JP2002334611A - Conductive particle composite - Google Patents

Conductive particle composite

Info

Publication number
JP2002334611A
JP2002334611A JP2001136236A JP2001136236A JP2002334611A JP 2002334611 A JP2002334611 A JP 2002334611A JP 2001136236 A JP2001136236 A JP 2001136236A JP 2001136236 A JP2001136236 A JP 2001136236A JP 2002334611 A JP2002334611 A JP 2002334611A
Authority
JP
Japan
Prior art keywords
particles
noble metal
coated
inorganic
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001136236A
Other languages
Japanese (ja)
Inventor
Shinichiro Kawakado
眞一郎 川角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWAKADO KIMIKO
Original Assignee
KAWAKADO KIMIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWAKADO KIMIKO filed Critical KAWAKADO KIMIKO
Priority to JP2001136236A priority Critical patent/JP2002334611A/en
Publication of JP2002334611A publication Critical patent/JP2002334611A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite having electric characteristics similar to precious metal particles by way of a mixture of precious metal coated particles and precious metal particles. SOLUTION: The conductive particle composite consists of precious metal coated particles with smaller average diameter than that of precious metal particles with precious metal coated on the surface of precious metal particles and inorganic fine particles. And it is connected to a manufacturing method of precious metal coated particles by adding precious metal salt solution to dispersion liquid under agitation with inorganic particles dispersed in reducer solution, or a method of manufacturing precious metal coated particles by adding precious metal salt solution and reducer at the same time to dispersion liquid of inorganic particles under agitation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミックス粒子
を代表とする無機物粒子の周囲に貴金属被覆層を形成し
てなる導電性粒子とその組成物に関し、特に、導電性粒
子組成物、導電性ペースト、電子部品、積層セラミック
コンデンサ、そして導電性貴金属被覆粒子の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to conductive particles comprising a noble metal coating layer formed around inorganic particles typified by ceramic particles and a composition thereof, and more particularly to a conductive particle composition and a conductive paste. The present invention relates to an electronic component, a multilayer ceramic capacitor, and a method for producing conductive noble metal-coated particles.

【0002】[0002]

【従来の技術】パラジウム、白金、銀などの貴金属は導
電性に優れているところから、電極形成材料として多用
されている。電極の形成に際しては通常、貴金属粉末
(貴金属粒子)と可燃性結合剤そして溶剤を混合して導
電性ペーストとした後、この導電性ペーストをセラミッ
ク基板などの基板に塗布し、次いでこの導電性ペースト
塗布基板を所定温度で焼成することにより、可燃性結合
剤を燃焼除去と、貴金属粉末の焼結を行ない、実質的に
貴金属成分のみからなる電極層とする方法が採用され
る。
2. Description of the Related Art Noble metals such as palladium, platinum and silver are widely used as electrode forming materials because of their excellent conductivity. When forming electrodes, usually, a noble metal powder (noble metal particles), a flammable binder and a solvent are mixed to form a conductive paste, and then the conductive paste is applied to a substrate such as a ceramic substrate, and then the conductive paste is formed. A method is employed in which the flammable binder is burned off and the noble metal powder is sintered by baking the coated substrate at a predetermined temperature to form an electrode layer substantially consisting only of the noble metal component.

【0003】貴金属材料の電極を形成する際には通常、
貴金属粉末の適切な焼結を実現させるために、基板の焼
成温度と近接した融点を持つ貴金属材料が用いられる。
すなわち、上記の導電性ペーストを塗布する基板として
は通常、未焼成の基板前駆体(グリーンシートと呼ばれ
る)が用いられ、この基板前駆体は、電極の焼成形成と
同時に焼成され、電極付き基板とされる。従って、電極
材料となる貴金属材料は、グリーンシートの焼成温度に
合わせて、その融点を考慮して選ばれる。従来は、グリ
ーンシートの焼成温度は、およそ1200〜1400℃
の範囲で選択されてきたため、その範囲の焼成温度より
も若干融点が高く、貴金属粉末の適切な焼結が起こりや
すいパラジウムが電極形成用貴金属材料として一般的に
用いられきた。ただし、近年では、グリーンシートの焼
結温度を下げて、銀などの比較的低融点で安価な導電性
貴金属を用いて電極付き基板を製造する技術も開発され
つつある。
When forming an electrode of a noble metal material, usually,
In order to realize appropriate sintering of the noble metal powder, a noble metal material having a melting point close to the firing temperature of the substrate is used.
That is, an unfired substrate precursor (referred to as a green sheet) is usually used as a substrate on which the conductive paste is applied. Is done. Therefore, the noble metal material used as the electrode material is selected in consideration of the melting point of the green sheet in accordance with the firing temperature of the green sheet. Conventionally, the firing temperature of the green sheet is about 1200 to 1400 ° C.
Therefore, palladium, which has a melting point slightly higher than the sintering temperature in that range and is likely to cause appropriate sintering of the noble metal powder, has been generally used as a noble metal material for forming an electrode. However, in recent years, a technique of lowering the sintering temperature of the green sheet and using a relatively low-melting and inexpensive conductive noble metal such as silver to manufacture a substrate with electrodes has been developed.

【0004】パラジウムを代表とする電極形成用の貴金
属は、高価であり、かつ市場における価格の変動が大き
いことから、貴金属粉末(すなわち、純貴金属粉末)の
代わりに、セラミックス材料粒子などを核粒子として、
その周囲に貴金属被覆層を形成した貴金属被覆粒子から
なる導電性粉末を用いることも、以前より検討され、既
に実現している。
[0004] Since noble metals for forming electrodes, such as palladium, are expensive and prices fluctuate widely in the market, ceramic material particles and the like are used instead of noble metal powder (ie, pure noble metal powder) as core particles. As
The use of conductive powder composed of noble metal-coated particles having a noble metal coating layer formed around it has been studied for some time, and has already been realized.

【0005】本発明者は、以前より、貴金属被覆導電性
粒子の開発研究を行ない、その開発研究の結果として完
成した貴金属被覆導電性粒子及びその製造方法に関する
発明を特許出願し、特公昭61−22028号(特許第
1356848号)、特公昭61ー22029号(特許
第1356853号)、特公平7−48444号(特許
第2028871号)、特許第2799916号等の特
許としている。
The present inventor has been conducting research and development on noble metal-coated conductive particles, and has filed a patent application for a noble metal-coated conductive particle completed as a result of the development research and a method for producing the same. Japanese Patent No. 22028 (Japanese Patent No. 1356848), Japanese Patent Publication No. 61-22029 (Japanese Patent No. 1356853), Japanese Patent Publication No. 7-48444 (Japanese Patent No. 2028871), and Japanese Patent No. 2799916.

【0006】上記の各特許において記載した貴金属被覆
導電性粒子の代表的な製造方法は、貴金属錯体化合物溶
液に、ゲル化剤の存在下にて、核粒子となるセラミック
粒子を分散させ、この分散液を攪拌しながら、これにヒ
ドラジン水溶液などの還元剤水溶液を添加して、貴金属
錯体化合物の還元とその還元により生成した貴金属成分
を核粒子の周囲に析出させて、貴金属被覆導電性粒子を
得る方法である。
A typical method for producing the noble metal-coated conductive particles described in each of the above patents is to disperse ceramic particles as core particles in a noble metal complex compound solution in the presence of a gelling agent. While stirring the liquid, an aqueous solution of a reducing agent such as an aqueous hydrazine solution is added thereto, and the noble metal complex compound is reduced and the noble metal component generated by the reduction is precipitated around the core particles to obtain noble metal-coated conductive particles. Is the way.

【0007】上記の貴金属被覆導電性粒子の製造方法
は、核粒子周囲に高純度の貴金属被覆層を簡単な操作に
て製造することを可能にした方法であるが、形成される
貴金属被覆層の純度が、ゲル化の程度や還元剤溶液の添
加操作などに影響されやすく、工業的生産における多量
の貴金属被覆導電性粒子の製造に際しては、微妙なゲル
化状態の相違や還元剤溶液の添加操作の違いにより、必
ずしも充分な均質で高純度な貴金属被覆層が得られない
ことがあるという問題があった。
The above-described method for producing the noble metal-coated conductive particles is a method which enables a high-purity noble metal-coating layer to be produced around the core particles by a simple operation. Purity is easily affected by the degree of gelation and the operation of adding the reducing agent solution.In the production of a large amount of conductive particles coated with noble metal in industrial production, there is a slight difference in the gelation state and the operation of adding the reducing agent solution. However, there is a problem that a sufficient homogeneous and high-purity noble metal coating layer may not always be obtained due to the difference.

