JP3716350B2 - Silver powder and method for producing the same - Google Patents

Silver powder and method for producing the same Download PDF

Info

Publication number
JP3716350B2
JP3716350B2 JP34107594A JP34107594A JP3716350B2 JP 3716350 B2 JP3716350 B2 JP 3716350B2 JP 34107594 A JP34107594 A JP 34107594A JP 34107594 A JP34107594 A JP 34107594A JP 3716350 B2 JP3716350 B2 JP 3716350B2
Authority
JP
Japan
Prior art keywords
silver
palladium
silver powder
added
ammine complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34107594A
Other languages
Japanese (ja)
Other versions
JPH08188804A (en
Inventor
徳昭 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP34107594A priority Critical patent/JP3716350B2/en
Publication of JPH08188804A publication Critical patent/JPH08188804A/en
Application granted granted Critical
Publication of JP3716350B2 publication Critical patent/JP3716350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、厚膜導電性ペーストに使用される銀粉及びその製造方法に関するものである。
【0002】
【従来の技術】
従来から電子工業の分野で厚膜回路に銀ペーストが利用されており、その製造方法として多種の技術が提案されている。
【0003】
銀ペーストは、銀−パラジウムペーストが主流であり、パラジウムを混合させる目的は、マイグレーションを防止するためである。
【0004】
従来から提案されている技術としては、
(1)銀粉とパラジウム粉を混合したもの。
(2)銀−パラジウムの共沈粉。
(3)銀粉表面にパラジウムを被覆したもの。
(4)パラジウムを均一に分散させるため合金粉にしたもの。
等がある。
【0005】
しかしながら、上記(1)〜(2)の各技術とも、次のような問題点があった。即ち、上記の
(1)は均一性に乏しいこと。
(2)はパラジウムの低減化の効果が少ないこと。
(3)は銀粉との密着性が悪く、剥離現象を起こし、また偏析してしまうので、被覆が不完全であること。
(4)マイグレーションは粉粒体の表面での反応が問題であり、合金化することにより抵抗が高くなってしまうこと。
等の致命的な欠点がある。
【0006】
【発明が解決しようとする課題】
本発明は、上記のような従来技術の諸欠点を解決し、高価なパラジウムの減量化が可能で、しかも耐マイグレーション性を向上させることができ、かつ安価な銀−パラジウム膜を被覆した銀粉とその製造方法を提案するものである。
【0007】
【課題を解決するための手段】
本発明は、上記のような課題を解決するため鋭意研究の結果、ペースト用の銀粉として均一に密着性よく銀粉にパラジウムを被覆させるためには、銀粉にパラジウム−銀膜を被覆することが非常に効果的であるとの知見を得てなされたものである。即ち
【0008】
第1発明は、銀アンミン錯体水溶液に還元剤を添加して銀粉の粒子を生成し、次いでパラジウムのアンミン錯体と銀アンミン錯体とを添加し、更に還元剤を添加して、該錯体中のパラジウムと銀とを該銀粉の粒子の表面にパラジウム−銀膜として銀粉全体中においてパラジウム0.1〜20wt%,銀0.005〜2wt%の範囲で析出させることにより製造されるパラジウム−銀膜で被覆され耐マイグレーション性に優れたペースト用銀粉である。
【0009】
第2発明は、銀アンミン錯体水溶液に還元剤を添加して銀粉の粒子を生成し、次いでパラジウムのアンミン錯体と銀アンミン錯体とを添加し、更に還元剤を添加して、該錯体中のパラジウムと銀とを該銀粉の粒子の表面にパラジウム−銀膜として銀粉全体中においてパラジウム0.1〜20wt%,銀0.005〜2wt%の範囲で析出させることを特徴とするパラジウム−銀膜で被覆され耐マイグレーション性に優れたペースト用銀粉の製造方法である。
【0010】
第3発明は、銀アンミン錯体水溶液に還元剤を添加して銀粉を生成し、次いでパラジウムアンミン錯体と銀アンミン錯体とを添加し、更に還元剤を添加して、該錯体中のパラジウムと銀とを該銀粉の粒子表面に析出させることを特徴とするパラジウム−銀膜で被覆され耐マイグレーション性に優れる銀粉の製造方法であり、
【0011】
第4発明は、パラジウム−銀膜で被覆され耐マイグレーション性に優れることを特徴とするペースト用銀粉である。
【0012】
本発明において、銀粉は純銀に限定されるものではなく、他の金属を含有する銀合金粉も含まれるものである。以下、これらも単に銀粉という。
