JP4583147B2 - Conductive composite powder and method for producing the same - Google Patents

Conductive composite powder and method for producing the same Download PDF

Info

Publication number
JP4583147B2
JP4583147B2 JP2004336020A JP2004336020A JP4583147B2 JP 4583147 B2 JP4583147 B2 JP 4583147B2 JP 2004336020 A JP2004336020 A JP 2004336020A JP 2004336020 A JP2004336020 A JP 2004336020A JP 4583147 B2 JP4583147 B2 JP 4583147B2
Authority
JP
Japan
Prior art keywords
silver
particles
composite powder
conductive composite
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004336020A
Other languages
Japanese (ja)
Other versions
JP2006147351A (en
Inventor
隆 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2004336020A priority Critical patent/JP4583147B2/en
Publication of JP2006147351A publication Critical patent/JP2006147351A/en
Application granted granted Critical
Publication of JP4583147B2 publication Critical patent/JP4583147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導電性複合粉末及びその製造方法に関し、特に特定の形状及び粉体特性を有す、銀被覆粒子からなる導電性複合粉末及びその製造方法に関する。   The present invention relates to a conductive composite powder and a method for producing the same, and more particularly to a conductive composite powder comprising silver-coated particles having a specific shape and powder characteristics and a method for producing the same.

帯電防止、電磁波遮蔽等の目的で、樹脂やゴム等の非導電性基材に導電性材料を添加して、基材に導電性を付与する技術については、種々の公知技術が開示されている。 Various known techniques have been disclosed for imparting conductivity to a base material by adding a conductive material to a non-conductive base material such as resin or rubber for the purpose of antistatic and electromagnetic wave shielding. .

前記導電性材料としては、各種金属粉末や金属コート粉末等が挙げられ、特許文献1、あるいは2等が代表的なものである。 Examples of the conductive material include various metal powders and metal-coated powders, and Patent Documents 1 and 2 are representative.

特開平1−197575号JP-A-1-197575 特開2002−4057号JP 2002-4057

かかる導電性材料に求められる重要な特性は、非導電性基材に添加、加工された後の比抵抗が充分低いことにあるが、それ以外にも添加物の重量増や体積増を抑制できること、耐酸化性があり経時変化が小さいこと、加工成型品の風合いを損なわない顔料としての機能を有すること等も求められている。   An important characteristic required for such a conductive material is that the specific resistance after being added to and processed in a non-conductive substrate is sufficiently low, but besides that, it is possible to suppress an increase in the weight and volume of the additive. Further, there is a demand for having oxidation resistance and small change with time, and having a function as a pigment that does not impair the texture of the processed molded article.

上記のような要求に対し、金属粉末を用いた場合、金属粉末が高比重であるから、導電性を確保するために、重量的に大量な添加を要する。低重量が望ましい電子材料の重量が増え、コスト的にも性能的にも問題を生じる。 In response to the above requirements, when metal powder is used, since the metal powder has a high specific gravity, a large amount of addition is required in order to ensure conductivity. The weight of the electronic material for which low weight is desirable increases, which causes problems in terms of cost and performance.

また、異種金属コート金属粉末においては、たとえば銀被覆銅粉末等を用いることにより、コスト的には低減化が図れるものの、やはり相当量の添加を余儀なくされる上、被覆銀の銅への拡散や、銅酸化物の生成により、導電性が劣化する不具合が生じる。 Further, in the dissimilar metal-coated metal powder, for example, silver-coated copper powder can be used to reduce the cost, but a considerable amount of addition is also required, and the diffusion of the coated silver into copper In addition, the production of copper oxide causes a problem that the conductivity is deteriorated.

一方、金属コート粉末については、芯材に金属酸化物や樹脂等種々のものを適用できる旨が、前述の特許文献2にも記載されているが、汎用的な粒状品は、導電のためのネットワーク形成が不十分で、成型物の電気抵抗が高くなり、安定性や信頼性に欠ける。また、針状、棒状、あるいはウィスカー状品は、ネットワーク形成には向くものの、共用する樹脂等に混練する際、芯材が折損したりして、期待される導電性が発揮されなかったり、導電性は確保できても、得られる加工成型品の色相が劣る等の不具合を生じる。
つまり、導電性を確保するだけでなく、上述の技術的課題をもバランス良く、満足させるような導電性材料は、未だ見出されていない。
On the other hand, as for the metal-coated powder, the fact that various materials such as a metal oxide and a resin can be applied to the core material is also described in Patent Document 2 described above. Insufficient network formation increases the electrical resistance of the molded article, and lacks stability and reliability. Needle-like, rod-like, or whisker-like products are suitable for network formation, but when kneaded into a common resin, the core material breaks, and the expected conductivity may not be exhibited. Even if the property can be secured, problems such as inferior hue of the processed molded product obtained are caused.
That is, a conductive material that not only ensures conductivity but also satisfies the above technical problems in a well-balanced manner has not yet been found.

本件発明者等は、鋭意研究の結果、特定の芯材を使用した銀被覆粒子からなる導電性複合粉末であれば、上記課題を解決することができることを知見した。   As a result of intensive studies, the present inventors have found that the above problems can be solved if the conductive composite powder is made of silver-coated particles using a specific core material.

すなわち、本発明の導電性複合粉末は、芯材が板状、かつ非金属の無機化合物粒子であり、その粒子表面が銀で被覆されており、かつ下記a)〜c)の特徴を有する粒子からなることを特徴とする。
a)平均粒子径: 2〜15μm
b)平均長径をA、平均短径をBとした際の、アスペクト比A/B:1〜5
c)平均厚みC: 0.3〜2.6μm
That is, the conductive composite powder of the present invention is a particle whose core material is a plate-like and nonmetallic inorganic compound particle, whose particle surface is coated with silver, and which has the following characteristics a) to c). It is characterized by comprising.
a) Average particle diameter: 2 to 15 μm
b) Aspect ratio A / B: 1 to 5 when the average major axis is A and the average minor axis is B
c) Average thickness C: 0.3 to 2.6 μm

また、本発明の導電性複合粉末の製造方法は、水分散した板状非金属無機化合物粒子を含むスラリー中で、該無機化合物粒子表面に触媒活性処理を施し、固液分離された触媒活性処理後の粒子を、銀塩水溶液中で再スラリー化し、このスラリーに還元剤を添加して、前記触媒活性処理後の粒子表面に銀被覆を行うことを特徴とする。   Further, the method for producing the conductive composite powder of the present invention comprises a catalyst activity treatment in which a slurry is contained in a water-dispersed plate-like nonmetallic inorganic compound particle, the surface of the inorganic compound particle is subjected to a catalyst activity treatment, and solid-liquid separation is performed. The subsequent particles are reslurried in an aqueous silver salt solution, a reducing agent is added to the slurry, and the surface of the particles after the catalyst activation treatment is coated with silver.

本発明の導電性複合粉末によれば、帯電防止、電磁波遮蔽等の目的で、樹脂やゴム等の非導電性基材に添加、加工された際の低電気抵抗が確保されることはもちろん、添加物の重量増や体積増を抑制でき、耐酸化性があり経時変化が小さく、加工成型品の風合いを損なわない顔料としての機能をバランス良く有するため、当該機能を求める帯電防止、電磁波遮蔽等の部材に好適である。
また、本発明の導電性複合粉末の製造方法によれば、上記導電性複合粉末を効率的、かつ経済的に生産することができる。
According to the conductive composite powder of the present invention, of course, low electrical resistance is ensured when added to a non-conductive substrate such as resin or rubber and processed for the purpose of antistatic, electromagnetic shielding, etc. It can suppress the increase in weight and volume of additives, has oxidation resistance and little change with time, and has a well-balanced function as a pigment that does not impair the texture of processed molded products. It is suitable for these members.
Moreover, according to the manufacturing method of the electroconductive composite powder of this invention, the said electroconductive composite powder can be produced efficiently and economically.

<導電性複合粉末>
本発明の導電性複合粉末は、芯材が板状、かつ非金属の無機化合物粒子である。ただし、導電性複合粉末は、下記a)〜c)の特徴を有する粒子からなるものであるから、当然、使用される芯材粒子も粒度がかなり細かく、しかも特定の板状粒子でなければならない。
a)平均粒子径:2〜15μm
b)平均長径をA、平均短径をBとした際の、アスペクト比A/B:1〜5
c)平均厚みC:0.3〜2.6μm
<Conductive composite powder>
The conductive composite powder of the present invention is a non-metallic inorganic compound particle having a plate-like core material. However, since the conductive composite powder is composed of particles having the following characteristics a) to c), naturally, the core particle used must also be of a very fine particle size and be a specific plate-like particle. .
a) Average particle diameter: 2 to 15 μm
b) Aspect ratio A / B: 1 to 5 when the average major axis is A and the average minor axis is B
c) Average thickness C: 0.3 to 2.6 μm

芯材に必要とされる特徴は、後の説明で詳述するが、芯材を選択することなしに、本発明の課題である、導電性を維持しつつ、添加物の重量増や体積増を抑制でき、耐酸化性があり経時変化が小さく、かつ加工成型品の風合いを損なわない顔料としての機能をもバランスさせることは困難である。 The characteristics required for the core material will be described in detail later. However, without selecting a core material, the object of the present invention is to increase the weight and volume of the additive while maintaining the conductivity. It is difficult to balance the function as a pigment that can suppress the above, has oxidation resistance, has little change with time, and does not impair the texture of the processed molded product.

まず、芯材が非金属の無機化合物粒子である点については、これが金属であると、発明が解決しようとする課題で述べたとおり、重量的に大量な添加が必要となり、不味である。   First, regarding the point that the core material is a non-metallic inorganic compound particle, if it is a metal, as described in the problem to be solved by the invention, a large amount of addition is required, which is unpleasant.