【0008】上記の問題に対しては、これまで、貴金属
被覆層を厚くする(すなわち、核粒子の体積に対する貴
金属被覆層の体積の比率を大きくする)、及び/又は貴
金属被覆導電性粒子と貴金属粒子(純貴金属粒子)とを
混合して使用するなどの対策が考え出された。そして、
このような対策を利用することにより、貴金属被覆導電
性粒子は、電極材料を始めとする各種の導電性材料とし
て、これまで既に大量に使用されている。
[0008] In order to solve the above-mentioned problems, it has heretofore been possible to increase the thickness of the noble metal coating layer (that is, to increase the ratio of the volume of the noble metal coating layer to the volume of the core particles) and / or to mix the noble metal coated conductive particles with the noble metal. Countermeasures such as mixing and using particles (pure noble metal particles) have been devised. And
By utilizing such measures, the noble metal-coated conductive particles have already been used in large quantities as various conductive materials such as electrode materials.

【0009】[0009]

【発明が解決しようとする課題】これまでに開発された
貴金属被覆導電性粒子は、上記のような実用的な利用方
法の改良が図られた結果、電極製造用の実用材料として
多用されるようになってきたが、最近における電極材料
への多様な要求に対して充分な対応が難しくなってい
る。
SUMMARY OF THE INVENTION The noble metal-coated conductive particles that have been developed so far have been used as practical materials for manufacturing electrodes as a result of improvements in the practical use as described above. However, it has become difficult to adequately respond to recent various requirements for electrode materials.

【0010】そのひとつが、電極のさらなる薄膜化の要
求であり、この要求に答えるためには貴金属粒子、そし
て貴金属被覆導電性粒子の微粒子化が必要となる。貴金
属被覆導電性粒子の微粒子化のためには、核粒子の微粒
子化が必要となるが、微粒子化が進んだ核粒子は凝集力
が強いため、超微粒子状の核粒子を高度に分散させて凝
集を防ぎながら、貴金属を核粒子の表面に均一に析出さ
せることは、その条件の設定が容易ではない。
One of the requirements is a demand for a further reduction in the thickness of the electrode. To meet this demand, it is necessary to reduce the size of the noble metal particles and the noble metal-coated conductive particles. In order to reduce the size of the noble metal-coated conductive particles, it is necessary to reduce the size of the core particles.However, since the finely divided core particles have a strong cohesive force, highly disperse the ultrafine core particles. Preparing the noble metal uniformly on the surface of the core particles while preventing agglomeration is not easy to set the conditions.

【0011】別の要求として、貴金属被覆導電性粒子に
おける貴金属比率の低減である。この要求は、勿論、貴
金属被覆導電性粒子の導電特性を低下させることがあっ
てはならないという条件を前提としている。
Another requirement is to reduce the ratio of the noble metal in the noble metal-coated conductive particles. This requirement presupposes, of course, the condition that the conductive properties of the noble metal-coated conductive particles must not be reduced.

【0012】[0012]

【課題を解決するための手段】本発明者は、上記の諸要
求を考慮して、そのような要求を満たす導電性材料の開
発研究を行なった結果、貴金属粒子と混合する貴金属被
覆粒子の平均粒径を貴金属粒子の平均粒径に比較して小
さくすることによって、貴金属被覆粒子の表面貴金属層
に僅かな不純物が混在するようになっても、その貴金属
被覆粒子の欠陥を、その周囲を囲むように存在する貴金
属粒子(純貴金属粒子)が補い、これによって導電性材
料としての特性を低下させることなく、貴金属被覆粒子
の使用量を相対的に増加させることが可能となることを
見出した。
Means for Solving the Problems In consideration of the above-mentioned requirements, the present inventor has conducted research on the development of a conductive material satisfying such requirements. As a result, the average of the noble metal-coated particles mixed with the noble metal particles has been studied. By reducing the particle size as compared to the average particle size of the noble metal particles, even if slight impurities are mixed in the noble metal layer on the surface of the noble metal coated particles, the defects of the noble metal coated particles surround the periphery thereof. Thus, it has been found that the noble metal particles (pure noble metal particles) that are present compensate for, thereby making it possible to relatively increase the usage amount of the noble metal coated particles without lowering the properties as the conductive material.

【0013】本発明者はさらに、貴金属被覆導電性粒子
の製造に際して、核粒子を還元剤溶液に分散させた分散
液を予め調製し、これを攪拌しながら貴金属錯体溶液を
添加させる方法、あるいは、攪拌下にある核粒子の分散
液に対して、還元剤溶液と貴金属錯体溶液とを同時に添
加する方法を利用することによって、核粒子の体積量に
対する被覆貴金属層の体積の割合が1もしくはそれ以上
であっても、核粒子の周囲に高純度の貴金属被覆層を形
成させることができることを見出した。
The present inventor further provides a method of preparing a dispersion in which core particles are dispersed in a reducing agent solution before producing the noble metal-coated conductive particles, and adding a noble metal complex solution while stirring the dispersion. By using a method of simultaneously adding the reducing agent solution and the noble metal complex solution to the dispersion of the core particles under stirring, the ratio of the volume of the coated noble metal layer to the volume of the core particles is 1 or more. However, it has been found that a high-purity noble metal coating layer can be formed around core particles.

【0014】従って、本発明は、貴金属粒子、および無
機物微粒子の表面に貴金属が被覆されてなり、平均粒径
が該貴金属粒子の平均粒径より小さい貴金属被覆粒子か
らなる導電性粒子組成物にある。
Accordingly, the present invention provides a conductive particle composition comprising a noble metal coated on a surface of a noble metal particle and an inorganic fine particle and having an average particle size smaller than the average particle size of the noble metal particle. .

【0015】本発明はまた、上記の本発明の導電性粒子
組成物を含む導電性ペースト、そして該導電性ペースト
から形成された電極層を含む電子部品にもある。
The present invention also resides in a conductive paste containing the above-described conductive particle composition of the present invention, and an electronic component including an electrode layer formed from the conductive paste.

【0016】本発明はまた、上記の導電性ペーストから
形成された電極層と該導電性ペーストに含まれている無
機物粒子と同一組成の無機物からなるセラミックシート
とから形成された積層セラミックコンデンサにもある。
この積層セラミックコンデンサは、該導電性ペーストを
塗布した未焼成セラミックシートを900〜1300℃
の範囲の温度で焼成することによって有利に製造され
る。
The present invention also provides a multilayer ceramic capacitor formed from an electrode layer formed of the above-mentioned conductive paste and a ceramic sheet made of an inorganic material having the same composition as the inorganic particles contained in the conductive paste. is there.
This multilayer ceramic capacitor is prepared by heating a green ceramic sheet coated with the conductive paste at 900 to 1300 ° C.
It is advantageously produced by firing at a temperature in the range of

【0017】本発明はまた、還元剤溶液に無機物粒子
(好ましくは、貴金属予備被覆無機物粒子)が分散して
なり、攪拌下にある分散液に貴金属塩溶液を添加するこ
とを特徴とする貴金属被覆粒子の製造方法にもある。
The present invention also provides a noble metal coating, wherein inorganic particles (preferably noble metal pre-coated inorganic particles) are dispersed in a reducing agent solution, and a noble metal salt solution is added to the dispersion under stirring. There is also a method for producing particles.

【0018】本発明はまた、攪拌下にある無機物粒子
(好ましくは、貴金属予備被覆無機物粒子)の分散液に
貴金属塩溶液と還元剤とを同時に添加することを特徴と
する貴金属被覆粒子の製造方法にもある。
The present invention also provides a method for producing precious metal-coated particles, comprising simultaneously adding a precious metal salt solution and a reducing agent to a dispersion of inorganic particles (preferably precious metal pre-coated inorganic particles) under stirring. There is also.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0020】本発明の好ましい態様を次に挙げる。 (1)導電性粒子組成物における貴金属粒子と貴金属被
覆粒子との重量比率が、9:1乃至1:9の範囲にあ
る。 (2)導電性粒子組成物における貴金属粒子と貴金属被
覆粒子との重量比率が、9:1乃至4:6の範囲にあ
る。 (3)貴金属被覆粒子の平均粒径が0.01〜0.8μ
mの範囲にある。 (4)貴金属粒子の平均粒径と貴金属被覆粒子の平均粒
径との差が0.05μm以上である。 (5)貴金属粒子の平均粒径と貴金属被覆粒子の平均粒
径との差が0.1μm以上である。
Preferred embodiments of the present invention are as follows. (1) The weight ratio between the noble metal particles and the noble metal-coated particles in the conductive particle composition is in the range of 9: 1 to 1: 9. (2) The weight ratio between the noble metal particles and the noble metal-coated particles in the conductive particle composition is in the range of 9: 1 to 4: 6. (3) The average particle size of the noble metal-coated particles is 0.01 to 0.8 μm
m. (4) The difference between the average particle size of the noble metal particles and the average particle size of the noble metal-coated particles is 0.05 μm or more. (5) The difference between the average particle size of the noble metal particles and the average particle size of the noble metal-coated particles is 0.1 μm or more.