【0013】
そして、パラジウム−銀膜中のパラジウム及び銀は、被覆された銀粉全体中において、それぞれ0.1〜20wt%、0.005〜2wt%の範囲が好ましいのである。
【0014】
【作用】
本発明に係る製造方法においては、銀アンミン錯体水溶液に攪拌しながら還元剤を添加して銀粉を生成させた後、パラジウムアンミン錯体と銀アンミン錯体の水溶液を加え、更に還元剤を添加する。
【0015】
還元剤の添加に際し、銀アンミン錯体水溶液に還元剤を銀の還元析出生成反応に必要な適量を添加し、次いでパラジウムアンミン錯体と銀アンミン錯体の水溶液を加え、次工程で更に還元剤を添加し、錯体中のパラジウムと銀とを銀粉粒子表面に析出生成させて被覆してもよく(図1参照)、またあらかじめ銀の還元析出生成工程で過剰の還元剤を添加しておき、パラジウムアンミン錯体と銀アンミン錯体の水溶液を加え、パラジウム−銀膜を銀粉粒子表面に析出させて被覆してもよい。
【0016】
これらの析出生成反応により、銀粉粒子表面に均一で密着性のよいパラジウム−銀膜を被覆させることができる。
【0017】
また、あらかじめ準備しておいた銀粉をパラジウムアンミン錯体と銀アンミン錯体との混合水溶液中に添加し、分散させて攪拌し、還元剤を所定量添加する方法によっても、上記と同様にパラジウム−銀膜を均一に密着性よく銀粉粒子表面に被覆することができる。
【0018】
本発明に使用する還元剤としては、水素化ホウ素ナトリウム,ホルマリン,ヒビドラジン等のうち少なくとも一種であることが好ましいのである。
【0019】
次に、本発明を実施例、比較例及び試験例に基づいて説明する。
【0020】
【実施例】
実施例
硝酸銀100g/lの水溶液に適量のアンモニア水を加え、銀アンミン錯体水溶液を作成し、この水溜液に攪拌しながら還元剤としてホルマリンを添加して還元させ、銀粉粒子を析出生成させた。
【0021】
この銀粉粒子を懸濁させた水溶液にパラジウムアンミン錯体(Pd:14.5%)と銀アンミン錯体(Ag:0.5%)の混合水溶液を添加し、還元剤としてヒドラジン・一水和物を加え、銀粉粒子表面にパラジウム−銀膜を析出させた。
【0022】
析出生成反応後ろ過して、析出物を洗浄した後、60℃で真空乾燥を行った。一方、反応ろ液を分析した結果、パラジウム及び銀は検出されなかった(図1参照)。
【0023】
比較例1
銀粉粒子の析出生成は実施例1と同様にして行った後、この水溶液にパラジウムアンミン錯体(Pd:15%)水溶液を添加し、還元剤としてヒドラジン・一水和物を加え、銀粉粒子表面にパラジウムを析出させた。
【0024】
析出生成反応後ろ過し、析出物を洗浄した後、60℃で真空乾燥を行った。一方、反応ろ液を分析した結果、パラジウムは検出されなかった。
【0025】
比較例2
銀アンミン錯体(Ag:85wt%)水溶液とパラジウムアンミン錯体(Pd:15wt%)水溶液を混合し、攪拌しながら還元剤としてヒドラジン・一水和物を添加し、共沈粉を析出生成させた。
【0026】
反応後ろ過し、共沈物を充分洗浄した後、60℃で真空乾燥を行った。一方、反応ろ液を分析した結果、パラジウム及び銀は検出されなかった。
【0027】
比較例3
比較試験のため、銀粉85wt%とパラジウム粉15wt%を混合した混合粉を作成した。
【0028】
試験例
上記実施例1と比較例1,2,3で製造した各銀粉で、下記組成のペーストを調整し、耐マイグレーション性につき試験を行った。
【0029】
粉体:61:0wt%,ビヒクル:37.4wt%,ガラス粉1.6wt%(ただし、ビヒクルはエチルセルローズ45cp:4.3wt%にターピネオール:95.7wt%を混合し調製したもの)
【0030】
次に、上記ペーストを用い、スクリーン印刷により電極パターンをアルミナ基板へ印刷し、レベリングを行い、所定の温度で乾燥した。その後、ベルト炉に装入し、850℃で焼成して電極を形成させた。その各電極のパターンは、Gap:1mm,電極幅:1mmであった。
【0031】
実施例1の銀粉をベースとして形成した電極をA、比較例1の銀粉をベースとして形成した電極をB、以下同様に比較例2はC、比較例3はDとして、マイグレーション測定を行った。
【0032】
マイグレーション測定には図2に示すような回路(電源:DC:7.5V)を製作した。また、測定方法は、銀電極の間に純水を1滴滴下してから、抵抗の両端電圧が2Vになるまでの時間を測定した。
【0033】
その結果、A:23秒,B:20秒,C:13秒,D:8秒であった。
【0034】
以上の結果から、A即ち本発明に係る銀粉粒子表面にパラジウム−銀膜を被覆した銀粉が、耐マイグレーション性に著しく優れていることが分った。
【0035】
【発明の効果】
上記のように、本発明に係るパラジウム−銀膜を被覆した銀粉は、従来の銀粉に比較して、耐マイグレーション性に著しく優れており、特に厚腹導電性ペースト用として最適な銀粉である。
【0036】
本発明法により、上記のような厚膜導電性ペーストに使用される銀粉として、密着性がよく、均一にパラジウム−銀膜を被覆した銀粉を比較的簡単な工程でしかも安価に製造することができる。
【0037】
その結果、耐マイグレーション性に優れた効果が認められ、パラジウムを減量化することができ、従って経済性に優れたペースト用の銀粉を製造することができるのである。
【図面の簡単な説明】
【図1】本発明に係る銀粉の製造工程の一例を示す説明的概略製造工程図である。