少量添加での導電性付与だけを考えると、比重の小さい樹脂等の有機系素材を選択することも考えられるが、これらの素材は粒状品が汎用的で、導電のためのネットワーク形成が不十分となり、かえって効果を損ねる。   Considering only the addition of conductivity by adding a small amount, it may be possible to select organic materials such as resins with low specific gravity. However, these materials are generally used as granular products, and network formation for conductivity is insufficient. It will be less effective.

従って、芯材は非金属の無機化合物粒子である必要があるが、それでも上記課題を解決する上で、導電性複合粉末を構成する粒子が相当に微細で、特定のアスペクト比と平均厚みを有す粒子であることが重要である。   Therefore, the core material needs to be non-metallic inorganic compound particles. However, in order to solve the above problems, the particles constituting the conductive composite powder are considerably fine and have a specific aspect ratio and average thickness. It is important that the particles are particles.

本発明の導電性複合粉末の平均粒子径は2〜15μmであり、相当に微細な粒子からなる粉末である。この平均粒子径が2μm未満の場合、粒子の凝集が著しく、樹脂中等での分散性が不良となり、導電のためのネットワーク形成に支障をきたす。また、15μmを超える場合、粒子の粒度が大きすぎ、粒子に被覆される銀量が相対的に減り、やはり導電のためのネットワーク形成に支障をきたす。また、粒子が板状につき、機械的強度が著しく低下し、ペースト等に加工する際、破損が生じ、結果として導電性が不良となるおそれがある。この平均粒子径は、好ましくは3〜14μmで、より好ましくは5〜12μmである。   The conductive composite powder of the present invention has an average particle size of 2 to 15 μm and is a powder composed of considerably fine particles. When this average particle diameter is less than 2 μm, the particles are significantly aggregated, resulting in poor dispersibility in the resin and the like, which hinders the formation of a network for conduction. On the other hand, when the particle diameter exceeds 15 μm, the particle size of the particles is too large, and the amount of silver coated on the particles is relatively reduced, which also hinders the formation of a network for conduction. Further, since the particles are plate-like, the mechanical strength is remarkably lowered, and when processing into a paste or the like, breakage may occur, resulting in poor conductivity. This average particle diameter is preferably 3 to 14 μm, more preferably 5 to 12 μm.

また、本発明の導電性複合粉末は、芯材が板状であり、粉末を構成する粒子において、平均長径をA、平均短径をBとした際の、アスペクト比A/Bのアスペクト比が1〜5という特徴を有する。この芯材となる粒子の形状が板状であることは重要である。そうでない場合、塗料化等による薄膜導電層を形成する際に、導電性と顔料特性を発揮させることは困難である。   In the conductive composite powder of the present invention, the core material is plate-like, and the particles constituting the powder have an aspect ratio of A / B with an average major axis of A and an average minor axis of B. It has the characteristic of 1-5. It is important that the core particles have a plate shape. Otherwise, it is difficult to exhibit conductivity and pigment characteristics when forming a thin film conductive layer by coating or the like.

本発明においては、板状粒子の形態をさらに特定し、棒状や針状粒子等との差を上記アスペクト比A/Bで明確にした。ちなみに、平均長径A及び平均短径Bは板状粒子の平面部(短径と長径を有す面で、短径>厚み径の関係にある)にて測定した、特定個数の粒子の平均値である。 In the present invention, the form of the plate-like particles is further specified, and the difference from the rod-like or needle-like particles is clarified by the aspect ratio A / B. Incidentally, the average major axis A and the average minor axis B are average values of a specific number of particles measured at the plane part of the plate-like particle (a surface having a minor axis and a major axis and a relation of minor axis> thickness diameter). It is.

このアスペクト比A/Bが1のとき、平面方向では、ほぼ等方状となる。従って、1未満の数値を取ることはない。このアスペクト比A/Bが5を超える場合、粒子が針状やウィスカー状等を呈するため、共用する樹脂等に混練する際、芯材が破損したりして、期待される導電性が発揮されなかったり、導電性は確保できても、得られる加工成型品の色相が劣る等の不具合を生じる。このアスペクト比は、導電のためのネットワーク形成効果を上げるために、好ましくは1〜4であり、より好ましくは、1〜3であると良い。 When the aspect ratio A / B is 1, it is substantially isotropic in the planar direction. Therefore, a numerical value less than 1 is never taken. When the aspect ratio A / B exceeds 5, the particles exhibit a needle shape, whisker shape, etc., and therefore, when kneaded into a common resin, the core material is damaged, and the expected conductivity is exhibited. Even if the electrical conductivity can be ensured, problems such as inferior hue of the processed molded product obtained may occur. This aspect ratio is preferably 1 to 4 and more preferably 1 to 3 in order to increase the network forming effect for electrical conduction.

また、本発明の導電性複合粉末は、粒子の平均厚み(Cと称する)が 0.3〜2.6μmである。この平均厚みCと平均短径Bとの分別は、前述のとおりである。この平均厚みCが0.3μm未満の場合、粒子の機械的強度に欠けるため、共用する樹脂等に混練する際、芯材が破損する等のおそれがある。2.6μmを超える場合、粒子が板状化、あるいは棒状化し、導電のためのネットワーク形成に影響が出る。
この平均厚みは、導電のためのネットワーク形成効果を上げるために、好ましくは0.5〜2μmであり、より好ましくは、0.7〜1.5μmであると良い。
Further, the conductive composite powder of the present invention has an average particle thickness (referred to as C) of 0.3 to 2.6 μm. The classification of the average thickness C and the average minor axis B is as described above. When the average thickness C is less than 0.3 μm, the mechanical strength of the particles is insufficient, and therefore the core material may be damaged when kneaded with a shared resin or the like. When it exceeds 2.6 μm, the particles are plate-like or rod-like, which affects the formation of a network for conduction.
This average thickness is preferably 0.5 to 2 [mu] m, more preferably 0.7 to 1.5 [mu] m, in order to increase the network forming effect for electrical conduction.

また、本発明の導電性複合粉末は、平均長径Aと平均厚みCによるアスペクト比A/Cが3〜20であると好ましい。このA/Cが3未満の場合、形状は粒状に近づき、導電のためのネットワーク形成に影響が出る。また、A/Cが20を超える場合、粒子の機械的強度に欠けるため、共用する樹脂等に混練する際、芯材が破損する等のおそれがある。このアスペクト比A/Cは、導電のためのネットワーク形成効果を上げるために、好ましくは4〜15であり、より好ましくは、 5〜10であると良い。 Further, the conductive composite powder of the present invention preferably has an aspect ratio A / C of 3 to 20 based on the average major axis A and the average thickness C. When this A / C is less than 3, the shape becomes close to a granular shape, which affects the formation of a network for conduction. In addition, when A / C exceeds 20, the mechanical strength of the particles is insufficient, and therefore the core material may be damaged when kneaded with a shared resin or the like. The aspect ratio A / C is preferably 4 to 15 and more preferably 5 to 10 in order to increase the network forming effect for conductivity.

なお、本発明において、板状粒子とフレーク状粒子の分別は、あくまでアスペクト比で特定されるものとし、一般的にフレーク状とみなされる粒子でも、上記アスペクト比を有するものは、本発明の範疇に含まれるものとする(導電性複合粉末を構成する粒子、芯材粉末を構成する粒子いずれにおいても適用)。 In the present invention, the separation between the plate-like particles and the flaky particles is only specified by the aspect ratio, and particles generally regarded as flaky particles having the above-mentioned aspect ratio fall within the scope of the present invention. (Applicable to both particles constituting the conductive composite powder and particles constituting the core powder).

また、本発明の導電性複合粉末は、粒子表面が銀で被覆されていることが重要である。銀を用いるのは、導電性のみならず耐酸化性にも優れているからである。 Moreover, it is important that the conductive composite powder of the present invention has a particle surface coated with silver. Silver is used because it is excellent not only in conductivity but also in oxidation resistance.

なお、粒子表面が銀で被覆されていることについては、芯材の地肌が露出しない状態(たとえば層状)が理想的であるが、極端な偏りなく、粒子表面に微細銀粒子が分布されているものも含まれるものである。 In addition, as for the particle | grain surface being coat | covered with silver, the state (for example, layer shape) in which the background of a core material is not exposed is ideal, However, Fine silver particles are distributed on the particle | grain surface without extreme bias. Things are also included.

また、本発明の導電性複合粉末は、芯材が硫酸バリウム、炭酸カルシウム、酸化亜鉛、窒化ホウ素の内から選ばれる、いずれかであると好ましい。これらの粒子は、特に機械加工を加えることなく、微細な板状粉末を製造することが可能であり、本発明の要求する粒度形態を呈するものである。特に、硫酸バリウムについては、ごく波長の小さいX線等をも遮蔽する能力に優れるため、これを用いたアプリケーション部材の機能を高めることができて好ましい。 In the conductive composite powder of the present invention, the core material is preferably any one selected from barium sulfate, calcium carbonate, zinc oxide, and boron nitride. These particles can produce a fine plate-like powder without particularly machining, and exhibit a particle size form required by the present invention. In particular, barium sulfate is preferable because it has an excellent ability to shield even X-rays and the like having a very small wavelength, so that the function of an application member using the barium sulfate can be enhanced.

