JP2014159646A - Silver-coated copper powder - Google Patents

Silver-coated copper powder Download PDF

Info

Publication number
JP2014159646A
JP2014159646A JP2014120720A JP2014120720A JP2014159646A JP 2014159646 A JP2014159646 A JP 2014159646A JP 2014120720 A JP2014120720 A JP 2014120720A JP 2014120720 A JP2014120720 A JP 2014120720A JP 2014159646 A JP2014159646 A JP 2014159646A
Authority
JP
Japan
Prior art keywords
silver
copper powder
coated copper
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014120720A
Other languages
Japanese (ja)
Inventor
Taku Fujimoto
卓 藤本
Masahiro Miwa
昌宏 三輪
Yasunari Wakimori
康成 脇森
Tomio Hayashi
富雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2014120720A priority Critical patent/JP2014159646A/en
Publication of JP2014159646A publication Critical patent/JP2014159646A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide silver-coated copper powder capable of exhibiting more excellent conductivity.SOLUTION: In the silver-coated copper powder composed of dendrite-like silver-coated copper powder particles where the surface of copper powder particles is coated with silver, the ratio (BET specific surface area/sphere approximation specific surface area) of the specific surface area (referred to "BET specific surface area") measured by a BET one point method to the specific surface area (referred to "sphere approximation specific surface area") measured by a laser diffraction scattering particle size distribution measuring apparatus is 6.0-15.0.

Description

本発明は、導電性ペーストなどの材料として好適に用いることができる銀被覆銅粉に関する。   The present invention relates to a silver-coated copper powder that can be suitably used as a material such as a conductive paste.

導電性ペーストは、樹脂系バインダと溶媒からなるビヒクル中に導電性粉末を分散させた流動性組成物であり、電気回路の形成や、セラミックコンデンサの外部電極の形成などに広く用いられている。   The conductive paste is a fluid composition in which conductive powder is dispersed in a vehicle composed of a resin binder and a solvent, and is widely used for forming an electric circuit, an external electrode of a ceramic capacitor, and the like.

この種の導電性ペーストには、樹脂の硬化によって導電性粉末が圧着されて導通が確保される樹脂硬化型と、焼成によって有機成分が揮発して導電性粉末が焼結して導通が確保される焼成型とがある。   This type of conductive paste has a resin-curing type in which conductive powder is pressure-bonded by curing the resin to ensure conduction, and an organic component is volatilized by firing to sinter the conductive powder to ensure conduction. There are firing types.

前者の樹脂硬化型導電性ペーストは、一般的に、金属粉末からなる導電性粉末と、エポキシ樹脂等の熱硬化性樹脂からなる有機バインダとを含んだペースト状組成物であって、熱を加えることによって熱硬化型樹脂が導電性粉末とともに硬化収縮して、樹脂を介して導電性粉末同士が圧着され接触状態となり、導通性が確保されるものである。この樹脂硬化型導電性ペーストは100℃から精々200℃までの比較的低温域で処理可能であり、熱ダメージが少ないため、プリント配線基板や熱に弱い樹脂基板などに主に使用されている。   The former resin-curable conductive paste is generally a paste-like composition containing conductive powder made of metal powder and an organic binder made of thermosetting resin such as epoxy resin, and applies heat. As a result, the thermosetting resin is cured and shrunk together with the conductive powder, and the conductive powder is pressed and brought into contact with each other through the resin, thereby ensuring conductivity. This resin curable conductive paste can be processed in a relatively low temperature range from 100 ° C. to at most 200 ° C. and has little thermal damage, and is therefore mainly used for printed wiring boards and heat-sensitive resin boards.