【0021】(6)貴金属粒子が、パラジウム、白金、
金、および銀からなる群より選ばれる一以上の貴金属か
ら形成されている。 (7)無機物粒子が、金属酸化物粒子である。 (8)無機物粒子を被覆している貴金属層が、パラジウ
ム、白金、金および銀からなる群より選ばれる一以上の
貴金属から形成されている。 (9)無機物粒子を被覆している貴金属層が、パラジウ
ム、白金、金および銀からなる群より選ばれる二以上の
貴金属の合金であり、相対的に高い融点の貴金属成分と
相対的に低い融点の貴金属成分との重量比が1:9乃至
9:1の範囲にある。 (10)無機物粒子を被覆している貴金属層に、50重
量%未満の卑金属(例、ニッケル)が含まれている。 (11)無機物粒子を被覆している貴金属の元素組成と
貴金属粒子の元素組成とが共通成分を有する。 (12)無機物粒子の平均粒径が0.05〜0.5μm
であり、貴金属被覆粒子の平均粒径が0.8μm以下で
ある。
(6) The noble metal particles are palladium, platinum,
It is formed from one or more noble metals selected from the group consisting of gold and silver. (7) The inorganic particles are metal oxide particles. (8) The noble metal layer covering the inorganic particles is formed of one or more noble metals selected from the group consisting of palladium, platinum, gold and silver. (9) The noble metal layer covering the inorganic particles is an alloy of two or more noble metals selected from the group consisting of palladium, platinum, gold and silver, and has a relatively high melting point and a relatively low melting point. Is in the range of 1: 9 to 9: 1. (10) The noble metal layer covering the inorganic particles contains less than 50% by weight of a base metal (eg, nickel). (11) The element composition of the noble metal coating the inorganic particles and the element composition of the noble metal particles have a common component. (12) The average particle diameter of the inorganic particles is 0.05 to 0.5 μm
And the average particle size of the noble metal-coated particles is 0.8 μm or less.

【0022】本発明の貴金属被覆粒子の核粒子となる無
機物粒子の例としては、二酸化チタン、アルミナ、チタ
ン酸バリウム、PZT、酸化第二鉄、酸化カルシウム、
二酸化ケイ素、二酸化ジルコニウム、炭化タングステ
ン、炭化ケイ素、チッ化チタンなどの金属酸化物を中心
とする無機化合物、そして銅、ニッケル、コバルト、鉄
などの金属もしくはそれらの合金からなる粒子を挙げる
ことができる。無機物粒子の平均粒径は、0.01〜
0.7μmの範囲にあることが好ましく、特に0.05
〜0.5μmの範囲にあることが好ましい。最も好まし
いのは0.1〜0.4μmの範囲である無機物粒子であ
る。
Examples of the inorganic particles serving as the core particles of the noble metal-coated particles of the present invention include titanium dioxide, alumina, barium titanate, PZT, ferric oxide, calcium oxide,
Inorganic compounds centered on metal oxides such as silicon dioxide, zirconium dioxide, tungsten carbide, silicon carbide and titanium nitride, and particles made of metals such as copper, nickel, cobalt and iron or alloys thereof. . The average particle size of the inorganic particles is 0.01 to
It is preferably in the range of 0.7 μm, particularly 0.05
It is preferably in the range of 0.5 μm. Most preferred are inorganic particles ranging from 0.1 to 0.4 μm.

【0023】無機物粒子の周囲に貴金属被覆層を形成す
る方法には特に限定はなく、先に記載した本発明者の発
明になる被覆方法を含めて、これまでに知られている各
種の被覆方法を利用することができる。しかしながら、
無機物粒子に比較的薄膜な貴金属被覆層を高純度にて形
成させるためには、本明細書で初めて開示する下記の方
法のうちのいずれかの方法を利用することが望ましい。
The method of forming the noble metal coating layer around the inorganic particles is not particularly limited, and includes various coating methods known so far, including the coating method according to the present invention described above. Can be used. However,
In order to form a relatively thin noble metal coating layer on inorganic particles with high purity, it is desirable to use any one of the following methods disclosed for the first time in this specification.

【0024】(1)還元剤溶液に無機物粒子(好ましく
は、貴金属予備被覆無機物粒子)が分散してなり、攪拌
下にある分散液に貴金属塩溶液を添加して貴金属被覆粒
子を製造する方法。
(1) A method in which inorganic particles (preferably, precious metal pre-coated inorganic particles) are dispersed in a reducing agent solution, and a noble metal salt solution is added to the dispersion under stirring to produce noble metal coated particles.

【0025】(2)攪拌下にある無機物粒子(好ましく
は、貴金属予備被覆無機物粒子)の分散液に、貴金属塩
溶液と還元剤とを同時に添加して貴金属被覆粒子を製造
する方法(同時添加被覆法)。
(2) A method of producing a noble metal-coated particle by simultaneously adding a noble metal salt solution and a reducing agent to a dispersion of inorganic particles (preferably precious metal pre-coated inorganic particles) under stirring (simultaneous addition coating). Law).

【0026】無機物粒子の分散液(水系媒体分散液)も
しくは無機物粒子を分散状態で含有する還元剤溶液(還
元剤水溶液)には、増粘剤として機能する水溶性ポリマ
ーを溶解させておくことが望ましい。水溶性ポリマーと
しては、ヒドロキシエチルセルロース、ヒドロキシプロ
ピルセルロース、メチルセルロース、ヒドロキシエチル
メチルセルロース、ヒドロキシプロピルメチルセルロー
ス、カルボキシメチルセルロースなどの水溶性セルロー
ス誘導体、ポリビニルアルコール、ポリビニルピロリド
ンなどの水溶性合成ポリマー、あるいはゼラチン、カゼ
インなどの水溶性天然物ポリマーなどの各種のポリマー
を用いることができる。
In a dispersion liquid of inorganic particles (aqueous medium dispersion liquid) or a reducing agent solution containing an inorganic particle in a dispersed state (aqueous reducing agent solution), a water-soluble polymer functioning as a thickener may be dissolved. desirable. As the water-soluble polymer, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, water-soluble cellulose derivatives such as carboxymethyl cellulose, polyvinyl alcohol, water-soluble synthetic polymers such as polyvinyl pyrrolidone, or gelatin, casein and the like Various polymers such as a water-soluble natural polymer can be used.

【0027】還元剤としては、ヒドラジン、塩酸ヒドラ
ジン、ギ酸、ホルマリン、次亜リン酸などの還元剤が利
用され、通常は、水溶液として用いる。
As the reducing agent, a reducing agent such as hydrazine, hydrazine hydrochloride, formic acid, formalin, hypophosphorous acid or the like is used, and usually used as an aqueous solution.

【0028】貴金属被覆層形成の原料となる貴金属錯体
の例としては、テトラクロロパラジウム酸アンモニウム
塩、テトラアンミンパラジウム酸クロライド、テトラク
ロロ白金酸アンモニウム塩、テトラアンミン白金酸クロ
ライドなどの水溶性塩が用いられる。貴金属成分は任意
に、金、銀などの他の貴金属成分に変えることができ
る。
Examples of the noble metal complex used as a raw material for forming the noble metal coating layer include water-soluble salts such as ammonium tetrachloropalladate, tetraamminepalladium chloride, ammonium tetrachloroplatinate, and tetraammineplatinate chloride. The noble metal component can optionally be changed to other noble metal components such as gold, silver and the like.