また、本発明の導電性複合粉末は、粒子全体に対する被覆銀量が30〜60質量%であることが好ましい。この被覆銀量は多いほど、導電性効果が期待されるが、多すぎるとコスト的に不味である。少ないほど、コスト的に有利だが、逆に導電性に劣ったり、信頼性や安定性にも影響が出る。この被覆銀量は好ましくは 35〜55質量%であり、より好ましくは、40〜50質量%である。 Moreover, it is preferable that the conductive composite powder of this invention is 30-60 mass% of covering silver quantity with respect to the whole particle | grain. As the amount of the coated silver increases, a conductive effect is expected. However, if the amount is too large, the cost is not good. The smaller the number, the more advantageous in terms of cost, but conversely, it is inferior in conductivity, and affects reliability and stability. The amount of the coated silver is preferably 35 to 55% by mass, and more preferably 40 to 50% by mass.

また、本発明の導電性複合粉末は、換算銀被覆厚みが0.1〜0.8μmであると好ましい。一定重量の芯材に対し、一定重量の銀を反応させることを考えた場合、導電性複合粉末が高い導電性を得るためには、芯材の総比表面積に対し、導電性を引き出す銀被覆厚みは一定量以上必要である。本発明では、この銀被覆厚みをレーザー回折散乱式粒度分布測定装置により得られた比表面積と被覆銀量から平均値として換算する。 The conductive composite powder of the present invention preferably has a reduced silver coating thickness of 0.1 to 0.8 μm. In consideration of reacting a certain weight of silver to a certain weight of core material, in order to obtain a high conductivity of the conductive composite powder, a silver coating that draws out conductivity relative to the total specific surface area of the core material The thickness must be a certain amount or more. In the present invention, the silver coating thickness is converted as an average value from the specific surface area and the coating silver amount obtained by the laser diffraction / scattering particle size distribution measuring apparatus.

この換算銀被覆厚みが0.1μm未満の場合、導電のためのネットワーク形成に支障をきたすおそれがある。また、0.8μmを超える場合、銀被膜の機械的強度が低下し、剥離が起きやすく、導電性が悪化してしまう他、コスト的にも不経済となる。この換算銀被覆厚みは、好ましくは0.15〜0.6μmであり、より好ましくは、0.2〜0.4μmである。 When the converted silver coating thickness is less than 0.1 μm, there is a risk of hindering the formation of a network for conduction. On the other hand, when the thickness exceeds 0.8 μm, the mechanical strength of the silver coating is lowered, peeling is likely to occur, conductivity is deteriorated, and the cost is uneconomical. The converted silver coating thickness is preferably 0.15 to 0.6 μm, and more preferably 0.2 to 0.4 μm.

また、本発明の導電性複合粉末は、粒子の最表面に、脂肪酸が被覆されていても良い。この脂肪酸被覆を有することで、粉末の流動性が増し、樹脂に練り込む際の分散性が向上する。脂肪酸被覆量は、導電性複合粉末に対して0.1〜1%程度であれば良い。この脂肪酸被覆量が0.1%未満の場合、上記効果が得られず、1%を超える場合、導電性を損なう。被覆する脂肪酸としては、ステアリン酸、ラウリン酸、カプリン酸、パルミチン酸等の飽和脂肪酸、またはオレイン酸、リノール酸、リノレン酸、ソルビン酸等の不飽和脂肪酸が挙げられる。 In the conductive composite powder of the present invention, the outermost surface of the particles may be coated with a fatty acid. By having this fatty acid coating, the fluidity of the powder increases and the dispersibility when kneaded into the resin is improved. The fatty acid coating amount may be about 0.1 to 1% with respect to the conductive composite powder. When the fatty acid coating amount is less than 0.1%, the above effect cannot be obtained, and when it exceeds 1%, the conductivity is impaired. Examples of fatty acids to be coated include saturated fatty acids such as stearic acid, lauric acid, capric acid, and palmitic acid, and unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and sorbic acid.

<導電性複合粉末の製造方法>
本発明の導電性複合粉末は、特定の条件で、芯材である板状非金属無機化合物粒子表面に触媒活性処理を施した後、銀被覆を行うことにより製造できる。
<Method for producing conductive composite powder>
The conductive composite powder of the present invention can be produced by subjecting the surface of the plate-like nonmetallic inorganic compound particles, which are the core material, to catalytic activity treatment under specific conditions, followed by silver coating.

用いられる芯材としては、前述のとおり、非金属の無機化合物粒子が好ましいが、それでも上記課題を解決する上で、粒子が相当に微細で、特定のアスペクト比を有す板状粒子でなければならない。そのような特徴を有す好適な素材は、硫酸バリウム、炭酸カルシウム、酸化亜鉛、窒化ホウ素等が挙げられる。   As described above, non-metallic inorganic compound particles are preferable as the core material to be used. However, in order to solve the above problems, the particles should not be plate-like particles having a very fine particle and a specific aspect ratio. Don't be. Suitable materials having such characteristics include barium sulfate, calcium carbonate, zinc oxide, boron nitride and the like.

板状粒子に近い形状として、マイカ等、積層構造の粒子も挙げられるが、粒子表面に銀被覆を施しても、樹脂等との混練時に剥離し、銀被覆の欠落した粒子となるおそれがあり、好ましくない。   Examples of the shape close to the plate-like particle include particles having a laminated structure such as mica, but even if the particle surface is coated with silver, it may be peeled off when kneaded with a resin or the like, resulting in particles lacking the silver coating. Is not preferable.

また、本発明の導電性複合粉末の形態は、平均粒子径、及びアスペクト比を特定した板状粒子からなることで特定されているが、用いられる芯材も当然ながらその特徴に準じたものである。   In addition, the form of the conductive composite powder of the present invention is specified by being composed of plate-like particles having an average particle diameter and an aspect ratio, but the core material used is naturally in accordance with the characteristics. is there.

芯材粒子に被覆される銀量は、本発明の効果を確保できれば良いため、芯材の平均粒子径は、1〜13μm程度で良く、同様に芯材粒子のアスペクト比A/Bは1〜5程度、芯材粒子のアスペクト比A/Cは3〜20程度で良い。 Since the amount of silver coated on the core particles only needs to ensure the effects of the present invention, the average particle diameter of the core material may be about 1 to 13 μm. Similarly, the aspect ratio A / B of the core particles is 1 to 1 μm. About 5 and the aspect ratio A / C of the core particles may be about 3-20.

本発明の導電性複合粉末の製造方法は、まず芯材粉末粒子表面に触媒活性処理を行うための処理液を準備する。この処理液は、水に、必要に応じてpH調整用の酸、又はアルカリを添加したものに、触媒として水溶性パラジウム塩等を添加し、充分に攪拌したものである。この際、使用するパラジウム塩は主に塩化水素にて安定化されたものを用いるのが良いが、それに限ったものではない。この触媒物質の量は、芯材100gに対して、0.01〜2mmol程度とすれば良い。また、触媒活性処理を円滑に行うために、パラジウム塩の他に、スズ塩や還元剤等を添加、併用すると好ましい。 In the method for producing a conductive composite powder of the present invention, first, a treatment liquid for performing catalytic activity treatment on the surface of the core powder particles is prepared. This treatment liquid is prepared by adding a water-soluble palladium salt or the like as a catalyst to water obtained by adding an acid or alkali for pH adjustment as necessary. At this time, the palladium salt used is preferably stabilized with hydrogen chloride, but is not limited thereto. The amount of the catalyst material may be about 0.01 to 2 mmol with respect to 100 g of the core material. In addition to the palladium salt, it is preferable to add and use a tin salt, a reducing agent, etc. in addition to the palladium salt in order to carry out the catalytic activity treatment smoothly.

次に、この処理液に、適切に選ばれた芯材の粉末を投入・攪拌し、分散、スラリー化すると同時に触媒活性処理を行う。 Next, an appropriately selected core powder is added to the treatment liquid and stirred to disperse and form a slurry, and at the same time, a catalytic activity treatment is performed.

この際のスラリー濃度は、100〜500g/L程度が、触媒活性処理が効率的に行え、好ましい。このスラリー濃度が、上記範囲を外れる場合、芯材濃度に対し触媒濃度が過剰だったり、不足したりして、芯材粒子表面の活性処理状態が不均一となり、その結果銀被覆状態にムラが生じやすい。 The slurry concentration at this time is preferably about 100 to 500 g / L because the catalyst activation treatment can be efficiently performed. When this slurry concentration is outside the above range, the catalyst concentration is excessive or insufficient with respect to the core material concentration, and the active treatment state on the surface of the core particle becomes non-uniform, resulting in unevenness in the silver coating state. Prone to occur.

触媒活性処理の際の処理温度は、用いる触媒の種類により異なるが、15〜45℃程度で行うと、粒子表面上に均一、かつ効率良く処理することができる。この処理温度が、15℃未満の場合、活性処理が進行しにくく、45℃を超える場合、触媒物質のコロイド粒子が大きくなり、芯材粒子表面の活性化が不均一になるおそれがある。
触媒活性処理終了後、反応後スラリーは常法のろ過、及び水洗浄にて触媒活性済みケーキとする。
The treatment temperature during the catalyst activation treatment varies depending on the type of catalyst used, but when it is carried out at about 15 to 45 ° C., the treatment can be carried out uniformly and efficiently on the particle surface. When the treatment temperature is less than 15 ° C., the activation treatment is difficult to proceed, and when it exceeds 45 ° C., the colloidal particles of the catalyst substance become large, and the activation of the surface of the core material particles may be uneven.
After completion of the catalyst activation treatment, the post-reaction slurry is made into a catalyst-activated cake by conventional filtration and water washing.

次に、銀被覆処理を行うための準備を行う。
本発明の導電性複合粉末の製造方法においては、銀被覆処理液に銀塩水溶液を用い、適切な還元剤にて銀イオンを還元、芯材粒子表面に銀被覆を行う。
Next, preparation for carrying out the silver coating process is performed.
In the method for producing a conductive composite powder of the present invention, an aqueous silver salt solution is used as the silver coating treatment liquid, silver ions are reduced with an appropriate reducing agent, and the surface of the core material particles is coated with silver.