他方、後者の焼成型導電性ペーストは、一般に導電性粉末(金属粉末)とガラスフリットとを有機ビヒクル中に分散させてなるペースト状組成物であり、500〜900℃にて焼成することにより、有機ビヒクルが揮発し、さらに導電性粉末が焼結することによって導通性が確保されるものである。この際、ガラスフリットは、この導電膜を基板に接着させる作用を有し、有機ビヒクルは、金属粉末およびガラスフリットを印刷可能にするための有機液体媒体として作用する。
焼成型導電性ペーストは、焼成温度が高いため、プリント配線基板や樹脂材料には使用できないが、焼結して金属が一体化することから低抵抗化を実現することができ、例えば積層セラミックコンデンサの外部電極などに使用されている。
On the other hand, the latter fired conductive paste is a paste-like composition in which conductive powder (metal powder) and glass frit are generally dispersed in an organic vehicle. By firing at 500 to 900 ° C., Conductivity is ensured by volatilization of the organic vehicle and sintering of the conductive powder. At this time, the glass frit has a function of adhering the conductive film to the substrate, and the organic vehicle functions as an organic liquid medium for enabling printing of the metal powder and the glass frit.
Firing-type conductive paste cannot be used for printed wiring boards or resin materials because of its high firing temperature, but it can be reduced in resistance because it is sintered and the metal is integrated. It is used for external electrodes.

銀は導電性に優れているため、異方導電性フィルム、導電性ペースト、導電性接着剤など、各種導電性材料の主要構成材料として用いられている。例えば銀粉に結合剤および溶剤を混合して導電性ペーストとし、この導電性ペーストを用いて基板上に回路パターンを印刷し、焼き付けることでプリント配線板や電子部品の電気回路などを形成することができる。   Since silver is excellent in conductivity, it is used as a main constituent material of various conductive materials such as anisotropic conductive films, conductive pastes, and conductive adhesives. For example, a silver paste can be mixed with a binder and a solvent to form a conductive paste, and a circuit pattern can be printed on the substrate using this conductive paste and baked to form a printed wiring board or an electric circuit of an electronic component. it can.

しかし、銀はとても高価であるため、無電解メッキなどによって芯材粒子の表面に、貴金属の膜をメッキしてなる被覆粉と呼ばれる導電性粉末が開発され使用されている。例えば特許文献1には、芯材としての銀被覆銅粒子の表面を、酸化銀、炭酸銀、及び有機酸銀のいずれかの銀化合物で被覆してなる銀化合物被覆銅粉であって、SSA(m/g)が0.1〜10.0であり、D50(μm)が0.5〜10.0であり、1wt%〜40wt%の割合で銀化合物を粒子表面に付着させてなる銀化合物被覆銅粉が開示されている。 However, since silver is very expensive, conductive powder called coating powder, which is obtained by plating a noble metal film on the surface of core material particles by electroless plating or the like, has been developed and used. For example, Patent Document 1 discloses a silver compound-coated copper powder obtained by coating the surface of silver-coated copper particles as a core material with a silver compound of silver oxide, silver carbonate, and organic acid silver, and SSA (M 3 / g) is 0.1 to 10.0, D50 (μm) is 0.5 to 10.0, and a silver compound is adhered to the particle surface at a rate of 1 wt% to 40 wt%. Silver compound-coated copper powder is disclosed.

銅粉粒子表面に銀を被覆させる方法として、還元メッキ被覆法と置換メッキ被覆の2種類を挙げることができる。   As a method for coating the surface of the copper powder particles with silver, there can be mentioned two types, ie, a reduction plating coating method and a displacement plating coating.

還元メッキ被覆法は、銅粉粒子の表面に、還元剤で還元された銀の微粒子を緻密に被覆させていく方法であり、例えば特許文献2には、還元剤が溶存した水溶液中で金属銅粉と硝酸銀を反応させる銀被覆銅粉の製造方法が提案されている。   The reduction plating coating method is a method in which fine particles of silver reduced with a reducing agent are densely coated on the surface of copper powder particles. For example, Patent Document 2 discloses metallic copper in an aqueous solution in which a reducing agent is dissolved. A method for producing a silver-coated copper powder in which powder and silver nitrate are reacted is proposed.