【図2】本発明に係る銀粉等のマイグレーション測定用の回路説明図である。
【符号の説明】
1−電極パターン
2−ボルトメータ
3−抵抗
[0001]
[Industrial application fields]
The present invention relates to a silver powder used for a thick film conductive paste and a method for producing the same.
[0002]
[Prior art]
Conventionally, silver paste has been used for thick film circuits in the field of the electronics industry, and various techniques have been proposed as manufacturing methods thereof.
[0003]
The silver paste is mainly a silver-palladium paste, and the purpose of mixing the palladium is to prevent migration.
[0004]
Conventionally proposed technologies include:
(1) A mixture of silver powder and palladium powder.
(2) Silver-palladium coprecipitated powder.
(3) The surface of silver powder coated with palladium.
(4) Alloy powder for uniformly dispersing palladium.
Etc.
[0005]
However, each of the techniques (1) to (2) has the following problems. That is, (1) above is poor in uniformity.
(2) has little effect of reducing palladium.
(3) is poor in adhesion to silver powder, causes a peeling phenomenon, and segregates, so that the coating is incomplete.
(4) Migration has a problem of reaction on the surface of the granular material, and resistance is increased by alloying.
There are fatal drawbacks.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned disadvantages of the prior art, can reduce the amount of expensive palladium, can improve migration resistance, and is coated with an inexpensive silver-palladium film. The manufacturing method is proposed.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present invention is very likely to coat palladium powder with a silver-silver film in order to uniformly coat silver powder with good adhesion as silver powder for paste. It was made with the knowledge that it was effective. That is, [0008]
In the first invention, a reducing agent is added to an aqueous silver ammine complex solution to produce silver powder particles, then an palladium ammine complex and a silver ammine complex are added, and a reducing agent is further added to form palladium in the complex. A palladium-silver film produced by depositing silver and silver on the surface of the silver powder particles as a palladium-silver film in the range of 0.1 to 20 wt% palladium and 0.005 to 2 wt% silver in the entire silver powder A silver powder for paste that is coated and has excellent migration resistance.