銀塩水溶液は硝酸銀や酢酸銀等水溶性塩ならば、各種利用できるが、好ましくはアンモニアを併用した銀アンミン錯体水溶液を使用すると、反応に寄与する銀濃度を安定化させることができ、好適である。また、銀アンミン錯体水溶液に、緩衝剤としてアンモニウム塩を添加しておくと、水溶液中の錯体がより安定化し、好ましい。 The silver salt aqueous solution can be used in various ways as long as it is a water-soluble salt such as silver nitrate or silver acetate, but preferably a silver ammine complex aqueous solution used in combination with ammonia can stabilize the silver concentration contributing to the reaction and is suitable. is there. Moreover, it is preferable to add an ammonium salt as a buffering agent to the silver ammine complex aqueous solution because the complex in the aqueous solution becomes more stable.

このアンモニウム塩は硫酸アンモニウム、硝酸アンモニウム等が代表として挙げられるが、これに限ったものではない。但し、塩化物系のアンモニウム塩は塩化銀を形成してしまうため、使用できない。 Typical examples of the ammonium salt include ammonium sulfate and ammonium nitrate, but are not limited thereto. However, chloride-based ammonium salts cannot be used because they form silver chloride.

具体的な銀塩水溶液の調製の一例を示すと、硝酸銀水溶液にアンモニアを添加する。この際の銀イオン濃度は0.25〜0.8mol/L程度が、安定、かつ芯材粒子への一様な銀被覆を行え、好適である。 As an example of the preparation of a specific silver salt aqueous solution, ammonia is added to the silver nitrate aqueous solution. In this case, a silver ion concentration of about 0.25 to 0.8 mol / L is preferable because it can stably and uniformly coat the core particles.

この銀イオン濃度が、0.25mol/L未満の場合、銀被覆反応時の銀イオン濃度が希薄なことに起因して、銀が単独で反応スラリー中に還元析出し、芯材粒子表面への被覆にムラが生じ、導電性が不良となるおそれがある。また、0.8mol/Lを超える場合、銀被覆反応時の銀イオン濃度が濃厚なことに起因して、反応が急速に進行し、還元剤成分が銀被覆中に取り込まれやすくなり、導電性が不良となるおそれがある。 When this silver ion concentration is less than 0.25 mol / L, the silver ion concentration at the time of the silver coating reaction is dilute, so that silver is reduced and precipitated alone in the reaction slurry, There is a possibility that unevenness occurs in the coating, resulting in poor conductivity. On the other hand, when it exceeds 0.8 mol / L, the reaction proceeds rapidly due to the high concentration of silver ions at the time of the silver coating reaction, and the reducing agent component is easily incorporated into the silver coating. May become defective.

この銀アンミン錯体水溶液に、触媒活性済みケーキを添加し、充分攪拌・分散させ、銀被覆用スラリーを調製する。このスラリーのスラリー濃度は、30〜150g/L程度が、安定、かつ芯材粒子への一様な銀被覆を行え、好適である。 The catalyst-activated cake is added to the silver ammine complex aqueous solution and sufficiently stirred and dispersed to prepare a silver coating slurry. The slurry concentration of about 30 to 150 g / L is suitable because it can stably and uniformly coat the core particles with silver.

このスラリー濃度が、上記範囲を外れる場合、芯材濃度に対し銀イオン濃度が過剰だったり、不足したりして、その結果、銀粒子が単独で析出したり、銀被覆状態にムラが生じたりしやすい。 If this slurry concentration is out of the above range, the silver ion concentration is excessive or insufficient with respect to the core material concentration, and as a result, silver particles are precipitated alone, or the silver coating state is uneven. It's easy to do.

なお、銀被覆量は処理される芯材粒子の総表面積に応じて、調整するとより好ましい。具体的には、導電性複合粉末粒子に被覆される銀量で1〜10g/mとなるように、銀塩水溶液中の銀量を調整するのが、導電性向上やコスト上、好ましい。 The silver coating amount is more preferably adjusted according to the total surface area of the core particles to be processed. Specifically, adjusting the amount of silver in the silver salt aqueous solution so that the amount of silver coated on the conductive composite powder particles is 1 to 10 g / m 2 is preferable in terms of conductivity improvement and cost.

次に、上記銀被覆用スラリーに、還元剤を投入し、銀被覆処理を行う。
この際に用いる還元剤は、ヒドラジン、ヒドロキノン、ロッシェル塩、ホルマリン、グルコース、亜硫酸カリウム等、各種利用できるが、好ましくはヒドロキノン、ヒドラジン、ロッシェル塩を使用すると、独立した析出銀の核粒子が生成しにくく、効率的に芯材粒子に銀被覆させることができ、好適である。
Next, a reducing agent is added to the silver coating slurry to perform silver coating treatment.
The reducing agent used in this case can be variously used such as hydrazine, hydroquinone, Rochelle salt, formalin, glucose, potassium sulfite, etc., but preferably using hydroquinone, hydrazine, Rochelle salt, independent core particles of precipitated silver are generated. It is difficult and can efficiently coat the core particles with silver, which is preferable.

銀被覆処理における適切な反応終点までの時間は、還元剤により様々であるが、ヒドラジン、亜硫酸カリウムでは60〜120分、ロッシェル塩、ホルマリン、グルコースでは30〜60分、ヒドロキノンでは1〜10分程度が好ましい。この反応時間の調整については、還元剤濃度を調整する、添加時間を調整する、あるいは反応スラリー温度を調整する等の手段を適宜選択して行えば良い。   The time to the appropriate reaction end point in the silver coating treatment varies depending on the reducing agent, but it is 60 to 120 minutes for hydrazine and potassium sulfite, 30 to 60 minutes for Rochelle salt, formalin and glucose, and about 1 to 10 minutes for hydroquinone. Is preferred. The reaction time may be adjusted by appropriately selecting means such as adjusting the reducing agent concentration, adjusting the addition time, or adjusting the reaction slurry temperature.

反応の終点を調整するためには、予備実験にて、経時的に反応スラリーから分析サンプルを採取して、ICP等を用いて、スラリー中の銀イオン濃度を分析し、その濃度がほぼ0になった時点を反応終点として確認する。実際の反応では、上記終点時間に5分間加えた時点で、銀イオン濃度0を確認して反応時間とするが、この反応時間の間、一定の温度、攪拌を継続すれば良い。 In order to adjust the end point of the reaction, in a preliminary experiment, an analytical sample is collected from the reaction slurry over time, and the concentration of silver ions in the slurry is analyzed using ICP or the like. The time point at which this occurs is confirmed as the reaction end point. In an actual reaction, when 5 minutes are added to the above end point time, the silver ion concentration is confirmed to be 0 and set as the reaction time. During this reaction time, stirring may be continued at a constant temperature.

この反応時間が、上記還元剤毎の適正範囲未満の場合、反応が早すぎ、独立した析出銀の核粒子が生成しやすく、芯材粒子への銀被覆を阻害するおそれがあり、適正範囲を超える場合、還元剤成分の一部が芯材粒子内部に取り込まれ、残存するおそれがある。 When the reaction time is less than the appropriate range for each reducing agent, the reaction is too early, and independent precipitated silver core particles are likely to be generated, which may hinder the silver coating on the core material particles. When exceeding, there exists a possibility that a part of reducing agent component may be taken in inside a core particle and remain | survived.

また、反応前のスラリーpHについては、8〜11となるように調整すると良い。このpHが8未満の場合、反応が速く進行し、銀被覆部の表面が粗くなり、色相も不良となりやすい。また、pHが11を超える場合、還元剤成分が銀被覆中に取り込まれ、導電性が不良となるおそれがある。 Moreover, about the slurry pH before reaction, it is good to adjust so that it may become 8-11. When this pH is less than 8, the reaction proceeds fast, the surface of the silver coating becomes rough, and the hue tends to be poor. Moreover, when pH exceeds 11, there exists a possibility that a reducing agent component may be taken in in silver coating and electroconductivity may become bad.

こうして得られた銀被覆処理を終了した反応後スラリーに、常法のろ過、及び水洗浄を行い、導電性複合粉末ケーキとする。洗浄用の水は温水を用いると洗浄効果が上がり、好ましい。また、銀被覆処理の際に有機系還元剤を用いた場合は、脱脂剤として、炭酸ソーダを含む温水を用いると、粒子表面の残留炭素を低減でき、好ましい。必要に応じて、分散剤を併用したりしても良い。
導電性複合粉末ケーキは、常法の乾燥にて導電性複合粉末とする。
The resulting slurry after completion of the silver coating treatment is subjected to conventional filtration and water washing to obtain a conductive composite powder cake. It is preferable to use warm water for washing because the washing effect is improved. Further, when an organic reducing agent is used in the silver coating treatment, it is preferable to use hot water containing sodium carbonate as a degreasing agent because the residual carbon on the particle surface can be reduced. If necessary, a dispersant may be used in combination.
The conductive composite powder cake is made into a conductive composite powder by ordinary drying.

また、導電性複合粉末の粒子最表面に脂肪酸を被覆するには、上記導電性複合粉末ケーキを、脂肪酸を含む溶媒中に投入後、ろ過・乾燥する等の方法を採用すれば良い。脂肪酸量は、処理された後、導電性複合粉末に対して0.1〜1%となるように調整すれば良い。使用できる脂肪酸は前述したので省略する。使用できる溶媒は、アセトン、アルコール類等が挙げられる。被覆処理用溶媒に含有される脂肪酸濃度は、1〜10g/L程度となるように調製すると良い。 In order to coat the outermost surface of the particles of the conductive composite powder with the fatty acid, a method of filtering and drying the conductive composite powder cake in a solvent containing the fatty acid may be employed. What is necessary is just to adjust a fatty acid amount so that it may become 0.1 to 1% with respect to electroconductive composite powder, after processing. Since the fatty acid which can be used was mentioned above, it is omitted. Solvents that can be used include acetone, alcohols and the like. The concentration of fatty acid contained in the solvent for coating treatment is preferably adjusted to be about 1 to 10 g / L.