他方、置換メッキ被覆法は、銅粉粒子の界面で、銀イオンが金属の銅と電子の授受を行い、銀イオンが金属の銀に還元され、代わりに金属の銅が酸化され銅イオンになることで、銅粉粒子の表面層を銀層とする方法であり、例えば特許文献3には、銀イオンが存在する有機溶媒含有溶液中で、銀イオンと金属銅との置換反応により、銀を銅粒子の表面に被覆する銀被覆銅粉の製造方法が記載されている。   On the other hand, in the displacement plating coating method, silver ions exchange electrons with metallic copper at the interface of copper powder particles, silver ions are reduced to metallic silver, and instead metallic copper is oxidized into copper ions. That is, a method in which the surface layer of the copper powder particles is a silver layer. For example, in Patent Document 3, silver is exchanged between silver ions and metallic copper in an organic solvent-containing solution in which silver ions are present. A method for producing silver-coated copper powder for coating the surface of copper particles is described.

特開2008―106368号公報JP 2008-106368 A 特開2000−248303号公報JP 2000-248303 A 特開2006−161081号公報JP 2006-161081 A

導電性ペーストなどに含まれる導電性粉末粒子がデンドライト状を呈していれば、球状粒子などに比べて、粒子同士の接点の数が多くなるため、導電性粉末の量を少なくしても導電特性を高めることができる。   If the conductive powder particles contained in the conductive paste have a dendritic shape, the number of contact points between the particles will increase compared to spherical particles, etc. Can be increased.

そこで本発明は、導通性がより一層優れた新たな銀被覆銅粉を提供せんとするものである。   Therefore, the present invention intends to provide a new silver-coated copper powder having further excellent conductivity.

本発明は、銅粉粒子表面が銀で被覆されてなる銀被覆銅粉粒子からなる銀被覆銅粉であって、レーザー回折散乱式粒度分布測定装置によって測定される比表面積(「球形近似比表面積」と称する)に対するBET一点法で測定される比表面積(「BET比表面積」と称する)の比率(BET比表面積/球形近似比表面積)が6.0〜15.0であることを特徴とする銀被覆銅粉を提案する。   The present invention is a silver-coated copper powder comprising silver-coated copper powder particles whose surfaces are coated with silver, and is measured by a laser diffraction scattering type particle size distribution measuring device (“spherical approximate specific surface area”). The ratio (referred to as “BET specific surface area”) of the specific surface area (referred to as “BET specific surface area”) measured by the BET single point method is 6.0 to 15.0. We propose silver-coated copper powder.

本発明が提案する銀被覆銅粉は、より一層成長したデンドライト状を呈する銀被覆銅粉粒子を主として含むものである。導電性粉末粒子がより成長し発達したデンドライト状を呈していれば、粒子同士の接点の数がより一層多くなるため、より一層優れた導通性を得ることができ、また、導電性粉末の量を少なくしても導電特性を高めることができる。よって、本発明が提案する銀被覆銅粉は、導電性ペーストなどの材料として特に有効に用いることができる。   The silver-coated copper powder proposed by the present invention mainly contains silver-coated copper powder particles having a dendritic shape that is further grown. If the conductive powder particles exhibit a dendritic shape that has grown and developed more, the number of contacts between the particles is further increased, so that even better conductivity can be obtained, and the amount of the conductive powder Even if the amount is reduced, the conductive characteristics can be improved. Therefore, the silver-coated copper powder proposed by the present invention can be used particularly effectively as a material such as a conductive paste.

本発明の銀被覆銅粉を構成する銀被覆銅粉粒子の粒子形状のモデル図である。It is a model figure of the particle shape of the silver covering copper powder particle which comprises the silver covering copper powder of this invention. 実施例1で得られた銀被覆銅粉から任意に選択した一部の粉末を、走査型電子顕微鏡(SEM)を用いて10、000倍の倍率で観察した際のSEM写真である。It is a SEM photograph at the time of observing a part of powder arbitrarily selected from the silver covering copper powder obtained in Example 1 at a magnification of 10,000 times using a scanning electron microscope (SEM).

以下、本発明の実施形態について詳述するが、本発明の範囲が以下の実施形態に限定されるものではない。   Hereinafter, although the embodiment of the present invention is described in detail, the scope of the present invention is not limited to the following embodiment.