【0029】なお、上記のいずれの貴金属被覆層の形成
方法においても、無機物粒子を含む水系媒体に還元剤を
加える際に、無機物粒子の分散状態を高めるために、攪
拌のみではなく、超音波処理を行なうことが望ましい。
In any of the above-mentioned methods of forming a noble metal coating layer, when a reducing agent is added to an aqueous medium containing inorganic particles, not only stirring but also ultrasonic treatment is carried out in order to increase the dispersion state of the inorganic particles. It is desirable to perform

【0030】貴金属被覆粒子を貴金属粒子と混合使用す
る場合には、貴金属粒子と貴金属被覆粒子との比率が
9:1乃至1:9(重量比)の範囲にあることが望まし
く、特に9:1乃至4:6(重量比、前者:後者)の範
囲にあることが望ましい。
When the noble metal-coated particles are used in a mixture with the noble metal particles, the ratio of the noble metal particles to the noble metal-coated particles is preferably in the range of 9: 1 to 1: 9 (weight ratio), and particularly preferably 9: 1. To 4: 6 (weight ratio, former: latter).

【0031】貴金属粒子としては、パラジウム、白金、
金、銀などの貴金属成分からなる粒子、あるいはそれら
の合金からなる粒子が用いられる。貴金属粒子の平均粒
径と貴金属被覆粒子の平均粒径との差は0.05μm以
上であることが望ましく、特に0.1μm以上であるこ
とが望ましい。
The noble metal particles include palladium, platinum,
Particles composed of a noble metal component such as gold or silver, or particles composed of an alloy thereof are used. The difference between the average particle size of the noble metal particles and the average particle size of the noble metal-coated particles is desirably 0.05 μm or more, and particularly desirably 0.1 μm or more.

【0032】本発明の貴金属粒子と貴金属被覆粒子との
組成物あるいは貴金属被覆粒子は、公知の方法に従っ
て、導電性ペーストの導電性成分として有利に利用する
ことができる。そして、導電性ペーストは、前述のよう
に、焼成済み基板あるいは未焼成基板(グリーンシー
ト)にスクリーン印刷法などを利用して印刷塗布し、こ
の導電性ペースト塗布基板を所定の温度で焼成すること
によって、電極付き基板を得ることができる。なお、貴
金属被覆粒子の核粒子の無機物をグリーンシート材料と
同種の無機物とした場合には、熱膨張率の調整が可能と
なるため、電極付き基板の製造管理が容易になる。
The composition of the noble metal particles and the noble metal coated particles or the noble metal coated particles of the present invention can be advantageously used as a conductive component of a conductive paste according to a known method. Then, as described above, the conductive paste is printed and applied to a fired substrate or an unfired substrate (green sheet) using a screen printing method or the like, and the conductive paste-coated substrate is fired at a predetermined temperature. Thus, a substrate with electrodes can be obtained. In addition, when the inorganic substance of the core particles of the noble metal-coated particles is the same kind of inorganic substance as the green sheet material, the coefficient of thermal expansion can be adjusted, so that the production control of the substrate with electrodes becomes easy.

【0033】本発明の導電性粒子組成物を用いて製造さ
れる電極付き基板は、各種の電気製品、電子部品、電気
器具などに組込んで利用される。電極付き基板が組込ま
れる具体的な製品の例としては、セラミックコンデン
サ、サーミスタ、バリスタ、各種の抵抗器、CR複合部
品、IC基板、プリント配線用導電パターンなどの電子
部品と積層コンデンサ、積層バリスタ、積層コイル、多
層ICパッケージ、BLセラミックコンデンサなどを挙
げることができる。
The substrate with electrodes manufactured using the conductive particle composition of the present invention is used by being incorporated in various electric products, electronic parts, electric appliances and the like. Specific examples of products in which a substrate with electrodes is incorporated include electronic components such as ceramic capacitors, thermistors, varistors, various resistors, CR composite components, IC substrates, conductive patterns for printed wiring, multilayer capacitors, multilayer varistors, Examples include a laminated coil, a multilayer IC package, and a BL ceramic capacitor.

【0034】[0034]

【実施例】[実施例1]Ag/Pd(30重量%/20
重量%)によるチタン酸バリウム微粒子(50重量%)
の被覆 (1)パラジウム予備被覆チタン酸バリウム粒子の調製 チタン酸バリウム粉末(平均粒径:0.2μm、比表面
積:7.3m2/g)10.0gに純水を加えて液量を
50mLに調整し、超音波をかけながら5分間攪拌し
た。これに硝酸パラジウム溶液(Pdとして8mgを含
む)を加え、更に超音波攪拌を10分間実施した。静置
とデカンテーションとを行ない、液量を50mLに調整
したのち、再び攪拌を行ない、ヒドラジン一水和物0.
05mLを希釈して1.0mLとしたものを加え、その
後30分間攪拌を続けた。最後に、静置とデカンテーシ
ョンを行なって、パラジウム予備被覆チタン酸バリウム
粒子を得た。
[Example 1] Ag / Pd (30% by weight / 20%)
Barium titanate fine particles (50% by weight)
(1) Preparation of palladium pre-coated barium titanate particles Pure water was added to 10.0 g of barium titanate powder (average particle size: 0.2 μm, specific surface area: 7.3 m 2 / g) to make a liquid volume of 50 mL. And stirred for 5 minutes while applying ultrasonic waves. To this, a palladium nitrate solution (containing 8 mg as Pd) was added, and ultrasonic stirring was further performed for 10 minutes. After standing and decanting to adjust the liquid volume to 50 mL, the mixture was stirred again to obtain hydrazine monohydrate 0.1.
A solution obtained by diluting 05 mL to 1.0 mL was added, and then stirring was continued for 30 minutes. Finally, standing and decantation were performed to obtain palladium pre-coated barium titanate particles.

【0035】(2)パラジウム錯体と銀錯体との混合溶
液の調製 硝酸パラジウム溶液22.2g(Pdとして4.0gを
含む)を純水で40.0mLに希釈し、これにアンモニ
ア水16.0mLを加え、攪拌し、液温が室温程度にな
った時点で、濾過を行なって不純物を濾過した。濾液
に、硝酸銀9.5g(Agとして6.0gを含む)とア
ンモニア水6.0mLを加え、攪拌して溶解させ、硝酸
パラジウムのアンミン錯体(硝酸テトラアンミンパラジ
ウム)と硝酸銀のアンミン錯体(硝酸ジアンミン銀)の
混合溶液を得た。
(2) Preparation of mixed solution of palladium complex and silver complex 22.2 g of a palladium nitrate solution (containing 4.0 g as Pd) was diluted to 40.0 mL with pure water, and 16.0 mL of aqueous ammonia was added thereto. Was added, and the mixture was stirred. When the liquid temperature reached about room temperature, the mixture was filtered to remove impurities. 9.5 g of silver nitrate (containing 6.0 g as Ag) and 6.0 mL of aqueous ammonia were added to the filtrate, and dissolved by stirring. ) Was obtained.

【0036】(3)Ag/Pd被覆チタン酸バリウム微
粉末の製造 上記(1)で得たパラジウム予備被覆チタン酸バリウム
粒子に、カルボキシメチルセルロース0.4gを26.
7mLの純水で溶解させた水溶液を加え、超音波をかけ
ながら10分間攪拌を行なった。超音波付与を停止した
後、さらにカルボキシメチルセルロース0.4gを2
6.7mLを加えた水溶液を加え、攪拌を行なった。こ
れに安息香酸0.6g、純水10.0mL、そしてヒド
ラジン一水和物4.0mLを混合した水溶液を加え、液
温を30℃に調整し、上記(2)で得た硝酸テトラアン
ミンパラジウムと硝酸ジアンミン銀との混合溶液を60
分かけて滴下し、その後60分間攪拌して、パラジウム
予備被覆チタン酸バリウム粒子の周囲に金属銀と金属パ
ラジウムとを析出させた。その後、粒子を洗浄乾燥し
て、20.0gの銀(30重量%)とパラジウム(20
重量%)とが被覆されたチタン酸バリウム微粉末(平均
粒径:0.3μm、比表面積:4.3m2/g)を得
た。
(3) Production of Ag / Pd-coated barium titanate fine powder 0.4 g of carboxymethylcellulose was added to the palladium pre-coated barium titanate particles obtained in (1) above.
An aqueous solution dissolved in 7 mL of pure water was added, and the mixture was stirred for 10 minutes while applying ultrasonic waves. After stopping the application of ultrasonic waves, 0.4 g of carboxymethylcellulose was further added to 2 g.
An aqueous solution to which 6.7 mL was added was added, and the mixture was stirred. An aqueous solution obtained by mixing 0.6 g of benzoic acid, 10.0 mL of pure water, and 4.0 mL of hydrazine monohydrate was added thereto, the liquid temperature was adjusted to 30 ° C., and tetraamine palladium nitrate obtained in the above (2) was added 60 mixed solution with silver diammine nitrate
After that, the mixture was stirred for 60 minutes, and then metal silver and metal palladium were deposited around the palladium pre-coated barium titanate particles. Thereafter, the particles were washed and dried to obtain 20.0 g of silver (30% by weight) and palladium (20%).
Barium titanate powder (average particle size: 0.3 μm, specific surface area: 4.3 m 2 / g).