本発明の導電性複合粉末の製造方法によれば、微細な板状非金属無機化合物粒子に、導電性材料に要求される各種機能をバランス良く持たせる上で、最適な銀被覆が行え、かつ効率的な製造が可能である。 According to the method for producing a conductive composite powder of the present invention, an optimal silver coating can be performed on a fine plate-like nonmetallic inorganic compound particle having various functions required for a conductive material in a well-balanced manner, and Efficient production is possible.

以下、実施例等により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples and the like.

〔実施例1〕
2.8Lの純水に350mlの塩酸、及びPd濃度3.8g/L、Sn塩含有量35%のOPC−80キャタリスト(奥野製薬工業製)を300mL添加し、液温を40℃に保った後、平均粒子径8.1μm、アスペクト比A/Bが2.7、アスペクト比A/Cが9.1の板状硫酸バリウム・A(堺化学製)をハンマミルにて粉砕して得られた、平均粒子径5.2μm、アスペクト比A/Bが2.4、アスペクト比A/Cが4.8の板状硫酸バリウム粉末700gを添加しスラリー化させ、15分間攪拌して触媒活性処理を行った。処理済みのスラリーをブフナー漏斗にてろ過し、8Lの純水にて洗浄を行い、再度ろ過にて触媒活性処理済みケーキを得た。
[Example 1]
To 2.8 L of pure water, 350 mL of hydrochloric acid and 300 mL of OPC-80 catalyst (Okuno Pharmaceutical Co., Ltd.) having a Pd concentration of 3.8 g / L and a Sn salt content of 35% were added, and the liquid temperature was kept at 40 ° C. Then, plate-like barium sulfate A (made by Sakai Chemical) having an average particle diameter of 8.1 μm, an aspect ratio A / B of 2.7, and an aspect ratio A / C of 9.1 is obtained by pulverizing with a hammer mill. Furthermore, 700 g of plate-like barium sulfate powder having an average particle diameter of 5.2 μm, an aspect ratio A / B of 2.4, and an aspect ratio A / C of 4.8 is added to form a slurry, and stirred for 15 minutes to treat the catalyst. Went. The treated slurry was filtered with a Buchner funnel, washed with 8 L of pure water, and again subjected to catalyst activity treatment by filtration.

次に、7.7Lの純水に硝酸銀を910g溶解し、25%アンモニア水を1.19L添加し、さらに硫酸アンモニウムを500g添加し、pH9.4に調整した銀アンミン錯体水溶液を準備した。この銀アンミン錯体水溶液に、上記触媒活性処理済みケーキを添加し、40℃で5分間攪拌分散させ、反応用スラリーを得た。そして、この反応用スラリーに、ヒドラジン一水和物80mLを6.3Lの純水に溶解させた還元剤溶液を、100分間で定量的に投入し、完全に投入してから7分間攪拌して、芯材への銀被覆反応を終了させた。 Next, 910 g of silver nitrate was dissolved in 7.7 L of pure water, 1.19 L of 25% ammonia water was added, and 500 g of ammonium sulfate was further added to prepare a silver ammine complex aqueous solution adjusted to pH 9.4. The catalyst active-treated cake was added to the silver ammine complex aqueous solution, and the mixture was stirred and dispersed at 40 ° C. for 5 minutes to obtain a reaction slurry. Then, a reducing agent solution in which 80 mL of hydrazine monohydrate was dissolved in 6.3 L of pure water was quantitatively added to this reaction slurry in 100 minutes, and after complete addition, the mixture was stirred for 7 minutes. Then, the silver coating reaction on the core material was terminated.

次いで、スラリーをブフナー漏斗にてろ過し、純水を用い、70℃にて洗浄を行った。 さらに3.4%炭酸ソーダ水溶液10Lを用いて洗浄後、再び純水で洗浄を行った。ろ過後のケーキを70℃、12時間、大気中で乾燥した。 Next, the slurry was filtered with a Buchner funnel, and washed with pure water at 70 ° C. Further, after washing with 10 L of 3.4% sodium carbonate aqueous solution, washing with pure water was performed again. The cake after filtration was dried in the air at 70 ° C. for 12 hours.

下記の評価方法にて、各種特性につき、評価した。その結果を表1及び表2に示す。
<評価方法>
(a)平均粒子径及び比表面積:試料を少量ビーカーに取り、3%トリトンX溶液(関東化学製)を2、3滴添加し、粉体になじませてから、0.1%SNディスパーサント41溶液(サンノプコ製)約50mLを添加した後、超音波分散器TIPΦ20(日本精機製作所製、OUTPUT:8、TUNING:5)を用いて2分間分散した。この測定用サンプルを、レーザー回折散乱式粒度分布測定装置MT3300(日機装製)を用いて、平均粒子径(MV)及び比表面積を測定した。
(b)平均長径A、平均短径B、平均厚みC:透過型電子顕微鏡にて1,200倍の写真を撮影し、100個の粒子の平均長径A及び平均短径Bを測定した。また、エポキシ樹脂にて試料を樹脂埋めし、耐水サンドペーパーP400、P800、P1500、純アルミナ粉末20%スラリーを用いて段階的に樹脂埋めされた粉体断面を研磨した後、SEMにて1,000倍の写真を撮影し、100個の粒子の平均厚みCを測定した。
(c)アスペクト比:(b)で求めたA、B、及びCより、アスペクト比A/B、A/Cを求めた。
(d)粒子全体に対する被覆銀含有率:試料を硝酸にて溶解し、ICP分析にて銀量を求め、試料重量で除し、100倍し、銀含有率を求めた。
(e)粒子表面の銀被覆厚み(換算値):(a)にて測定した芯材の比表面積と、(d)のICP分析にて得られた銀含有率を用いて、
銀被覆厚み(μm)={銀含有率/(10.49×100)}/{(芯材比表面積×(1−銀含有率/100))にて求める。
(f)粉体体積抵抗: 試料3gをロレスタPD−41型(三菱化学製)によりプレス圧力10kNで加圧し、径20mmの円筒型ペレットにした状態で、4探針抵抗測定器ロレスタGP(三菱化学製)を用いて測定した。
(g)ゴムとの混練組成物の比抵抗:
試料3g、ゴム原料KE45(信越化学工業製)1.3g、及びトルエン2mLを混合、混練し、ペースト化した。このゴムペーストをOHP用シート上にアプリケーターを用いて、60μm厚さで成型後、70℃の乾燥機中で30分間硬化させた。この成型体を10mm×50mm角の寸法に切断し、電気抵抗をデジタルボルトメーター(YOKOGAWA
ELECTRIC WORKS製)にて測定した。比抵抗は
比抵抗(Ω・cm)=幅(cm)×膜厚(μm)×抵抗(Ω)/長さ(cm)×0.0001
という式にて算出した。
(h)導電性の耐酸化性:試料を温度150℃、RH30%環境下に24時間保持した後、(f)と同様の方法にて、圧粉抵抗値を測定し、熱処理後数値/熱処理前数値で算出した。
(i)隠ぺい力(顔料としての機能評価)
JIS K 5101−1991顔料試験方法記載の隠ぺい率試験紙法に準拠して、隠ぺい力を測定した。評価法が相対法につき、同時に実施例1〜比較例3の塗膜8点を比較し、隠ぺい力の一番大きいものを1、一番小さいものを8として示した。
Various characteristics were evaluated by the following evaluation methods. The results are shown in Tables 1 and 2.
<Evaluation method>
(A) Average particle size and specific surface area: Take a small amount of sample in a beaker, add a few drops of 3% Triton X solution (manufactured by Kanto Chemical Co., Ltd.) After adding about 50 mL of 41 solution (manufactured by San Nopco), it was dispersed for 2 minutes using an ultrasonic disperser TIPΦ20 (manufactured by Nippon Seiki Seisakusho, OUTPUT: 8, TUNING: 5). The average particle diameter (MV) and specific surface area of this measurement sample were measured using a laser diffraction / scattering particle size distribution analyzer MT3300 (manufactured by Nikkiso).
(B) Average major axis A, average minor axis B, average thickness C: A 1,200-fold photograph was taken with a transmission electron microscope, and the average major axis A and average minor axis B of 100 particles were measured. Further, the sample was filled with an epoxy resin, and the cross section of the powder filled with the resin using a 20% slurry of water-resistant sandpaper P400, P800, P1500 and pure alumina powder was polished, A 000 × photograph was taken, and the average thickness C of 100 particles was measured.
(C) Aspect ratio: Aspect ratios A / B and A / C were determined from A, B, and C determined in (b).
(D) Covered silver content with respect to the whole particle: The sample was dissolved in nitric acid, the amount of silver was determined by ICP analysis, divided by the sample weight, multiplied by 100, and the silver content was determined.
(E) Silver coating thickness on the particle surface (converted value): Using the specific surface area of the core material measured in (a) and the silver content obtained by ICP analysis in (d),
Silver coating thickness (μm) = {silver content / (10.49 × 100)} / {(core material specific surface area × (1−silver content / 100))
(F) Powder volume resistance: Four-probe resistance measuring instrument Loresta GP (Mitsubishi) in a state in which 3 g of a sample was pressurized with a Loresta PD-41 type (manufactured by Mitsubishi Chemical) at a press pressure of 10 kN into a cylindrical pellet having a diameter of 20 mm (Made by Chemical).
(G) Specific resistance of the kneaded composition with rubber:
3 g of a sample, 1.3 g of rubber raw material KE45 (manufactured by Shin-Etsu Chemical Co., Ltd.), and 2 mL of toluene were mixed and kneaded to form a paste. This rubber paste was molded on an OHP sheet using an applicator to a thickness of 60 μm, and then cured in a dryer at 70 ° C. for 30 minutes. This molded body is cut to a size of 10 mm × 50 mm square, and the electric resistance is changed to a digital voltmeter (YOKOGAWA
It was measured by ELECTRIC WORKS. The specific resistance is: specific resistance (Ω · cm) = width (cm) × film thickness (μm) × resistance (Ω) / length (cm) × 0.0001
It was calculated by the following formula.
(H) Conductive oxidation resistance: After holding the sample at 150 ° C. and RH 30% for 24 hours, measure the dust resistance by the same method as in (f), and the value after heat treatment / heat treatment Calculated with the previous value.
(I) Hiding power (functional evaluation as a pigment)
The hiding power was measured in accordance with the hiding rate test paper method described in JIS K 5101-1991. Since the evaluation method was a relative method, 8 coating films of Example 1 to Comparative Example 3 were compared at the same time, and the one with the largest hiding power was indicated as 1, and the one with the smallest hiding power was indicated as 8.