[0009]
In the second invention, a reducing agent is added to an aqueous silver ammine complex solution to produce silver powder particles, then an palladium ammine complex and a silver ammine complex are added, and a reducing agent is further added to form palladium in the complex. A palladium-silver film characterized in that palladium and silver are deposited as palladium-silver films on the surface of the silver powder particles in a range of 0.1 to 20 wt% palladium and 0.005 to 2 wt% silver in the entire silver powder. This is a method for producing silver powder for paste which is coated and has excellent migration resistance.
[0010]
In the third invention, a reducing agent is added to an aqueous silver ammine complex solution to produce silver powder, then a palladium ammine complex and a silver ammine complex are added, and a reducing agent is further added to add palladium and silver in the complex. Is a method for producing silver powder which is coated with a palladium-silver film and has excellent migration resistance, characterized in that it is precipitated on the particle surface of the silver powder.
[0011]
A fourth invention is a silver powder for paste, which is coated with a palladium-silver film and has excellent migration resistance.
[0012]
In the present invention, the silver powder is not limited to pure silver, but also includes silver alloy powder containing other metals. Hereinafter, these are also simply referred to as silver powder.
[0013]
The palladium and silver in the palladium-silver film are preferably in the range of 0.1 to 20 wt% and 0.005 to 2 wt%, respectively, in the entire coated silver powder.
[0014]
[Action]
In the production method according to the present invention, a reducing agent is added to an aqueous silver ammine complex solution while stirring to produce silver powder, an aqueous solution of a palladium ammine complex and a silver ammine complex is added, and a reducing agent is further added.
[0015]
When adding the reducing agent, add an appropriate amount of reducing agent to the silver ammine complex aqueous solution necessary for the reduction precipitation reaction of silver, then add the aqueous solution of palladium ammine complex and silver ammine complex, and then add the reducing agent in the next step. In addition, palladium and silver in the complex may be deposited on the surface of the silver powder particles and coated (see FIG. 1), or an excessive reducing agent may be added in advance in the silver reduction precipitation forming step to form a palladium ammine complex. And an aqueous solution of a silver ammine complex may be added to deposit a palladium-silver film on the surface of the silver powder particles.
[0016]
By these precipitation formation reactions, the surface of the silver powder particles can be coated with a uniform palladium-silver film having good adhesion.
[0017]
Also, palladium-silver can be obtained in the same manner as described above by adding silver powder prepared in advance to a mixed aqueous solution of palladium ammine complex and silver ammine complex, dispersing and stirring, and adding a predetermined amount of reducing agent. The film can be uniformly coated on the surface of the silver powder particles with good adhesion.
[0018]
The reducing agent used in the present invention is preferably at least one of sodium borohydride, formalin, hydrazine and the like.
[0019]
Next, this invention is demonstrated based on an Example, a comparative example, and a test example.
[0020]
【Example】
Example An appropriate amount of ammonia water was added to an aqueous solution of silver nitrate 100 g / l to prepare an aqueous silver ammine complex solution, and formalin was added and reduced as a reducing agent while stirring in this water reservoir to precipitate and form silver powder particles.
[0021]
A mixed aqueous solution of a palladium ammine complex (Pd: 14.5%) and a silver ammine complex (Ag: 0.5%) is added to the aqueous solution in which the silver powder particles are suspended, and hydrazine monohydrate is added as a reducing agent. In addition, a palladium-silver film was deposited on the surface of the silver powder particles.
[0022]
After the precipitation reaction, the precipitate was filtered to wash the precipitate, followed by vacuum drying at 60 ° C. On the other hand, as a result of analyzing the reaction filtrate, palladium and silver were not detected (see FIG. 1).
[0023]
Comparative Example 1
Precipitation and generation of silver powder particles were carried out in the same manner as in Example 1. Then, an aqueous solution of palladium ammine complex (Pd: 15%) was added to this aqueous solution, hydrazine monohydrate was added as a reducing agent, and the surface of the silver powder particles was added. Palladium was precipitated.
[0024]
After the precipitate formation reaction, filtration was performed, and the precipitate was washed, and then vacuum dried at 60 ° C. On the other hand, as a result of analyzing the reaction filtrate, palladium was not detected.