【0037】[実施例2]Ag/Pd(35重量%/1
5重量%)によるチタン酸バリウム微粒子(50重量
%)の被覆 実施例1において、(2)のパラジウム錯体と銀錯体と
の混合溶液の調製を下記の(2b)の方法で行なった以
外は、同じ操作を行ない、20.0gの銀(35重量
%)とパラジウム(15重量%)とが被覆されたチタン
酸バリウム微粉末(平均粒径:0.3μm、比表面積:
4.3m2/g)を得た。
Example 2 Ag / Pd (35% by weight / 1
5% by weight) Coating of barium titanate fine particles (50% by weight) In Example 1, a mixed solution of a palladium complex and a silver complex of (2) was prepared by the method of (2b) below. The same operation was carried out, and barium titanate fine powder coated with 20.0 g of silver (35% by weight) and palladium (15% by weight) (average particle size: 0.3 μm, specific surface area:
4.3 m 2 / g).

【0038】(2b)パラジウム錯体と銀錯体との混合
溶液の調製 硝酸パラジウム溶液16.6g(Pdとして3.0gを
含む)を純水で30.0mLに希釈し、これにアンモニ
ア水12.0mLを加え、攪拌し、液温が室温程度にな
った時点で、濾過を行なって不純物を濾過した。濾液
に、硝酸銀11.0g(Agとして7.0gを含む)と
アンモニア水10.0mLを加え、攪拌して溶解させ、
硝酸パラジウムのアンミン錯体(硝酸テトラアンミンパ
ラジウム)と硝酸銀のアンミン錯体(硝酸ジアンミン
銀)の混合溶液を得た。
(2b) Preparation of mixed solution of palladium complex and silver complex 16.6 g of a palladium nitrate solution (containing 3.0 g as Pd) was diluted to 30.0 mL with pure water, and 12.0 mL of aqueous ammonia was added thereto. Was added, and the mixture was stirred. When the liquid temperature reached about room temperature, the mixture was filtered to remove impurities. 11.0 g of silver nitrate (including 7.0 g as Ag) and 10.0 mL of aqueous ammonia were added to the filtrate, and the mixture was stirred and dissolved.
A mixed solution of an ammine complex of palladium nitrate (tetraamminepalladium nitrate) and an ammine complex of silver nitrate (silver diammine nitrate) was obtained.

【0039】[実施例3]Ag/Pd(40重量%/1
0重量%)によるチタン酸バリウム微粒子(50重量
%)の被覆 実施例1において、(2)のパラジウム錯体と銀錯体と
の混合溶液の調製を下記の(2c)の方法で行なった以
外は、同じ操作を行ない(但し、(3)におけるヒドラ
ジン一水和物の使用量を3.0mLとした)、20.0
gの銀(40重量%)とパラジウム(10重量%)とが
被覆されたチタン酸バリウム微粉末(平均粒径:0.3
μm、比表面積:4.3m2/g)を得た。
Example 3 Ag / Pd (40% by weight / 1
0% by weight) Coating of barium titanate fine particles (50% by weight) In Example 1, a mixed solution of a palladium complex and a silver complex of (2) was prepared by the following method (2c). The same operation was performed (however, the amount of hydrazine monohydrate used in (3) was set to 3.0 mL), 20.0
g of barium titanate fine powder coated with silver (40% by weight) and palladium (10% by weight) (average particle size: 0.3
μm, specific surface area: 4.3 m 2 / g).

【0040】(2c)パラジウム錯体と銀錯体との混合
溶液の調製 硝酸パラジウム溶液11.1g(Pdとして2.0gを
含む)を純水で20.0mLに希釈し、これにアンモニ
ア水8.0mLを加え、攪拌し、液温が室温程度になっ
た時点で、濾過を行なって不純物を濾過した。濾液に、
硝酸銀12.6g(Agとして8.0gを含む)とアン
モニア水9.2mLを加え、攪拌して溶解させ、硝酸パ
ラジウムのアンミン錯体(硝酸テトラアンミンパラジウ
ム)と硝酸銀のアンミン錯体(硝酸ジアンミン銀)の混
合溶液を得た。
(2c) Preparation of mixed solution of palladium complex and silver complex 11.1 g of palladium nitrate solution (containing 2.0 g as Pd) was diluted to 20.0 mL with pure water, and 8.0 mL of aqueous ammonia was added thereto. Was added, and the mixture was stirred. When the liquid temperature reached about room temperature, the mixture was filtered to remove impurities. In the filtrate,
12.6 g of silver nitrate (containing 8.0 g as Ag) and 9.2 mL of aqueous ammonia were added and dissolved by stirring, and a mixture of an ammine complex of palladium nitrate (tetraamminepalladium nitrate) and an ammine complex of silver nitrate (silver diammine nitrate) was added. A solution was obtained.

【0041】[実施例4]Ag/Pd(30重量%/2
0重量%)によるチタン酸バリウム微粒子(50重量
%)の被覆(同時添加被覆) (1)パラジウム予備被覆チタン酸バリウム粒子の調製 実施例1の(1)に記載の方法により、パラジウム予備
被覆チタン酸バリウム粒子を得た。
Example 4 Ag / Pd (30% by weight / 2
(1%) Preparation of Barium Titanate Particles Preliminarily Coated with Palladium According to the method described in (1) of Example 1, Barium acid particles were obtained.

【0042】(2)パラジウム錯体と銀錯体との混合溶
液の調製 実施例1の(2)に記載の方法により、パラジウム錯体
と銀錯体との混合溶液を調整した。
(2) Preparation of mixed solution of palladium complex and silver complex A mixed solution of a palladium complex and a silver complex was prepared by the method described in (2) of Example 1.

【0043】(3)Ag/Pd被覆チタン酸バリウム微
粉末の製造 上記(1)で得たパラジウム予備被覆チタン酸バリウム
粒子に、カルボキシメチルセルロース0.4gを26.
7mLの純水で溶解させた水溶液を加え、超音波をかけ
ながら10分間攪拌を行なった。超音波付与を停止した
後、さらにカルボキシメチルセルロース0.4gを2
6.7mLを加えた水溶液を加え、攪拌を行なった。こ
れに安息香酸アンモニウム0.7gを純水7.0mLに
溶解した溶液を加え、液温を30℃に調整し、上記
(2)で得た硝酸テトラアンミンパラジウムと硝酸ジア
ンミン銀との混合溶液と、ヒドラジン一水和物4.0m
Lを純水で希釈して得た50.0mLの水溶液を同時に
60分かけて滴下し、その後60分間攪拌して、パラジ
ウム予備被覆チタン酸バリウム粒子の周囲に金属銀と金
属パラジウムとを析出させた。その後、粒子を洗浄、乾
燥して、20.0gの銀(30重量%)とパラジウム
(20重量%)とが被覆されたチタン酸バリウム微粉末
(平均粒径:0.3μm、比表面積:4.3m2/g)
を得た。
(3) Preparation of Ag / Pd-coated barium titanate fine powder 0.4 g of carboxymethylcellulose was added to the palladium pre-coated barium titanate particles obtained in (1) above.
An aqueous solution dissolved in 7 mL of pure water was added, and the mixture was stirred for 10 minutes while applying ultrasonic waves. After stopping the application of ultrasonic waves, 0.4 g of carboxymethylcellulose was further added to 2 g.
An aqueous solution to which 6.7 mL was added was added, and the mixture was stirred. A solution obtained by dissolving 0.7 g of ammonium benzoate in 7.0 mL of pure water was added thereto, the solution temperature was adjusted to 30 ° C., and a mixed solution of tetraamminepalladium nitrate and silver diammine nitrate obtained in (2) above, Hydrazine monohydrate 4.0m
50.0 mL of an aqueous solution obtained by diluting L with pure water was simultaneously added dropwise over 60 minutes, and then stirred for 60 minutes to precipitate metallic silver and metallic palladium around the palladium pre-coated barium titanate particles. Was. Thereafter, the particles are washed and dried, and barium titanate fine powder coated with 20.0 g of silver (30% by weight) and palladium (20% by weight) (average particle size: 0.3 μm, specific surface area: 4) .3m 2 / g)
I got