〔実施例2〕
実施例1と同様に製造し、洗浄後のケーキを0.9gのステアリン酸を溶解した2Lのアセトン溶液中で再スラリー化し、10分攪拌分散した後、固液分離、さらに70℃の大気雰囲気乾燥機中にて12時間乾燥した。
実施例1と同様に、各種特性につき、評価した。その結果を表1及び表2に示す。
[Example 2]
Produced in the same manner as in Example 1, the cake after washing was reslurried in 2 L acetone solution in which 0.9 g of stearic acid was dissolved, and stirred and dispersed for 10 minutes, followed by solid-liquid separation, and an atmospheric atmosphere at 70 ° C. Dry in a dryer for 12 hours.
Similar to Example 1, various characteristics were evaluated. The results are shown in Tables 1 and 2.

〔実施例3〕
2.8Lの純水に350mLの塩酸、及びPd濃度3.8g/L、Sn塩含有量35%のOPC−80キャタリスト(奥野製薬工業製)を300mL添加し、液温を40℃に保った後、平均粒子径8.1μm、アスペクト比A/Bが2.7、アスペクト比A/Cが9.1の板状硫酸バリウム・A(堺化学製)700gを添加しスラリー化させ、15分間攪拌して触媒活性処理を行った。処理済みのスラリーをブフナー漏斗にてろ過し、8Lの純水にて洗浄を行い、再度ろ過にて触媒活性処理済みケーキを得た。
Example 3
To 2.8 L of pure water, 350 mL of hydrochloric acid and 300 mL of OPC-80 catalyst (Okuno Pharmaceutical Co., Ltd.) with a Pd concentration of 3.8 g / L and a Sn salt content of 35% were added, and the liquid temperature was kept at 40 ° C. Then, 700 g of plate-like barium sulfate / A (manufactured by Sakai Chemical) having an average particle diameter of 8.1 μm, an aspect ratio A / B of 2.7, and an aspect ratio A / C of 9.1 was added to make a slurry. The catalyst activity treatment was performed with stirring for a minute. The treated slurry was filtered with a Buchner funnel, washed with 8 L of pure water, and again subjected to catalyst activity treatment by filtration.

次に、7.7Lの純水に硝酸銀を910g溶解し、25%アンモニア水を1.19L添加し、さらに硫酸アンモニウムを680g添加し、pH9.1に調整した銀アンミン錯体水溶液を準備した。この銀アンミン錯体水溶液に、上記触媒活性処理済みケーキを添加し、40℃で5分間攪拌分散させ、反応用スラリーを得た。そして、この反応用スラリーに、ヒドロキノン294gを6.3Lの純水に溶解させた還元剤溶液を一気に投入し、反応容器を冷却しながら、8分間攪拌して芯材への銀被覆反応を終了させた。 Next, 910 g of silver nitrate was dissolved in 7.7 L of pure water, 1.19 L of 25% ammonia water was added, and 680 g of ammonium sulfate was further added to prepare a silver ammine complex aqueous solution adjusted to pH 9.1. The catalyst active-treated cake was added to the silver ammine complex aqueous solution, and the mixture was stirred and dispersed at 40 ° C. for 5 minutes to obtain a reaction slurry. Then, a reducing agent solution in which 294 g of hydroquinone was dissolved in 6.3 L of pure water was added to the slurry for reaction at a stroke, and the reaction vessel was cooled and stirred for 8 minutes to complete the silver coating reaction on the core material. I let you.

以下の処理は、実施例1と同様に行い、各種特性につき、評価した。その結果を表1及び表2に示す。
一方、この粉末のX線透過率を、以下の評価方法にて測定した結果、30.5%であった。
The following processing was performed in the same manner as in Example 1, and various characteristics were evaluated. The results are shown in Tables 1 and 2.
On the other hand, as a result of measuring the X-ray transmittance of this powder by the following evaluation method, it was 30.5%.

<X線透過率評価方法>
試料3gとゴム原料KE45(信越化学工業製)とを体積で0.325cmとなるように混合し、さらにトルエン2mLを加え、混練し、ペースト化した。このペーストを、ポリエチレンシート上にアプリケーターを用いて60μmの厚さで塗布し、70℃、30分間で乾燥、硬化させた。このシートをX線回折装置M21X(ブルカーAXS製)にセットし、線源Cu、波長1.54184Å、計数時間1.0secで入力カウントを10800カウントとし、出力カウントを測定して、出力カウント/入力カウント×100にてX線透過率(%)を求めた。
<X-ray transmittance evaluation method>
3 g of a sample and rubber raw material KE45 (manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed so that the volume became 0.325 cm 2, and further 2 mL of toluene was added and kneaded to form a paste. This paste was applied onto a polyethylene sheet at a thickness of 60 μm using an applicator, dried and cured at 70 ° C. for 30 minutes. This sheet is set in an X-ray diffractometer M21X (Bruker AXS), the input count is 10800 counts with a source Cu, a wavelength of 1.54184 mm, a counting time of 1.0 sec, the output count is measured, and the output count / input X-ray transmittance (%) was determined by counting 100.

〔実施例4〕
実施例3と同様に製造し、洗浄後のケーキを0.9gのステアリン酸を溶解した2Lのアセトン溶液中で再スラリー化し、10分攪拌分散した後、固液分離、さらに70℃の大気雰囲気乾燥機中にて12時間乾燥した。
実施例1と同様に、各種特性につき、評価した。その結果を表1及び表2に示す。
Example 4
Produced in the same manner as in Example 3, the cake after washing was reslurried in 2 L of acetone solution in which 0.9 g of stearic acid was dissolved. After stirring and dispersing for 10 minutes, solid-liquid separation was performed, and an atmospheric atmosphere at 70 ° C. Dry in a dryer for 12 hours.
Similar to Example 1, various characteristics were evaluated. The results are shown in Tables 1 and 2.

〔実施例5〕
2.8Lの純水に350mlの塩酸、及びPd濃度3.8g/L、Sn塩含有量35%のOPC−80キャタリスト(奥野製薬工業製)を300ml添加し、液温を40℃に保った後、平均粒子径3.1μm、アスペクト比A/Bが2.8、アスペクト比A/Cが4.3の板状炭酸カルシウム粉末600gを添加しスラリー化させ、15分間攪拌して触媒活性処理を行った。処理済みのスラリーをブフナー漏斗にてろ過し、8Lの純水にて洗浄を行い、再度ろ過にて触媒活性処理済みケーキを得た。
Example 5
To 2.8 L of pure water, 350 ml of hydrochloric acid and 300 ml of OPC-80 catalyst (Okuno Pharmaceutical Co., Ltd.) with a Pd concentration of 3.8 g / L and a Sn salt content of 35% were added, and the liquid temperature was kept at 40 ° C. After that, 600 g of plate-like calcium carbonate powder having an average particle size of 3.1 μm, an aspect ratio A / B of 2.8, and an aspect ratio A / C of 4.3 is added to make a slurry, and stirred for 15 minutes to obtain catalytic activity. Processed. The treated slurry was filtered with a Buchner funnel, washed with 8 L of pure water, and again subjected to catalyst activity treatment by filtration.

次に、7.7Lの純水に硝酸銀を910g溶解し、25%アンモニア水を1.19L添加し、さらに硫酸アンモニウムを820g添加し、pH8.9に調整した銀アンミン錯体水溶液を準備した。この銀アンミン錯体水溶液に、上記触媒活性処理済みケーキを添加し、60℃で5分間攪拌分散させ、反応用スラリーを得た。そして、この反応用スラリーに、ロッシェル塩420gを6.3Lの純水に溶解させた還元剤溶液を一気に投入し、57分間攪拌して芯材への銀被覆反応を終了させた。 Next, 910 g of silver nitrate was dissolved in 7.7 L of pure water, 1.19 L of 25% ammonia water was added, and further 820 g of ammonium sulfate was added to prepare a silver ammine complex aqueous solution adjusted to pH 8.9. The catalyst active-treated cake was added to the silver ammine complex aqueous solution and stirred and dispersed at 60 ° C. for 5 minutes to obtain a reaction slurry. Then, a reducing agent solution in which 420 g of Rochelle salt was dissolved in 6.3 L of pure water was poured into the slurry for reaction at a stretch and stirred for 57 minutes to complete the silver coating reaction on the core material.