[0025]
Comparative Example 2
A silver ammine complex (Ag: 85 wt%) aqueous solution and a palladium ammine complex (Pd: 15 wt%) aqueous solution were mixed, and hydrazine monohydrate was added as a reducing agent while stirring to precipitate a coprecipitated powder.
[0026]
After the reaction, the mixture was filtered and the coprecipitate was sufficiently washed, followed by vacuum drying at 60 ° C. On the other hand, as a result of analyzing the reaction filtrate, palladium and silver were not detected.
[0027]
Comparative Example 3
For comparison test, a mixed powder in which 85 wt% of silver powder and 15 wt% of palladium powder were mixed was prepared.
[0028]
Test Example A paste having the following composition was prepared with each silver powder produced in Example 1 and Comparative Examples 1, 2, and 3, and the migration resistance was tested.
[0029]
Powder: 61: 0 wt%, Vehicle: 37.4 wt%, Glass powder 1.6 wt% (However, the vehicle was prepared by mixing ethyl cellulose 45 cp: 4.3 wt% with terpineol: 95.7 wt%)
[0030]
Next, using the paste, an electrode pattern was printed on an alumina substrate by screen printing, leveled, and dried at a predetermined temperature. Then, it inserted in the belt furnace and baked at 850 degreeC and the electrode was formed. The pattern of each electrode was Gap: 1 mm and electrode width: 1 mm.
[0031]
Migration measurement was carried out with the electrode formed on the basis of the silver powder of Example 1 as A, the electrode formed on the basis of the silver powder of Comparative Example 1 as B, the comparison example 2 as C and the comparison example 3 as D.
[0032]
For migration measurement, a circuit (power supply: DC: 7.5 V) as shown in FIG. 2 was manufactured. Moreover, the measuring method measured time until 1 drop of pure water was dripped between silver electrodes, and the both-ends voltage of resistance became 2V.
[0033]
As a result, A: 23 seconds, B: 20 seconds, C: 13 seconds, and D: 8 seconds.
[0034]
From the above results, it was found that A, that is, the silver powder in which the surface of the silver powder according to the present invention was coated with a palladium-silver film was remarkably excellent in migration resistance.
[0035]
【The invention's effect】
As described above, the silver powder coated with the palladium-silver film according to the present invention is remarkably excellent in migration resistance as compared with the conventional silver powder, and is an optimum silver powder particularly for a thick stomach conductive paste.
[0036]
According to the method of the present invention, as a silver powder used in the thick film conductive paste as described above, it is possible to produce a silver powder having good adhesion and uniformly covering a palladium-silver film in a relatively simple process and at a low cost. it can.
[0037]
As a result, an effect excellent in migration resistance is recognized, palladium can be reduced, and therefore silver powder for pastes excellent in economic efficiency can be produced.
[Brief description of the drawings]
FIG. 1 is an explanatory schematic production process diagram showing an example of a production process of silver powder according to the present invention.
FIG. 2 is an explanatory diagram of a circuit for measuring migration of silver powder or the like according to the present invention.
[Explanation of symbols]
1-electrode pattern 2-voltmeter 3-resistance

Claims (2)

銀アンミン錯体水溶液に還元剤を添加して銀粉の粒子を生成し、次いでパラジウムのアンミン錯体と銀アンミン錯体とを添加し、更に還元剤を添加して、該錯体中のパラジウムと銀とを該銀粉の粒子の表面にパラジウム−銀膜として銀粉全体中においてパラジウム0.1〜20wt%,銀0.005〜2wt%の範囲で析出させることにより製造されるパラジウム−銀膜で被覆され耐マイグレーション性に優れたペースト用銀粉。  A reducing agent is added to the silver ammine complex aqueous solution to form silver powder particles, then an palladium ammine complex and a silver ammine complex are added, and a reducing agent is further added to remove palladium and silver in the complex. Migration resistance is covered with a palladium-silver film manufactured by depositing palladium on the surface of silver powder particles as a palladium-silver film in the range of 0.1 to 20 wt% palladium and 0.005 to 2 wt% silver in the entire silver powder. Excellent silver powder for paste. 銀アンミン錯体水溶液に還元剤を添加して銀粉の粒子を生成し、次いでパラジウムのアンミン錯体と銀アンミン錯体とを添加し、更に還元剤を添加して、該錯体中のパラジウムと銀とを該銀粉の粒子の表面にパラジウム−銀膜として銀粉全体中においてパラジウム0.1〜20wt%,銀0.005〜2wt%の範囲で析出させることを特徴とするパラジウム−銀膜で被覆され耐マイグレーション性に優れたペースト用銀粉の製造方法。  A reducing agent is added to the silver ammine complex aqueous solution to form silver powder particles, then an palladium ammine complex and a silver ammine complex are added, and a reducing agent is further added to remove palladium and silver in the complex. Migration resistance with a palladium-silver film coated on the surface of silver powder particles, which is deposited as palladium-silver film in the range of 0.1 to 20 wt% palladium and 0.005 to 2 wt% silver in the entire silver powder. Of excellent silver powder for paste.