【0044】[実施例5]Ag/Pd(35重量%/1
5重量%)によるチタン酸バリウム微粒子(50重量
%)の被覆(同時添加被覆) 実施例4において、(2)のパラジウム錯体と銀錯体と
の混合溶液の調製を下記の(2b)の方法で行なった以
外は、同じ操作を行ない、20.0gの銀(35重量
%)とパラジウム(15重量%)とが被覆されたチタン
酸バリウム微粉末(平均粒径:0.3μm、比表面積:
4.3m2/g)を得た。
Example 5 Ag / Pd (35% by weight / 1
5% by weight) Coating of barium titanate fine particles (50% by weight) (simultaneous addition coating) In Example 4, a mixed solution of the palladium complex and the silver complex of (2) was prepared by the following method (2b). Barium titanate fine powder coated with 20.0 g of silver (35% by weight) and palladium (15% by weight) (average particle size: 0.3 μm, specific surface area:
4.3 m 2 / g).

【0045】(2b)パラジウム錯体と銀錯体との混合
溶液の調製 硝酸パラジウム溶液16.6g(Pdとして3.0gを
含む)を純水で30.0mLに希釈し、これにアンモニ
ア水12.0mLを加え、攪拌し、液温が室温程度にな
った時点で、濾過を行なって不純物を濾過した。濾液
に、硝酸銀11.0g(Agとして7.0gを含む)と
アンモニア水10.0mLを加え、攪拌して溶解させ、
硝酸パラジウムのアンミン錯体(硝酸テトラアンミンパ
ラジウム)と硝酸銀のアンミン錯体(硝酸ジアンミン
銀)の混合溶液を得た。
(2b) Preparation of mixed solution of palladium complex and silver complex 16.6 g of a palladium nitrate solution (containing 3.0 g as Pd) was diluted to 30.0 mL with pure water, and 12.0 mL of aqueous ammonia was added thereto. Was added, and the mixture was stirred. When the liquid temperature reached about room temperature, the mixture was filtered to remove impurities. 11.0 g of silver nitrate (including 7.0 g as Ag) and 10.0 mL of aqueous ammonia were added to the filtrate, and the mixture was stirred and dissolved.
A mixed solution of an ammine complex of palladium nitrate (tetraamminepalladium nitrate) and an ammine complex of silver nitrate (silver diammine nitrate) was obtained.

【0046】[実施例6]Ag/Pd(40重量%/1
0重量%)によるチタン酸バリウム微粒子(50重量
%)の被覆(同時添加被覆) 実施例4において、(2)のパラジウム錯体と銀錯体と
の混合溶液の調製を下記の(2c)の方法で行なった以
外は、同じ操作を行ない(但し、(3)におけるヒドラ
ジン一水和物の使用量を3.0mLとした)、20.0
gの銀(40重量%)とパラジウム(10重量%)とが
被覆されたチタン酸バリウム微粉末(平均粒径:0.3
μm、比表面積:4.3m2/g)を得た。
Example 6 Ag / Pd (40% by weight / 1
0% by weight) Coating of barium titanate fine particles (50% by weight) (simultaneous addition coating) In Example 4, the mixed solution of the palladium complex and the silver complex of (2) was prepared by the following method (2c). The same operation was performed except that the operation was performed (however, the amount of hydrazine monohydrate used in (3) was 3.0 mL), 20.0
g of barium titanate fine powder coated with silver (40% by weight) and palladium (10% by weight) (average particle size: 0.3
μm, specific surface area: 4.3 m 2 / g).

【0047】(2c)パラジウム錯体と銀錯体との混合
溶液の調製 硝酸パラジウム溶液11.1g(Pdとして2.0gを
含む)を純水で20.0mLに希釈し、これにアンモニ
ア水8.0mLを加え、攪拌し、液温が室温程度になっ
た時点で、濾過を行なって不純物を濾過した。濾液に、
硝酸銀12.6g(Agとして8.0gを含む)とアン
モニア水9.2mLを加え、攪拌して溶解させ、硝酸パ
ラジウムのアンミン錯体(硝酸テトラアンミンパラジウ
ム)と硝酸銀のアンミン錯体(硝酸ジアンミン銀)の混
合溶液を得た。
(2c) Preparation of mixed solution of palladium complex and silver complex 11.1 g of palladium nitrate solution (containing 2.0 g as Pd) was diluted to 20.0 mL with pure water, and 8.0 mL of aqueous ammonia was added thereto. Was added, and the mixture was stirred. When the liquid temperature reached about room temperature, the mixture was filtered to remove impurities. In the filtrate,
12.6 g of silver nitrate (containing 8.0 g as Ag) and 9.2 mL of aqueous ammonia were added and dissolved by stirring, and mixed with an ammine complex of palladium nitrate (tetraamminepalladium nitrate) and an ammine complex of silver nitrate (silver diammine nitrate). A solution was obtained.

【0048】[実施例7]導電性ペーストの製造 実施例1で得たPd/Ag被覆チタン酸バリウム粒子2
0g、平均粒径が0.5μmのパラジウム粒子(純パラ
ジウム粒子)25g、エチルセルロース0.8g、ジブ
チルフタレート3.8g、そしてブチルカルビトール4
2.5gを混合したのち、三本ロール型混練装置を用い
て充分に混練して、電極製造用の導電性ペーストを得
た。
Example 7 Production of Conductive Paste Pd / Ag-coated barium titanate particles 2 obtained in Example 1
0 g, 25 g of palladium particles having an average particle diameter of 0.5 μm (pure palladium particles), 0.8 g of ethyl cellulose, 3.8 g of dibutyl phthalate, and butyl carbitol 4
After mixing 2.5 g, the mixture was sufficiently kneaded using a three-roll kneader to obtain a conductive paste for electrode production.

【0049】[参考例1]導電性ペーストの製造 平均粒径が0.5μmのパラジウム粒子(純パラジウム
粒子)45g、エチルセルロース0.8g、ジブチルフ
タレート3.8g、そしてブチルカルビトール42.5
gを混合したのち、三本ロール型混練装置を用いて充分
に混練して、電極製造用の導電性ペーストを得た。
Reference Example 1 Production of Conductive Paste 45 g of palladium particles (pure palladium particles) having an average particle size of 0.5 μm, 0.8 g of ethylcellulose, 3.8 g of dibutyl phthalate, and 42.5 g of butyl carbitol
g, and then sufficiently kneaded using a three-roll kneader to obtain a conductive paste for electrode production.

【0050】[実施例8]積層コンデンサの製造 実施例7で得た導電性ペーストとチタン酸バリウム基板
(グリーンシート)とを用いて 0℃で焼成して、
35層(焼成後の電極間隔:16μm)の積層コンデン
サを製造した。また、参考例1で得た導電性ペースト
(導電性粉末としてパラジウム粉末のみを用いたもの)
についても同様にチタン酸バリウム基板(グリーンシー
ト)と同時焼成処理して35層(焼成後の電極間隔:1
6μm)の積層コンデンサを製造した。得られた積層コ
ンデンサの電気特性を測定したところ、実施例7の導電
性ペーストを用いて製造した積層コンデンサは、参考例
1の導電性ペーストを用いて製造した積層コンデンサと
実質的な相違は現われなかった。
Example 8 Production of Multilayer Capacitor The conductive paste obtained in Example 7 and a barium titanate substrate (green sheet) were fired at 0 ° C.
A multilayer capacitor having 35 layers (interelectrode interval after firing: 16 μm) was manufactured. The conductive paste obtained in Reference Example 1 (using only palladium powder as the conductive powder)
Similarly, a barium titanate substrate (green sheet) was simultaneously baked to perform 35 layers (electrode spacing after firing: 1).
6 μm). When the electrical characteristics of the obtained multilayer capacitor were measured, the multilayer capacitor manufactured using the conductive paste of Example 7 was substantially different from the multilayer capacitor manufactured using the conductive paste of Reference Example 1. Did not.

【0051】[0051]

【発明の効果】本発明が提供する貴金属被覆粒子と貴金
属粒子との導電性粒子組成物は、貴金属粒子のみを利用
する導電性材料と同等の電気的特性を与える。また、本
発明が提供する貴金属被覆粒子の製造法は、貴金属被覆
層が薄膜となっても、貴金属層の均一性が高く、貴金属
粒子と同等の電気特性を与える導電性粒子を製造するこ
とを可能にする。
According to the present invention, the conductive particle composition of the noble metal-coated particles and the noble metal particles provides the same electrical characteristics as a conductive material using only noble metal particles. Further, the method for producing noble metal-coated particles provided by the present invention, even if the noble metal coating layer is a thin film, high uniformity of the noble metal layer, to produce conductive particles that give the same electrical properties as the noble metal particles. enable.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09C 3/00 C09C 3/00 H01B 1/00 H01B 1/00 C J H01G 4/12 361 H01G 4/12 361 364 364 4/30 301 4/30 301Z Fターム(参考) 4J037 AA04 CA03 DD05 DD20 EE03 EE08 EE22 EE28 EE43 4K018 AA02 BA01 BA20 BB04 BC24 BC32 BD04 KA33 KA39 5E001 AB03 AH01 AH09 AJ01 5E082 AB03 EE04 FF05 FG04 5G301 DA09 DA10 DA14 DA43 DA46 DA51 DA53 DA60 DD03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09C 3/00 C09C 3/00 H01B 1/00 H01B 1/00 C J H01G 4/12 361 H01G 4/12 361 364 364 4/30 301 4/30 301Z F-term (reference) 4J037 AA04 CA03 DD05 DD20 EE03 EE08 EE22 EE28 EE43 4K018 AA02 BA01 BA20 BB04 BC24 BC32 BD04 KA33 KA39 5E001 AB03 AH01 AH09 AJ01 504 DA43 DA46 DA51 DA53 DA60 DD03

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】 貴金属粒子、および無機物微粒子の表面
に貴金属が被覆されてなり、平均粒径が該貴金属粒子の
平均粒径より小さい貴金属被覆粒子からなる導電性粒子
組成物。
1. A conductive particle composition comprising noble metal particles and inorganic fine particles coated on a surface of a noble metal, and having noble metal-coated particles having an average particle size smaller than the average particle size of the noble metal particles.
【請求項2】 貴金属粒子と貴金属被覆粒子との比率が
重量9:1乃至1:9の範囲にある請求項1に記載の導
電性粒子組成物。
2. The conductive particle composition according to claim 1, wherein the weight ratio of the noble metal particles to the noble metal-coated particles is in the range of 9: 1 to 1: 9.
【請求項3】 貴金属粒子と貴金属被覆粒子との比率が
重量9:1乃至4:6の範囲にある請求項2に記載の導
電性粒子組成物。
3. The conductive particle composition according to claim 2, wherein the ratio between the noble metal particles and the noble metal-coated particles is in the range of 9: 1 to 4: 6 by weight.
【請求項4】 貴金属被覆粒子の平均粒径が0.01〜
0.8μmの範囲に有る請求項1乃至3のうちのいずれ
かの項に記載の導電性粒子組成物。
4. The precious metal-coated particles have an average particle size of 0.01 to 0.01.
The conductive particle composition according to any one of claims 1 to 3, which is in a range of 0.8 µm.
【請求項5】 貴金属粒子の平均粒径と貴金属被覆粒子
の平均粒径との差が0.05μm以上である請求項1乃
至4のうちのいずれか項に記載の導電性粒子組成物。
5. The conductive particle composition according to claim 1, wherein a difference between the average particle size of the noble metal particles and the average particle size of the noble metal-coated particles is 0.05 μm or more.
【請求項6】 貴金属粒子の平均粒径と貴金属被覆粒子
の平均粒径との差が0.1μm以上である請求項5に記
載の導電性粒子組成物。
6. The conductive particle composition according to claim 5, wherein the difference between the average particle size of the noble metal particles and the average particle size of the noble metal-coated particles is 0.1 μm or more.
【請求項7】 貴金属粒子が、パラジウム、白金、金、
および銀からなる群より選ばれる一以上の貴金属から形
成されている請求項1乃至6のうちのいずれかの項に記
載の導電性粒子組成物。
7. The precious metal particles are palladium, platinum, gold,
The conductive particle composition according to any one of claims 1 to 6, wherein the conductive particle composition is formed from one or more noble metals selected from the group consisting of silver and silver.
【請求項8】 無機物粒子が、金属酸化物粒子である請
求項1乃至7のうちのいずれかの項に記載の導電性粒子
組成物。
8. The conductive particle composition according to claim 1, wherein the inorganic particles are metal oxide particles.
【請求項9】 無機物粒子を被覆している貴金属層が、
パラジウム、白金、金および銀からなる群より選ばれる
一以上の貴金属から形成されている請求項1乃至8のう
ちのいずれかの項に記載の導電性粒子組成物。
9. The noble metal layer covering the inorganic particles,
The conductive particle composition according to any one of claims 1 to 8, wherein the conductive particle composition is formed from one or more noble metals selected from the group consisting of palladium, platinum, gold, and silver.
【請求項10】 無機物粒子を被覆している貴金属の元
素組成と貴金属粒子の元素組成とが共通成分を有してい
る請求項1乃至9のうちのいずれかの項に記載の導電性
粒子組成物。
10. The conductive particle composition according to claim 1, wherein the element composition of the noble metal coating the inorganic particles and the element composition of the noble metal particles have a common component. object.
【請求項11】 無機物粒子の平均粒径が0.05〜
0.5μmであり、貴金属被覆粒子の平均粒径が0.8
μm以下である請求項1乃至10のうちのいずれかの項
に記載の導電性粒子組成物。
11. An inorganic particle having an average particle size of 0.05 to 0.05.
0.5 μm, and the average particle size of the noble metal-coated particles is 0.8
The conductive particle composition according to any one of claims 1 to 10, wherein the composition is not more than μm.
【請求項12】 請求項1乃至11のうちのいずれかの
項に記載の記載の導電性粒子組成物を含む導電性ペース
ト。
12. A conductive paste comprising the conductive particle composition according to any one of claims 1 to 11.
【請求項13】 請求項12に記載の導電性ペーストか
ら形成された電極層を含む電子部品。
13. An electronic component comprising an electrode layer formed from the conductive paste according to claim 12.
【請求項14】 請求項12に記載の導電性ペーストか
ら形成された電極層と該導電性ペーストに含まれている
無機物粒子と同一組成の無機物からなるセラミックシー
トとから形成された積層セラミックコンデンサ。
14. A multilayer ceramic capacitor formed from an electrode layer formed from the conductive paste according to claim 12, and a ceramic sheet made of an inorganic material having the same composition as the inorganic particles contained in the conductive paste.
【請求項15】 請求項12に記載の導電性ペーストを
塗布した未焼成セラミックシートを900〜1300℃
の範囲の温度で焼成して得られた電極層と焼成セラミッ
クシートとからなる積層セラミックコンデンサ。
15. An unfired ceramic sheet to which the conductive paste according to claim 12 is applied, at 900 to 1300 ° C.
A multilayer ceramic capacitor comprising an electrode layer obtained by firing at a temperature in the range described above and a fired ceramic sheet.
【請求項16】 貴金属被覆粒子が、還元剤溶液に無機
物粒子が分散してなり、攪拌下にある分散液に貴金属塩
溶液を添加することによって得られた貴金属被覆粒子で
ある請求項1乃至11のうちのいずれかの項に記載の導
電性粒子組成物。
16. The noble metal-coated particles are particles obtained by dispersing inorganic particles in a reducing agent solution, and obtained by adding a noble metal salt solution to a dispersion under stirring. The conductive particle composition according to any one of the above.
【請求項17】 無機物粒子が、貴金属予備被覆無機物
粒子である請求項16に記載の導電性粒子組成物。
17. The conductive particle composition according to claim 16, wherein the inorganic particles are precious metal pre-coated inorganic particles.
【請求項18】 貴金属被覆粒子が、攪拌下にある無機
物粒子分散液に貴金属塩溶液と還元剤とを同時に添加す
ることによって得られた貴金属被覆粒子である請求項1
乃至11のうちのいずれかの項に記載の導電性粒子組成
物。
18. The noble metal-coated particles obtained by simultaneously adding a noble metal salt solution and a reducing agent to an inorganic particle dispersion under stirring.
12. The conductive particle composition according to any one of Items 11 to 11.
【請求項19】 無機物粒子が、貴金属予備被覆無機物
粒子である請求項18に記載の導電性粒子組成物。
19. The conductive particle composition according to claim 18, wherein the inorganic particles are precious metal pre-coated inorganic particles.
【請求項20】 還元剤溶液に無機物粒子が分散してな
り、攪拌下にある分散液に貴金属塩溶液を添加すること
を特徴とする貴金属被覆粒子の製造方法。
20. A method for producing noble metal-coated particles, wherein inorganic particles are dispersed in a reducing agent solution, and a noble metal salt solution is added to the dispersion under stirring.
【請求項21】 無機物粒子が貴金属予備被覆無機物粒
子である請求項20に記載の貴金属被覆粒子の製造方
法。
21. The method according to claim 20, wherein the inorganic particles are precious metal pre-coated inorganic particles.
【請求項22】 攪拌下にある無機物粒子分散液に貴金
属塩溶液と還元剤とを同時に添加することを特徴とする
貴金属被覆粒子の製造方法。
22. A method for producing noble metal-coated particles, comprising simultaneously adding a noble metal salt solution and a reducing agent to an inorganic particle dispersion under stirring.
【請求項23】 無機物粒子が貴金属予備被覆無機物粒
子である請求項22に記載の貴金属被覆粒子の製造方
法。
23. The method according to claim 22, wherein the inorganic particles are precious metal pre-coated inorganic particles.
JP2001136236A 2001-05-07 2001-05-07 Conductive particle composite Pending JP2002334611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136236A JP2002334611A (en) 2001-05-07 2001-05-07 Conductive particle composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001136236A JP2002334611A (en) 2001-05-07 2001-05-07 Conductive particle composite

Publications (1)

Publication Number Publication Date
JP2002334611A true JP2002334611A (en) 2002-11-22

Family

ID=18983556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136236A Pending JP2002334611A (en) 2001-05-07 2001-05-07 Conductive particle composite

Country Status (1)

Country Link
JP (1) JP2002334611A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066319A1 (en) * 2003-01-24 2004-08-05 Toho Titanium Co., Ltd. Platinum-coated powder, method for producing same, and conductive paste
JP2004319435A (en) * 2003-03-31 2004-11-11 Tdk Corp Conductive particle, conductive paste, electronic part, laminated ceramic capacitor and manufacturing method of the same
JP2006202550A (en) * 2005-01-19 2006-08-03 Matsushita Electric Ind Co Ltd Conductive paste, wiring board using it, electronic component-mounted substrate, and electronic equipment using them
JP2006319359A (en) * 2003-02-05 2006-11-24 Tdk Corp Electronic component and its manufacturing method
JP2007165063A (en) * 2005-12-13 2007-06-28 Samsung Sdi Co Ltd Conductive particle, conductive paste, and electronic component
JP2008277294A (en) * 2003-03-31 2008-11-13 Tdk Corp Conductive particle, conductive paste, electronic component, and laminated ceramic capacitor and manufacturing method thereof
CN102816462A (en) * 2012-08-13 2012-12-12 中国科学院宁波材料技术与工程研究所 Preparation method for nano-silver particles coated with organic protection agent on surfaces
JP2013545291A (en) * 2010-10-12 2013-12-19 アプリコット マテリアルズ テクノロジーズ,エル.エル.シー. Ceramic capacitor and manufacturing method
JP2021093410A (en) * 2019-12-09 2021-06-17 清水 幹治 Large-capacity capacitor device and secondary battery
TWI731192B (en) * 2016-11-14 2021-06-21 日商納美仕有限公司 Metal-coated particle and resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103816A (en) * 1992-09-18 1994-04-15 Mitsubishi Materials Corp Conductive filler consisting of palladium-coated metal powder
JPH06108102A (en) * 1992-09-30 1994-04-19 Mitsubishi Materials Corp Cu powder coated with au and its production
JPH06168620A (en) * 1992-11-26 1994-06-14 Kawasumi Gijutsu Kenkyusho:Kk Conductive paste composition
JP2002334614A (en) * 2001-05-07 2002-11-22 Kawakado Kimiko Conductive particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103816A (en) * 1992-09-18 1994-04-15 Mitsubishi Materials Corp Conductive filler consisting of palladium-coated metal powder
JPH06108102A (en) * 1992-09-30 1994-04-19 Mitsubishi Materials Corp Cu powder coated with au and its production
JPH06168620A (en) * 1992-11-26 1994-06-14 Kawasumi Gijutsu Kenkyusho:Kk Conductive paste composition
JP2002334614A (en) * 2001-05-07 2002-11-22 Kawakado Kimiko Conductive particles

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004066319A1 (en) * 2003-01-24 2004-08-05 Toho Titanium Co., Ltd. Platinum-coated powder, method for producing same, and conductive paste
JP2006319359A (en) * 2003-02-05 2006-11-24 Tdk Corp Electronic component and its manufacturing method
JP4548392B2 (en) * 2003-02-05 2010-09-22 Tdk株式会社 Alloy powder for forming internal electrode layer of electronic component, conductive particle, conductive paste, and method of manufacturing electronic component using the same
JP2004319435A (en) * 2003-03-31 2004-11-11 Tdk Corp Conductive particle, conductive paste, electronic part, laminated ceramic capacitor and manufacturing method of the same
JP2008277294A (en) * 2003-03-31 2008-11-13 Tdk Corp Conductive particle, conductive paste, electronic component, and laminated ceramic capacitor and manufacturing method thereof
JP2006202550A (en) * 2005-01-19 2006-08-03 Matsushita Electric Ind Co Ltd Conductive paste, wiring board using it, electronic component-mounted substrate, and electronic equipment using them
JP4622533B2 (en) * 2005-01-19 2011-02-02 パナソニック株式会社 Wiring board, wiring board manufacturing method, and electronic device
JP2007165063A (en) * 2005-12-13 2007-06-28 Samsung Sdi Co Ltd Conductive particle, conductive paste, and electronic component
JP2013545291A (en) * 2010-10-12 2013-12-19 アプリコット マテリアルズ テクノロジーズ,エル.エル.シー. Ceramic capacitor and manufacturing method
CN102816462A (en) * 2012-08-13 2012-12-12 中国科学院宁波材料技术与工程研究所 Preparation method for nano-silver particles coated with organic protection agent on surfaces
TWI731192B (en) * 2016-11-14 2021-06-21 日商納美仕有限公司 Metal-coated particle and resin composition
JP2021093410A (en) * 2019-12-09 2021-06-17 清水 幹治 Large-capacity capacitor device and secondary battery

Similar Documents

Publication Publication Date Title
KR20040020048A (en) Ceramic electronic component and production method therefor
JP2001214201A (en) Nickel powder, producing method therefor and paste for forming electrode for electronic part
JP2002334614A (en) Conductive particles
JPH07207185A (en) Coated palladium fine powder and conductive paste
JP2002334611A (en) Conductive particle composite
JP2004323866A (en) Method for manufacturing nickel powder, and nickel powder
JPH06168620A (en) Conductive paste composition
JPH026206B2 (en)
JPH0543921A (en) Production of nickel fine powder
JP2799916B2 (en) Conductive metal-coated ceramic powder
JP2002080902A (en) Method for producing electrically conductive powder, electrically conductive powder, electrically conductive paste and laminated ceramic electronic parts
JPH0266101A (en) Electric conductive particles and manufacture thereof
JP2808639B2 (en) Conductive particles for electrodes of ceramic electronic components
JP3316235B2 (en) Manufacturing method of precious metal coated ceramic powder
JPH03214716A (en) Formation of electrode and electronic parts using the same
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JPS61136978A (en) Electroconductive paste for thick film circuit
JPH08212827A (en) Conductive powder, its manufacture and conductive paste containing it
JPWO2004066319A1 (en) Platinum-coated powder, method for producing the same, and conductive paste
JPH07118429B2 (en) Conductive paint for internal electrodes of multilayer capacitors
JPH03215916A (en) Method for formation of electrode and electronic part using it
JPH01198403A (en) Palladium coated silver powder and its manufacture and conductive film forming composition
JP3698098B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JPH02215005A (en) Conductive grain and its manufacture
JP4833640B2 (en) Conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110114