洗浄後のケーキを0.9gのステアリン酸を溶解した2Lのアセトン溶液中で再スラリー化し、10分攪拌分散した後、固液分離、さらに70℃の大気雰囲気乾燥機中にて12時間乾燥した。
実施例1と同様に、各種特性につき、評価した。その結果を表1及び表2に示す。
The washed cake was reslurried in 2 L acetone solution in which 0.9 g of stearic acid was dissolved, stirred and dispersed for 10 minutes, solid-liquid separation, and further dried in an air atmosphere dryer at 70 ° C. for 12 hours. .
Similar to Example 1, various characteristics were evaluated. The results are shown in Tables 1 and 2.

〔比較例1〕
平均粒子径が8.2μm、アスペクト比A/Bが1.5、アスペクト比A/Cが6.9の電解銅粉末を粉砕して得た板(フレーク)状銅粉末100gを、1Lの純水にスラリー化し、50℃で保温した後、ヒドラジン一水和物9.2gを添加し、30分間保持した(表面の酸化状態を改良し、銀被覆しやすくするため)。次いで、このスラリーをブフナー漏斗にてろ過し、純水600mLにて洗浄を行った後、メタノール300mlを粉体に注いで、同じく吸引し水分を除去した。
[Comparative Example 1]
100 g of plate (flake) copper powder obtained by pulverizing electrolytic copper powder having an average particle size of 8.2 μm, aspect ratio A / B of 1.5, and aspect ratio A / C of 6.9 is After slurried in water and kept at 50 ° C., 9.2 g of hydrazine monohydrate was added and held for 30 minutes (to improve surface oxidation and facilitate silver coating). Next, this slurry was filtered with a Buchner funnel and washed with 600 mL of pure water, and then 300 mL of methanol was poured into the powder and similarly sucked to remove moisture.

上記銅粉ケーキを1Lの純水で再びスラリー化させ、次いでEDTA8.5gを添加し、攪拌・溶解した銅粉含有スラリーを準備した。また、純水480mLに硝酸銀35gを溶解させ、その硝酸銀水溶液を2時間かけて、上記銅粉スラリーに定量的に添加した。そこで得られた銀コート銅粉含有スラリーを洗浄・ろ過し、それを70℃の大気乾燥機にて5時間乾燥した。得られた導電性粉末を、実施例1と同様に、各種特性につき、評価した。その結果を表1及び表2に示す。また、この粉末のX線透過率を、実施例3と同様に測定した結果、46.3%であった。 The copper powder cake was slurried again with 1 L of pure water, and then 8.5 g of EDTA was added to prepare a stirred and dissolved copper powder-containing slurry. Further, 35 g of silver nitrate was dissolved in 480 mL of pure water, and the aqueous silver nitrate solution was quantitatively added to the copper powder slurry over 2 hours. The silver-coated copper powder-containing slurry thus obtained was washed and filtered, and dried in an air dryer at 70 ° C. for 5 hours. The obtained conductive powder was evaluated for various characteristics in the same manner as in Example 1. The results are shown in Tables 1 and 2. Further, the X-ray transmittance of this powder was measured in the same manner as in Example 3. As a result, it was 46.3%.

〔比較例2〕
280mLの純水に30mLの塩酸、及びPd濃度3.8g/L、Sn塩含有量35%のOPC−80キャタリスト(奥野製薬工業製)を30mL添加し、液温を40℃に保った後、平均粒径13.1μmの真球状シリカ粉末60gをスラリー化させ、15分間攪拌して触媒活性処理を行った。処理済みのスラリーをブフナー漏斗にてろ過し、1Lの純水にて洗浄を行い、再度ろ過にて触媒活性処理済みケーキを得た。
[Comparative Example 2]
After adding 30 mL of hydrochloric acid and 30 mL of OPC-80 catalyst (Okuno Pharmaceutical Co., Ltd.) having a Pd concentration of 3.8 g / L and a Sn salt content of 35% to 280 mL of pure water and keeping the liquid temperature at 40 ° C. Then, 60 g of true spherical silica powder having an average particle size of 13.1 μm was slurried, and stirred for 15 minutes for catalyst activation treatment. The treated slurry was filtered with a Buchner funnel, washed with 1 L of pure water, and again a catalyst-activated cake was obtained by filtration.

次に、7.2Lの純水に硝酸銀を195.2g溶解し、25%アンモニア水を261mL添加し、アンミン錯体を形成させ、温度を60℃に保持した。ここに上記触媒活性処理済みケーキを添加し、60℃で5分間攪拌分散させ、反応用スラリーを得た。そして、この反応用スラリーに、ロッシェル塩90.1gを1.8Lの純水に溶解させた還元剤溶液を一気に投入し、52分間攪拌して芯材への銀被覆反応を終了させた。 Next, 195.2 g of silver nitrate was dissolved in 7.2 L of pure water, 261 mL of 25% ammonia water was added to form an ammine complex, and the temperature was maintained at 60 ° C. The catalyst active-treated cake was added thereto and stirred and dispersed at 60 ° C. for 5 minutes to obtain a reaction slurry. Then, a reducing agent solution in which 90.1 g of Rochelle salt was dissolved in 1.8 L of pure water was poured into the reaction slurry at once, and stirred for 52 minutes to complete the silver coating reaction on the core material.

次いで、スラリーをブフナー漏斗にてろ過し、純水を用い、70℃にて洗浄を行った。 さらに3.4%炭酸ソーダ水溶液10Lを用いて洗浄後、再び純水で洗浄を行った。ろ過後のケーキを70℃、12時間、大気中で乾燥した。
実施例1と同様に、各種特性につき、評価した。その結果を表1及び表2に示す。
Next, the slurry was filtered with a Buchner funnel, and washed with pure water at 70 ° C. Further, after washing with 10 L of 3.4% sodium carbonate aqueous solution, washing with pure water was performed again. The cake after filtration was dried in the air at 70 ° C. for 12 hours.
Similar to Example 1, various characteristics were evaluated. The results are shown in Tables 1 and 2.

〔比較例3〕
平均粒子径が5.7μm、アスペクト比A/Bが1.4、アスペクト比A/Cが4.4の板状銀粉末を、実施例1と同様に、各種特性につき、評価した。その結果を表1及び表2に示す。
[Comparative Example 3]
A plate-like silver powder having an average particle size of 5.7 μm, an aspect ratio A / B of 1.4, and an aspect ratio A / C of 4.4 was evaluated for various characteristics in the same manner as in Example 1. The results are shown in Tables 1 and 2.

表1及び表2からもわかるように、実施例の導電性複合粉末は、適切な芯材において銀被覆を有することにより、優れた導電性を示すことはもちろんのこと、その導電性能について耐酸化性があり経時変化が小さく、塗料化してもその隠ぺい力に優れており、加工成型品の風合いを損なわない顔料としての機能を有するものである。
さらに、実施例3のように、硫酸バリウムを芯材として用いた場合、X線遮蔽率にも優れていることが判明した。
As can be seen from Tables 1 and 2, the conductive composite powders of the examples not only exhibit excellent conductivity by having a silver coating in an appropriate core material, but also have oxidation resistance with respect to their conductive performance. Therefore, it has a function as a pigment that does not impair the texture of the processed molded product.
Furthermore, when barium sulfate was used as a core material as in Example 3, it was found that the X-ray shielding rate was also excellent.

これに対し、比較例1や比較例3の粉末は、金属成分のみで構成されており、粉体体積抵抗のみならず、比重が小さいことに起因して、成型物の比抵抗が大きいことがわかった。
また、比較例1の粉末は、銅粒子が芯材であり、耐酸化性にも劣っていた。
On the other hand, the powders of Comparative Example 1 and Comparative Example 3 are composed only of metal components, and not only the powder volume resistance but also the specific resistance of the molded product is large due to the low specific gravity. all right.
Moreover, as for the powder of the comparative example 1, the copper particle was a core material and was inferior also in oxidation resistance.

また、比較例2の粉末は、芯材が球形を呈したシリカ粒子であるため、導電のためのネットワーク形成が不十分で、成型物の比抵抗が大きかった。さらに、球形であることに起因して、顔料としてみた際の隠ぺい力に劣るものであった。   Moreover, since the powder of the comparative example 2 is a silica particle in which the core material has a spherical shape, the formation of a network for electrical conduction is insufficient, and the specific resistance of the molded product is large. Furthermore, due to the spherical shape, it was inferior in hiding power when viewed as a pigment.

本発明の導電性複合粉末は、帯電防止、電磁波遮蔽等の目的で、樹脂やゴム等の非導電性基材に使用した際に、十分な導電性が確保でき、添加物の重量増や体積増が抑制でき、耐酸化性があり経時変化が小さく、かつ加工成型品の風合いを損なわない顔料としての機能を有する。 The conductive composite powder of the present invention can ensure sufficient conductivity when used for a non-conductive substrate such as resin or rubber for the purpose of antistatic, electromagnetic wave shielding, etc. It has a function as a pigment that can suppress the increase, has oxidation resistance, has little change with time, and does not impair the texture of the processed molded product.

実施例3の導電性複合粉末の、平面部を中心に捉えたSEM観察写真(倍率:5000倍)SEM observation photograph (magnification: 5000 times) of the conductive composite powder of Example 3 centered on the flat part. 実施例3の導電性複合粉末の、厚み部を中心に捉えたSEM観察写真(倍率:2000倍)SEM observation photograph (magnification: 2000 times) of the conductive composite powder of Example 3 with a focus on the thickness portion.