JP34107594A 1994-12-28 1994-12-28 Silver powder and method for producing the same Expired - Fee Related JP3716350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34107594A JP3716350B2 (en) 1994-12-28 1994-12-28 Silver powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34107594A JP3716350B2 (en) 1994-12-28 1994-12-28 Silver powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08188804A JPH08188804A (en) 1996-07-23
JP3716350B2 true JP3716350B2 (en) 2005-11-16

Family

ID=18343020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34107594A Expired - Fee Related JP3716350B2 (en) 1994-12-28 1994-12-28 Silver powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3716350B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583147B2 (en) * 2004-11-19 2010-11-17 三井金属鉱業株式会社 Conductive composite powder and method for producing the same
CN102407341B (en) * 2011-10-27 2015-04-01 浙江光达电子科技有限公司 surface modified particle diameter mixed silver powder and preparation method thereof
CN106825603B (en) * 2016-12-31 2018-11-02 西安交通大学青岛研究院 A kind of preparation method of aluminium cladding titanium composite alloy powder
WO2019145409A1 (en) * 2018-01-24 2019-08-01 Nanogap Sub Nm Powder, S.A. Process for producing atomic quantum clusters

Also Published As

Publication number Publication date
JPH08188804A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
JP4025839B2 (en) Silver powder and method for producing silver powder
CN102554264B (en) Preparation method of palladium-silver alloy powder for conductive paste
KR20120099587A (en) Silver-coated glass powder for electrical conduction, method for producing the same, and electrically conductive paste
JP3716350B2 (en) Silver powder and method for producing the same
JP3766161B2 (en) Coated powder, silver-coated copper powder and method for producing the same, conductive paste and conductive film
JP6567921B2 (en) Silver-coated copper powder and method for producing the same
JP4078410B2 (en) Manufacturing method of silver diffusion copper powder
JP4861701B2 (en) Method for producing fine metal powder with uniform particle size
JP2002334614A (en) Conductive particles
JP2002334611A (en) Conductive particle composite
JPS5926662B2 (en) Electroless plating active metal material paste and plating method using the same
CN110114175B (en) High-temperature sintered silver powder and method for producing same
JP3596646B2 (en) Conductive electroless plating powder for anisotropic conductive film and heat seal connector
JPH06168620A (en) Conductive paste composition
JP2002121679A (en) Method for manufacturing conductive bead
JPS6148586B2 (en)
Kim et al. Fabrication of Electrically Conductive Nickel–Silver Bimetallic Particles via Polydopamine Coating
JP2000129211A (en) Film-forming polysilane composition for metallic pattern and method for forming metallic pattern
JPS61136978A (en) Electroconductive paste for thick film circuit
JP2004183060A (en) Polyaniline-based resin coated copper powder, its manufacturing method, and conductive paste obtained by using the powder
WO2022153995A1 (en) Material which is for underlying conductive layer and exhibits conductivity due to oxidation-reduction reaction, and manufacturing process, device, plated article, plated article manufacturing method, and coating liquid which use same
JPS5926661B2 (en) Electroless plating active metal material paste and plating method using the same
JPS6024380A (en) Palladium activating solution
JPS6221045B2 (en)
JPH03287707A (en) Production of copper powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees