。さらに吸引させながらメタノール100mL、アセトン100mLを順次添加して、脱水処理を行った。得られたケーキをステンレス製のバットに移し変えて、70℃の雰囲気で12時間保持し乾燥させ、導電性粉末を得た。
(2) Electroless plating treatment 45.5 g of silver nitrate was dissolved in 385 mL of pure water, 60 mL of 25% aqueous ammonia was added, and 25 g of ammonium sulfate was further added to prepare a silver ammine complex aqueous solution adjusted to pH 9.4.
To this silver ammine complex aqueous solution, the total amount of the catalyst active-treated cake was added and stirred and dispersed at 40 ° C. for 5 minutes to obtain a reaction slurry. Then, a reducing agent solution in which 4 mL of hydrazine-hydrate was dissolved in 320 mL of pure water was quantitatively added to this reaction slurry in 100 minutes, and after complete addition, the mixture was stirred for 7 minutes. The silver coat reaction on the material was terminated. Subsequently, this slurry was filtered with a Buchner funnel, and washed at 70 ° C. with 1000 mL of pure water. Further, 100 mL of methanol and 100 mL of acetone were sequentially added while sucking to perform dehydration treatment. The obtained cake was transferred to a stainless steel vat, held in a 70 ° C. atmosphere for 12 hours and dried to obtain a conductive powder.

得られた導電性粉末の比抵抗(Ω・cm)を測定すると共に、アスペクト比、導電性コート層の膜厚、扁平状導電性コート粒子と球状導電性コート粒子との質量比(扁平状/球状)などを算出し、表1及び表2に示した。   The specific resistance (Ω · cm) of the obtained conductive powder was measured, and the aspect ratio, the film thickness of the conductive coating layer, and the mass ratio of the flat conductive coating particles to the spherical conductive coating particles (flat / Sphere) etc. were calculated and shown in Tables 1 and 2.

(比較例1)
実施例1と同様の扁平状ニッケル粉36gのみを用い、実施例1と同様の処理を行って導電性粉末を得た。
得られた導電性粉末の比抵抗(Ω・cm)を測定すると共に、導電性コート層の膜厚などを算出し、表1及び表2に示した。
(Comparative Example 1)
Only the flat nickel powder 36g similar to Example 1 was used, and the process similar to Example 1 was performed, and the electroconductive powder was obtained.
While measuring the specific resistance (ohm * cm) of the obtained electroconductive powder, the film thickness etc. of the electroconductive coating layer were computed and it showed in Table 1 and Table 2.

(比較例2)
実施例1と同様の球状ニッケル粉36gのみを用い、実施例1と同様の処理を行って導電性粉末を得た。
得られた導電性粉末の比抵抗(Ω・cm)を測定すると共に、導電性コート層の膜厚などを算出し、表1及び表2に示した。
(Comparative Example 2)
Using only the spherical nickel powder 36g similar to Example 1, the process similar to Example 1 was performed and the electroconductive powder was obtained.
While measuring the specific resistance (ohm * cm) of the obtained electroconductive powder, the film thickness etc. of the electroconductive coating layer were computed and it showed in Table 1 and Table 2.

(比較例3)
実施例6と同様の扁平状ニッケル粉36gのみを用い、実施例1と同様の処理を行って導電性粉末を得た。
得られた導電性粉末の比抵抗(Ω・cm)を測定すると共に、導電性コート層の膜厚などを算出し、表1及び表2に示した。
(Comparative Example 3)
Using only the flat nickel powder 36g similar to Example 6, the process similar to Example 1 was performed and the electroconductive powder was obtained.
While measuring the specific resistance (ohm * cm) of the obtained electroconductive powder, the film thickness etc. of the electroconductive coating layer were computed and it showed in Table 1 and Table 2.

(比較例4)
実施例7と同様の扁平状硫酸バリウム粉36gのみを用い、実施例7と同様の処理を行って導電性粉末を得た。
得られた導電性粉末の比抵抗(Ω・cm)を測定すると共に、導電性コート層の膜厚などを算出し、表1及び表2に示した。
(Comparative Example 4)
Using only the same flat barium sulfate powder 36g as in Example 7, the same treatment as in Example 7 was performed to obtain a conductive powder.
While measuring the specific resistance (ohm * cm) of the obtained electroconductive powder, the film thickness etc. of the electroconductive coating layer were computed and it showed in Table 1 and Table 2.

Figure 2007188845
Figure 2007188845

Figure 2007188845
Figure 2007188845

表2における中心粒径比率は、コート前の中心粒径に対するコート後の中心粒径の比率を示している。貴金属膜をコートすると各粒子が凝集し易いため、この比率は凝集度合いを示しているといえる。
表1及び表2より、実施例1〜7のように球状導電性コート粒子と扁平状導電性コート粒子とを混合することで、比較例1〜4に比べて、比抵抗を顕著に低くすることができることが分った。
The center particle size ratio in Table 2 indicates the ratio of the center particle size after coating to the center particle size before coating. When the noble metal film is coated, each particle is likely to aggregate, so this ratio can be said to indicate the degree of aggregation.
From Table 1 and Table 2, the specific resistance is remarkably lowered by mixing spherical conductive coat particles and flat conductive coat particles as in Examples 1 to 7 as compared with Comparative Examples 1 to 4. I found that I could do it.

Claims (7)

アスペクト比1.0〜1.5の球状導電性コート粒子とアスペクト比5.0〜20.0の扁平状導電性コート粒子とを含有し、且つ、これら球状導電性コート粒子及び扁平状導電性コート粒子は、同一又は異なる材質からなる芯材の表面に同一組成からなる導電性コート層を備えたものであることを特徴とする導電性粉末。   Spherical conductive coat particles having an aspect ratio of 1.0 to 1.5 and flat conductive coat particles having an aspect ratio of 5.0 to 20.0, and the spherical conductive coat particles and the flat conductive The coated particle is a conductive powder comprising a conductive coating layer having the same composition on the surface of a core material made of the same or different material. 球状の芯材粒子と扁平状の芯材粒子とを分散媒中で混合し、この混合状態の芯材粒子の表面に導電性コート層を形成して得られる請求項1に記載の導電性粉末。   2. The conductive powder according to claim 1, obtained by mixing spherical core particles and flat core particles in a dispersion medium, and forming a conductive coating layer on the surface of the mixed core particles. . 球状の芯材粒子と扁平状の芯材粒子とを分散媒中で混合し、この混合状態の芯材粒子の表面に前処理を施して導電性コート層を形成して得られる請求項1又は2に記載の導電性粉末。   The spherical core material particles and the flat core material particles are mixed in a dispersion medium, and the surface of the mixed core material particles is pretreated to form a conductive coating layer. 2. The conductive powder according to 2. 球状導電性コート粒子及び扁平状導電性コート粒子の導電性コート層の膜厚が0.01μm〜0.8μmであることを特徴とする請求項1乃至3の何れかに記載の導電性粉末。   4. The conductive powder according to claim 1, wherein the film thickness of the conductive coating layer of the spherical conductive coat particle and the flat conductive coat particle is 0.01 μm to 0.8 μm. 導電性コート層は、金、銀、白金、パラジウム、ロジウム及びこれらの合金の何れかを主成分としてなることを特徴とする請求項1乃至4の何れかに記載の導電性粉末。   The conductive powder according to any one of claims 1 to 4, wherein the conductive coating layer contains, as a main component, any one of gold, silver, platinum, palladium, rhodium, and alloys thereof. 請求項1乃至5の何れかに記載の導電性粉末を用いた導電性ペースト。   A conductive paste using the conductive powder according to claim 1. 基板の表面に、請求項6記載の導電性ペーストを用いて回路パターンを形成して得られる電気回路。   An electric circuit obtained by forming a circuit pattern on the surface of a substrate using the conductive paste according to claim 6.
JP2006007962A 2006-01-16 2006-01-16 Conductive powder, conductive paste and electrical circuit Active JP4881013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007962A JP4881013B2 (en) 2006-01-16 2006-01-16 Conductive powder, conductive paste and electrical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007962A JP4881013B2 (en) 2006-01-16 2006-01-16 Conductive powder, conductive paste and electrical circuit

Publications (2)

Publication Number Publication Date
JP2007188845A true JP2007188845A (en) 2007-07-26
JP4881013B2 JP4881013B2 (en) 2012-02-22

Family

ID=38343849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007962A Active JP4881013B2 (en) 2006-01-16 2006-01-16 Conductive powder, conductive paste and electrical circuit

Country Status (1)

Country Link
JP (1) JP4881013B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033034A (en) * 2007-07-30 2009-02-12 Sumitomo Electric Ind Ltd Printed wiring board and its manufacturing method
JP2013206777A (en) * 2012-03-29 2013-10-07 Dowa Electronics Materials Co Ltd Silver-coated flake-like glass powder and method of manufacturing the same
WO2016090532A1 (en) * 2014-12-08 2016-06-16 Ablestik (Shanghai) Ltd. Electrically conductive compositions, process and applications
JP2016139506A (en) * 2015-01-27 2016-08-04 三菱マテリアル電子化成株式会社 Silver-covered resin particle and conductive material containing the particle
CN108735344A (en) * 2018-05-23 2018-11-02 江苏时瑞电子科技有限公司 A kind of carbon fiber/carbon nanotube composite conducting slurry and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992026A (en) * 1995-02-08 1997-04-04 Hitachi Chem Co Ltd Complex conductive powder, conductive paste, manufacture of conductive paste, electric circuit, and manufacture of electric circuit
JP2004063446A (en) * 2002-06-07 2004-02-26 Hitachi Chem Co Ltd Conductive paste
WO2005031760A1 (en) * 2003-09-26 2005-04-07 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992026A (en) * 1995-02-08 1997-04-04 Hitachi Chem Co Ltd Complex conductive powder, conductive paste, manufacture of conductive paste, electric circuit, and manufacture of electric circuit
JP2004063446A (en) * 2002-06-07 2004-02-26 Hitachi Chem Co Ltd Conductive paste
WO2005031760A1 (en) * 2003-09-26 2005-04-07 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033034A (en) * 2007-07-30 2009-02-12 Sumitomo Electric Ind Ltd Printed wiring board and its manufacturing method
JP2013206777A (en) * 2012-03-29 2013-10-07 Dowa Electronics Materials Co Ltd Silver-coated flake-like glass powder and method of manufacturing the same
WO2016090532A1 (en) * 2014-12-08 2016-06-16 Ablestik (Shanghai) Ltd. Electrically conductive compositions, process and applications
WO2016091104A1 (en) * 2014-12-08 2016-06-16 Ablestik (Shanghai) Ltd. Electrically conductive compositions, process and applications
JP2016139506A (en) * 2015-01-27 2016-08-04 三菱マテリアル電子化成株式会社 Silver-covered resin particle and conductive material containing the particle
CN108735344A (en) * 2018-05-23 2018-11-02 江苏时瑞电子科技有限公司 A kind of carbon fiber/carbon nanotube composite conducting slurry and preparation method thereof

Also Published As

Publication number Publication date
JP4881013B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP5631910B2 (en) Silver coated copper powder
JP6166012B2 (en) Conductive powder and conductive paste
JP5631841B2 (en) Silver coated copper powder
KR101186945B1 (en) Nickel coated copper powder and process for producing the same
JP5701695B2 (en) Silver-coated copper powder and method for producing the same
KR20170031215A (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP6813519B2 (en) Conductive particles, conductive resin compositions and coatings containing them
KR20170130530A (en) Silver coating powder and conductive paste using it, a conductive paint, a conductive sheet
WO2014054618A1 (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP5622127B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP6165399B1 (en) Silver coated copper powder
JP2016047964A (en) Copper powder
JP6278969B2 (en) Silver coated copper powder
JP2013136818A (en) Copper powder
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP2014159646A (en) Silver-coated copper powder
JP6810452B2 (en) Metal coating particles and resin composition
JP2007191752A (en) Tin-coated silver powder and method for producing the tin-coated silver powder
JP2016050360A (en) Silver-coated copper powder and production method for the same
JP4961315B2 (en) Method for producing metal-coated nickel powder
JP5711435B2 (en) Copper powder
JP4583147B2 (en) Conductive composite powder and method for producing the same
JP2014208908A (en) Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste
WO2019009146A1 (en) Electrically conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R150 Certificate of patent or registration of utility model

Ref document number: 4881013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250