Claims (11)

芯材が板状、かつ非金属の無機化合物粒子であり、その粒子表面が銀で被覆されており、かつ下記(a)から(e)の特徴を有する粒子からなる導電性複合粉末。
(a)レーザー回折散乱式粒度分布測定装置を用いて測定される体積平均粒子径(MV)が2〜15μm。
(b)透過型電子顕微鏡にて撮影された写真(1,200倍)において計測される粒子の長径の平均値である平均長径をA、同様に計測される粒子の短径の平均値である平均短径をBとした際に、平均短径Bに対する平均長径Aのアスペクト比A/B1〜5。
(c)走査型電子顕微鏡(SEM)にて撮影された写真(1000倍)において計測される粒子の厚みの平均値である平均厚みをCとした際に、平均短径B>平均厚みC。
(d)前記平均厚みCに対する前記平均長径Aのアスペクト比A/Cが3〜20。
(e)平均厚みCが0.3〜2.6μm。
A conductive composite powder comprising core particles of plate-like and non-metallic inorganic compound particles, the particle surfaces of which are coated with silver, and particles having the following characteristics (a) to (e):
(a) The volume average particle diameter (MV) measured using a laser diffraction / scattering particle size distribution analyzer is 2 to 15 μm.
(b) A is the average major axis, which is the average value of the major axis of the particles measured in a photograph (1,200 times) taken with a transmission electron microscope, and is the average value of the minor axis of the particles measured in the same manner. When the average minor axis is B, the aspect ratio A / B of the average major axis A to the average minor axis B is 1 to 5.
(C) the run 査型electron microscope average thickness is an average value of the thickness of the particles is measured in pictures taken (1000-fold) at (SEM) upon C, the average minor diameter B> The average thickness C .
(D) The aspect ratio A / C of the average major axis A to the average thickness C is 3 to 20.
(E) Average thickness C is 0.3 to 2.6 μm.
前記芯材である非金属の無機化合物粒子が硫酸バリウム、炭酸カルシウム、酸化亜鉛、窒化ホウ素の内から選ばれる、いずれかである請求項1に記載の導電性複合粉末。 2. The conductive composite powder according to claim 1, wherein the nonmetallic inorganic compound particles as the core material are any one selected from barium sulfate, calcium carbonate, zinc oxide, and boron nitride. 前記銀で被覆されている粒子において、粒子全体に対する被覆銀量が30〜60質量%である請求項1又は2に記載の導電性複合粉末。 3. The conductive composite powder according to claim 1, wherein in the particles coated with silver, the amount of coated silver with respect to the entire particles is 30 to 60% by mass. 前記銀で被覆されている粒子において、換算銀被覆厚みが0.1〜0.8μmである請求項1〜3のいずれかに記載の導電性複合粉末。 In particles coated with the silver, conductive composite powder according to any one of claims 1 to 3 basis silver coating thickness of 0.1 to 0.8 [mu] m. 前記銀で被覆されている粒子において、さらに脂肪酸被覆が施されている請求項1〜4のいずれかに記載の導電性複合粉末。 In particles coated with the silver, conductive composite powder according to any one of claims 1 to 4, which is subjected to further fatty acid coating. 水分散した非金属の無機化合物粒子を含むスラリー中で、該無機化合物粒子表面に触媒活性処理を施し、固液分離された触媒活性処理後の粒子を、銀塩水溶液中で再スラリー化し、このスラリーに還元剤を添加して、前記触媒活性処理後の粒子表面に銀被覆を行うことを特徴とする導電性複合粉末の製造方法。   In a slurry containing non-metallic inorganic compound particles dispersed in water, the surface of the inorganic compound particles is subjected to catalytic activity treatment, and the solid-liquid separated particles after catalytic activity treatment are reslurried in an aqueous silver salt solution. A method for producing a conductive composite powder, wherein a reducing agent is added to a slurry, and the surface of the particles after the catalytic activity treatment is coated with silver. 前記銀塩水溶液が銀アンミン錯体である、請求項6記載の導電性複合粉末の製造方法。 The manufacturing method of the electroconductive composite powder of Claim 6 whose said silver salt aqueous solution is a silver ammine complex. 前記銀塩水溶液に、緩衝剤としてアンモニウム塩を添加する請求項7記載の導電性複合粉末の製造方法。 Wherein the aqueous silver salt solution, method for producing a conductive composite powder according to claim 7 Symbol mounting adding an ammonium salt as a buffering agent. 前記触媒活性処理後の粒子表面に銀被覆を行う際の、反応前のスラリーpHが8〜11である、請求項6〜8のいずれかに記載の導電性複合粉末の製造方法。 The method for producing a conductive composite powder according to any one of claims 6 to 8, wherein a slurry pH before the reaction when silver coating is performed on the particle surfaces after the catalytic activity treatment is 8 to 11. 前記触媒活性処理後の粒子表面に銀被覆を行う際に用いる還元剤が、ヒドラジン、ヒドロキノン、ロッシェル塩、ホルマリン、グルコース、亜硫酸カリウムの内から選ばれるいずれかである、請求項6〜9のいずれかに記載の導電性複合粉末の製造方法。 Reducing agent used in making the silver coated on the particle surface after the catalyst activation treatment is either hydrazine, hydroquinone, Rochelle salt, selected formalin, glucose, from among potassium sulfite, any claim 6-9 A method for producing the conductive composite powder according to claim 1. 請求項1〜5のいずれかに記載の導電性複合粉末を含有する導電性組成物。

The electroconductive composition containing the electroconductive composite powder in any one of Claims 1-5 .

JP2004336020A 2004-11-19 2004-11-19 Conductive composite powder and method for producing the same Active JP4583147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336020A JP4583147B2 (en) 2004-11-19 2004-11-19 Conductive composite powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336020A JP4583147B2 (en) 2004-11-19 2004-11-19 Conductive composite powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006147351A JP2006147351A (en) 2006-06-08
JP4583147B2 true JP4583147B2 (en) 2010-11-17

Family

ID=36626791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336020A Active JP4583147B2 (en) 2004-11-19 2004-11-19 Conductive composite powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4583147B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1989263A1 (en) * 2006-02-21 2008-11-12 Sachtleben Chemie GmbH Barium sulphate
JP6018733B2 (en) * 2010-04-14 2016-11-02 Dowaエレクトロニクス株式会社 Thermosetting conductive paste and method for producing the same
WO2012118061A1 (en) * 2011-03-01 2012-09-07 ナミックス株式会社 Electrically conductive composition
CN104170023B (en) * 2012-03-06 2016-12-28 东洋油墨Sc控股株式会社 Electrically conductive microparticle and manufacture method, electroconductive resin constituent, conductive sheet and electromagnetic shielding sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129318A (en) * 1998-10-22 2000-05-09 Dowa Mining Co Ltd Silver powder and its production
JP2002004057A (en) * 2000-06-23 2002-01-09 Shin Etsu Chem Co Ltd Method of producing metal-coated powder
JP2002015622A (en) * 2000-06-30 2002-01-18 Fukuda Metal Foil & Powder Co Ltd Copper powder for electro-conductive paste and its manufacturing method
WO2005031760A1 (en) * 2003-09-26 2005-04-07 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686292B2 (en) * 1990-03-07 1994-11-02 花王株式会社 Plate-shaped barium sulfate and method for producing the same
JP3162818B2 (en) * 1992-09-08 2001-05-08 花王株式会社 Production method of barium sulfate
JP3467075B2 (en) * 1994-04-27 2003-11-17 花王株式会社 Barium sulfate and method for producing the same
JP3716350B2 (en) * 1994-12-28 2005-11-16 同和鉱業株式会社 Silver powder and method for producing the same
JP3618441B2 (en) * 1995-02-13 2005-02-09 財団法人函館地域産業振興財団 Conductive metal composite powder and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129318A (en) * 1998-10-22 2000-05-09 Dowa Mining Co Ltd Silver powder and its production
JP2002004057A (en) * 2000-06-23 2002-01-09 Shin Etsu Chem Co Ltd Method of producing metal-coated powder
JP2002015622A (en) * 2000-06-30 2002-01-18 Fukuda Metal Foil & Powder Co Ltd Copper powder for electro-conductive paste and its manufacturing method
WO2005031760A1 (en) * 2003-09-26 2005-04-07 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof

Also Published As

Publication number Publication date
JP2006147351A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP5080731B2 (en) Fine silver particle-attached silver-copper composite powder and method for producing the fine silver particle-attached silver-copper composite powder
WO2014084021A1 (en) Silver-coated copper powder, and method for producing same
EP3192597A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP5858201B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
KR20140123526A (en) Silver-coated copper alloy powder and method for manufacturing same
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
KR102226109B1 (en) Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
JP2009046708A (en) Silver powder
EP3096330B1 (en) Composite conductive particle, conductive resin composition containing same and conductive coated article
JP6278969B2 (en) Silver coated copper powder
WO2017094361A1 (en) Dendritic silver powder
JP4583147B2 (en) Conductive composite powder and method for producing the same
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP2017071819A (en) Silver powder and conductive paste, conductive coating and conductive sheet using the same
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP6577316B2 (en) Copper powder for conductive paste and method for producing the same
JP4961315B2 (en) Method for producing metal-coated nickel powder
JP5790900B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP6332125B2 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP2019186225A (en) Copper powder for conductive paste and manufacturing method therefor
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
KR20140020286A (en) Coated fibrous copper microparticles, and electrically conductive coating agent and electrically conductive film each containing said coated fibrous copper microparticles
JP6332124B2 (en) Copper powder and conductive paste, conductive paint, conductive sheet using the same
JP2022180322A (en) Copper powder and conductive composition comprising the same, and wiring structure comprising the same and method for producing conductive member using the same
TW201634601A (en) Copper powder and copper paste using the same, conductive paint and conductive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

R150 Certificate of patent or registration of utility model

Ref document number: 4583147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140910

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250