本実施形態に係る銅粉は、芯材としての銅粉粒子の表面を銀で被覆してなる銀被覆銅粉粒子(「本銀被覆銅粉粒子」と称する)からなる銀被覆銅粉(「本銀被覆銅粉」と称する)である。   The copper powder according to the present embodiment is a silver-coated copper powder (referred to as “main silver-coated copper powder particles”) made of silver-coated copper powder particles obtained by coating the surface of copper powder particles as a core with silver. This is referred to as “silver-coated copper powder”.

(粒子形状)
本銀被覆銅粉は、デンドライト状を呈する本銀被覆銅粉粒子を含有することを特徴とする。
ここで、「デンドライト状」とは、図1のモデル図に示されるように、電子顕微鏡(500〜20、000倍)で観察した際に、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して、二次元的或いは三次元的に成長した形状を呈する粒子を意味し、幅広の葉が集まって松ぼっくり状を呈するものや、多数の針状部が放射状に伸長してなる形状のものは含まない。
(Particle shape)
The present silver-coated copper powder contains the present silver-coated copper powder particles having a dendritic shape.
Here, as shown in the model diagram of FIG. 1, the “dendritic shape” includes a single main axis when observed with an electron microscope (500 to 20,000 times), and a plurality of the main axes from the main axis. This means a particle that has a two-dimensional or three-dimensional growth shape with its branches bifurcated diagonally. Does not include

(BET比表面積/球形近似比表面積)
本銀被覆銅粉に関しては、レーザー回折散乱式粒度分布測定装置によって測定される比表面積(「球形近似比表面積」と称する)に対するBET一点法で測定されるBET比表面積(「BET比表面積」と称する)の比率(BET比表面積/球形近似比表面積)が6.0〜15.0であることが重要である。
BET比表面積/球形近似比表面積は、本銀被覆銅粉粒子が球形からどれだけ離れた異形状であるかを示す指標であり、当該比率が6.0〜15.0の範囲内であれば、デンドライト状銅粉の中でも特に優れた導通性を得ることができることが分かった。
よって、かかる観点から、BET比表面積/球形近似比表面積は6.0〜15.0であることが重要であり、中でも6.5以上或いは14.5以下、その中でも7.0以上或いは13.5以下であるのが特に好ましい。
(BET specific surface area / spherical approximate specific surface area)
For the present silver-coated copper powder, the BET specific surface area ("BET specific surface area") measured by the BET single-point method with respect to the specific surface area (referred to as "spherical approximate specific surface area") measured by a laser diffraction scattering particle size distribution analyzer It is important that the ratio (BET specific surface area / spherical approximate specific surface area) is 6.0 to 15.0.
The BET specific surface area / spherical approximate specific surface area is an index indicating how far the present silver-coated copper powder particles have an irregular shape, and if the ratio is in the range of 6.0 to 15.0. It was found that particularly excellent conductivity can be obtained among the dendritic copper powders.
Therefore, from this point of view, it is important that the BET specific surface area / spherical approximate specific surface area is 6.0 to 15.0, especially 6.5 or 14.5 or less, especially 7.0 or 13 or 13. Particularly preferred is 5 or less.

(BET比表面積)
本銀被覆銅粉のBET比表面積(SSA)は、上記BET比表面積/球形近似比表面積の比率範囲に入るようであれば特に限定するものではなく、例えば0.30〜1.50m2/gであるのが好ましい。0.30m2/g以上であれば、枝が発達し、松ぼっくり〜球状から離れるため、本発明が規定するデンドライト状を呈するようになる。他方、1.50m2/g以下であれば、デンドライトの枝が細くなりすぎるためにペースト加工工程で枝が折れるなどの不具合を抑制することができ、目的とする導電性を効果的に確保することができるから、好ましい。
よって、本銀被覆銅粉のBET一点法で測定される比表面積は0.30〜1.50m2/gであるのが好しく、中でも0.40m2/g以上或いは1.40m2/g以下、その中でも特に1.00m2/g以下であるのがさらに好ましい。
(BET specific surface area)
The BET specific surface area (SSA) of the present silver-coated copper powder is not particularly limited as long as it falls within the ratio range of the BET specific surface area / spherical approximate specific surface area. For example, 0.30 to 1.50 m 2 / g. Is preferred. If it is 0.30 m 2 / g or more, the branch develops and leaves a pinecone to a sphere, so that it has a dendrite shape defined by the present invention. On the other hand, if it is 1.50 m 2 / g or less, the dendrite branch is too thin, so that it is possible to suppress problems such as branch breakage in the paste processing step, and effectively secure the desired conductivity. This is preferable.
Therefore, the specific surface area as measured by single point method BET of the silver-coated copper powder 0.30~1.50m 2 / g at and even good properly, inter alia 0.40 m 2 / g or more or 1.40 m 2 / g Hereinafter, among these, it is more preferable that it is 1.00 m < 2 > / g or less especially.

(球形近似比表面積)
本銀被覆銅粉の球形近似比表面積は、上記BET比表面積/球形近似比表面積の比率範囲に入るようであれば特に限定するものではなく、例えば0.020〜0.200m2/gであるのが好ましい。0.020m2/g以上であれば、デンドライト形状が十分に発達しており、導電性に優れるから好ましい。0.200m2/g以下であれば、ペースト加工時の溶剤が少なく済むため経済的、環境的に好ましい。
よって、本銀被覆銅粉の球形近似比表面積は0.020〜0.200m2/gであるのが好しく、中でも0.030m2/g以上或いは0.150m2/g以下であるのがさらに好ましい。
(Spherical approximate specific surface area)
The spherical approximate specific surface area of the present silver-coated copper powder is not particularly limited as long as it falls within the ratio range of the BET specific surface area / spherical approximate specific surface area, and is, for example, 0.020 to 0.200 m 2 / g. Is preferred. If it is 0.020 m 2 / g or more, the dendrite shape is sufficiently developed and excellent in conductivity, which is preferable. If it is 0.200 m < 2 > / g or less, since the solvent at the time of paste processing may be small, it is economically and environmentally preferable.
Therefore, spherical approximation specific surface area of the silver-coated copper powder 0.020~0.200m 2 / g at and even good properly, and even in inter alia 0.030 m 2 / g or more or 0.150 M 2 / g or less Further preferred.

(粒子形状)
本銀被覆銅粉粒子は、デンドライト状銅粉粒子の中でも、電子顕微鏡(500〜20,000倍)で観察した際、次のような所定の特徴を有するデンドライト状を呈する粒子を含むのが好ましい。
・主軸の太さaは0.3μm〜5.0μmであることが重要であり、中でも0.4μm以上或いは4.5μm以下、中でも特に特に0.5μm以上或いは4.0μm以下であるのがさらに好ましい。デンドライトにおける主軸の太さaが0.3μm以下では、主軸がしっかりとしていないために枝が成長し難い一方、5.0μmよりも太くなると、粒子が凝集し易くなり、松ぼっくり状になりやすくなってしまう。
・主軸から伸びた枝の中で最も長い枝の長さb(「枝長b」と称する)は、デンドライトの成長度合いを示しており、0.6μm〜10.0μmであることが重要であり、中でも0.7μm以上或いは9.0μm以下、その中でも0.8μm以上或いは8.0μm以下であるのがさらに好ましい。枝長bが0.6μm未満では、デンドライトが十分に成長しているとは言えない。一方、枝長bが10.0μmを超えると、該銅粉の流動性が低下して取り扱いが難しくなるようになる。
・主軸の長径Lに対する枝の本数(枝本数/長径L)は、デンドライトの枝の多さを示しており、0.5本/μm〜4.0本/μmであるのが好ましく、中でも0.6本/μm以上或いは3.5本/μm以下、その中でも特に0.8本/μm以上或いは3.0本/μm以下であるのがさらに好ましい。枝本数/長径Lが0.5本/μm以上であれば、枝の数は十分に多く、接点を十分に確保できる一方、枝本数/長径Lが4.0本/μm以下であれば、枝の数が多過ぎて該銅粉の流動性が劣るようになることを防ぐことができる。
(Particle shape)
The present silver-coated copper powder particles preferably include dendrite-like particles having the following predetermined characteristics when observed with an electron microscope (500 to 20,000 times) among the dendritic copper powder particles. .
It is important that the thickness a of the main shaft is 0.3 μm to 5.0 μm, especially 0.4 μm or more or 4.5 μm or less, especially 0.5 μm or more or 4.0 μm or less. preferable. When the thickness a of the dendrite is 0.3 μm or less, branches are difficult to grow because the main axis is not solid. On the other hand, when the thickness is larger than 5.0 μm, the particles tend to aggregate and become pine cones. End up.
-The longest branch length b (referred to as "branch length b") among the branches extending from the main axis indicates the degree of dendrite growth, and it is important that the length is 0.6 μm to 10.0 μm. In particular, 0.7 μm or more or 9.0 μm or less, more preferably 0.8 μm or more or 8.0 μm or less. If the branch length b is less than 0.6 μm, it cannot be said that the dendrite has grown sufficiently. On the other hand, when the branch length b exceeds 10.0 μm, the fluidity of the copper powder is lowered and the handling becomes difficult.
The number of branches relative to the major axis L of the main axis (number of branches / major axis L) indicates the number of dendrite branches, and is preferably 0.5 / μm to 4.0 / μm. .6 / μm or more or 3.5 / μm or less, more preferably 0.8 / μm or more or 3.0 / μm or less. If the number of branches / major axis L is 0.5 / μm or more, the number of branches is sufficiently large and sufficient contact can be secured, while if the number of branches / major axis L is 4.0 / μm or less, It can prevent that the fluidity | liquidity of this copper powder becomes inferior because there are too many branches.

但し、電子顕微鏡(500〜20,000倍)で観察した際、多くが上記の如きデンドライト状粒子で占められていれば、それ以外の形状の粒子が混じっていても、上記の如きデンドライト状粒子のみからなる銅粉と同様の効果を得ることができる。よって、かかる観点から、本銀被覆銅粉は、電子顕微鏡(500〜20,000倍)で観察した際、上記の如き本銀被覆銅粉粒子が全銅粉粒子のうちの80%以上、好ましくは90%以上を占めていれば、上記の如きデンドライト状とは認められない非デンドライト状の銅粉粒子が含まれていてもよい。   However, when observed with an electron microscope (500 to 20,000 times), if many of them are occupied by the dendritic particles as described above, the dendritic particles as described above may be used even if particles of other shapes are mixed. The effect similar to the copper powder which consists only of can be acquired. Therefore, from this viewpoint, when the present silver-coated copper powder is observed with an electron microscope (500 to 20,000 times), the present silver-coated copper powder particles are preferably 80% or more of the total copper powder particles, preferably As long as it occupies 90% or more, non-dendritic copper powder particles that are not recognized as dendritic may be included.

(銀の量)
本銀被覆銅粉において、銀の含有量は、本銀被覆銅粉全体に対して0.5〜35.0質量%であるのが好ましい。銀の含有量が、本銀被覆銅粉全体の0.5質量%以上を占めれば、粒子が重なり合った時、表面の銀同士が接触する為に導電性を高めることが出来る。その一方、35.0質量%以下であれば、導電性を得ることは十分であり、しかも、必要以上に銀を被覆することなく経済的である。言い換えれば、35.0質量%以下であれば、製造の方法にもよるが、銀粒子と比較して経済的により優位となるから好ましい。このような観点から、銀の含有量は、本銀被覆銅粉全体の0.5〜35.0質量%であるのが好ましく、中でも3.0質量%以上或いは25.0質量%以下、その中でも5.0質量%以上或いは20.0質量%以下であるのがさらに好ましい。
(Amount of silver)
In the present silver-coated copper powder, the silver content is preferably 0.5 to 35.0 mass% with respect to the entire present silver-coated copper powder. If the silver content occupies 0.5% by mass or more of the total silver-coated copper powder, when the particles overlap, the surface silver comes into contact with each other, so that the conductivity can be increased. On the other hand, if it is 35.0 mass% or less, it will be sufficient to obtain electroconductivity, and it is economical, without covering silver more than necessary. In other words, if it is 35.0% by mass or less, although it depends on the production method, it is preferable because it is economically superior to silver particles. From such a viewpoint, the silver content is preferably 0.5 to 35.0 mass% of the total silver-coated copper powder, and more preferably 3.0 mass% or more or 25.0 mass% or less. Of these, 5.0% by mass or more or 20.0% by mass or less is more preferable.

(D50)
本銀被覆銅粉の中心粒径(D50)、すなわちレーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D50は、3.0μm〜30.0μmであるのが好ましい。導電粒子として大きな粒子であると、ペースト中の導電粒子のネットワークが少なくなるため、導電性能が低下するおそれがある。その一方、粒子径が小さ過ぎると、銀の被覆にムラをなくすためには、銀の含有量を多くする必要があり、経済的に無駄である。
よって、本銀被覆銅粉の中心粒径(D50)は3.0μm〜30.0μmであるのが好ましく、中でも4.0μm以上或いは25.0μm以下、その中でも特に20.0μm以下であるのがさらに好ましい。
(D50)
The central particle size (D50) of the present silver-coated copper powder, that is, the volume cumulative particle size D50 measured by a laser diffraction / scattering particle size distribution analyzer is preferably 3.0 μm to 30.0 μm. If the particles are large as the conductive particles, the conductive particle network in the paste is reduced, which may reduce the conductive performance. On the other hand, if the particle diameter is too small, it is necessary to increase the silver content in order to eliminate unevenness in the silver coating, which is economically wasteful.
Therefore, the center particle diameter (D50) of the present silver-coated copper powder is preferably 3.0 μm to 30.0 μm, more preferably 4.0 μm or more and 25.0 μm or less, and particularly preferably 20.0 μm or less. Further preferred.

(製造方法)
本銀被覆銅粉は、芯材としての銅粉を水に分散させ、キレート剤を添加した後、水に可溶な銀塩を加えて置換反応させて銅粉粒子の表面層を銀に置換させた後、得られた銀被覆銅粉を溶液から取り出してキレート剤を用いて洗浄し、乾燥させることで得ることができる。但し、この製造方法に限定されるものではない。
(Production method)
This silver-coated copper powder disperses copper powder as a core material in water, adds a chelating agent, and then adds a water-soluble silver salt to perform a substitution reaction to replace the surface layer of the copper powder particles with silver. Then, the obtained silver-coated copper powder is taken out of the solution, washed with a chelating agent, and dried. However, it is not limited to this manufacturing method.

置換メッキ被覆法は、還元メッキ被覆法に比べて、芯材(銅粉粒子)表面に銀をより均一に被覆することができるばかりか、被覆後の粒子の凝集を抑えることができ、さらには、より安価に製造できるという特徴を有しているため、置換メッキ被覆法を採用するのが好ましい。   Compared to the reduction plating coating method, the displacement plating coating method can not only uniformly coat the surface of the core material (copper powder particles) with silver, but also can suppress the aggregation of particles after coating. Therefore, it is preferable to employ the displacement plating coating method because it has a feature that it can be manufactured at a lower cost.

従来の置換メッキ被覆法においては、反応溶液から銀被覆銅粉を取り出す時に、水などで濾過・洗浄していたが、水で洗浄しただけでは、銅イオンの一部が銀被覆銅粉に吸着されるため、粒子表面に銅イオンが残留することになり、この状態で乾燥させると、銅イオンが酸化銅を形成し、粒子表面に酸化銅の被膜を出来ることになってしまった。
これに対し、キレート剤を用いて洗浄することで、置換反応後に銅の再吸着を防止することができるため、粒子表面に残留する銅イオンを抑制することができ、その結果、粒子表面に酸化銅の被膜が出来ることを抑制して、導電性を高めることができる。
キレート剤を用いて洗浄した場合、キレート剤が残留する可能性があるため、純水などを用いて洗浄するのが好ましい。
In the conventional displacement plating coating method, when silver-coated copper powder is taken out from the reaction solution, it is filtered and washed with water or the like, but only by washing with water, some of the copper ions are adsorbed on the silver-coated copper powder. Therefore, copper ions remain on the particle surface, and when dried in this state, the copper ions form copper oxide, and a copper oxide film can be formed on the particle surface.
In contrast, by washing with a chelating agent, copper re-adsorption after the substitution reaction can be prevented, so that copper ions remaining on the particle surface can be suppressed. Conductivity can be improved by suppressing the formation of a copper film.
In the case of washing with a chelating agent, the chelating agent may remain, so that it is preferable to wash with pure water or the like.

キレート剤としては、例えばエチレンジアミン四酢酸塩(以下「EDTA」という)、ジエチレントリアミン五酢酸、イミノ二酢酸などのアミノカルボン酸系キレート剤のほか、ヒドロキシエチルエチレンジアミン三酢酸、ジヒドロキシエチルエチレンジアミン二酢酸)、1,3-プロパンジアミン四酢酸から選ばれた1種又は2種以上のものを挙げることができるが、中でもEDTAを用いるのが好ましい。   Examples of the chelating agent include ethylenediaminetetraacetic acid salt (hereinafter referred to as “EDTA”), aminocarboxylic acid-based chelating agents such as diethylenetriaminepentaacetic acid and iminodiacetic acid, hydroxyethylethylenediaminetriacetic acid, dihydroxyethylethylenediaminediacetic acid), 1 , 3-propanediaminetetraacetic acid, one or two or more selected from propanediaminetetraacetic acid can be mentioned, and among these, EDTA is preferably used.

銀塩を加える際、溶液のpH、すなわち置換反応させる際の溶液のpHは3〜4に調整するのが好ましい。
銀塩としては、水に可溶な銀塩、すなわちAgイオン供給源としては、硝酸銀、過塩素酸銀、酢酸銀、シュウ酸銀、塩素酸銀、6フッ化リン酸銀、4フッ化ホウ酸銀、6フッ化ヒ酸銀、硫酸銀から選ばれた1種又は2種以上を挙げることができる。
When adding a silver salt, it is preferable to adjust the pH of the solution, that is, the pH of the solution at the time of the substitution reaction to 3 to 4.
Silver salts soluble in water, that is, Ag ion sources include silver nitrate, silver perchlorate, silver acetate, silver oxalate, silver chlorate, silver hexafluorophosphate, and boron tetrafluoride. One or more selected from acid silver, silver hexafluoroarsenate, and silver sulfate can be mentioned.

銀塩の添加量は、理論当量以上、例えば銅を芯材として用いる場合、銅1モルに対して銀2モル以上、特に2.1モル以上となるように添加するのが好ましい。2モルより少ないと、置換が不十分となり銀粉粒子中に銅が多く残留することになる。但し、2.5モル以上入れても不経済である。   The addition amount of the silver salt is preferably equal to or greater than the theoretical equivalent, for example, when copper is used as the core material, the silver salt is added in an amount of 2 mol or more, particularly 2.1 mol or more with respect to 1 mol of copper. When the amount is less than 2 mol, the substitution is insufficient and a large amount of copper remains in the silver powder particles. However, it is not economical to add 2.5 mol or more.

銀粉粒子における銀の含有率は、銀塩の添加量、反応時間、反応速度、キレート剤の添加量などによって調整することができる。
置換反応終了後は、銀粉粒子を十分に洗浄し、乾燥させるのが好ましい。
The silver content in the silver powder particles can be adjusted by the amount of silver salt added, the reaction time, the reaction rate, the amount of chelating agent added, and the like.
After completion of the substitution reaction, the silver powder particles are preferably thoroughly washed and dried.

なお、芯材として用いる銅粉は、枝が十分に発達したデンドライト状を呈する電解銅粉を用いるのが好ましい。上記の方法で銀を被覆すれば、芯材として用いる銅粉粒子の形状をほぼそのまま本銀被覆銅粉の粒子形状に転化させることができるからである。   In addition, as the copper powder used as the core material, it is preferable to use an electrolytic copper powder exhibiting a dendrite shape with sufficiently developed branches. This is because, if silver is coated by the above method, the shape of the copper powder particles used as the core material can be converted into the particle shape of the present silver-coated copper powder almost as it is.

上述したような枝が十分に発達したデンドライト状を呈する電解銅粉は、次のような電解法によって製造することができる。   The electrolytic copper powder having a dendritic shape with sufficiently developed branches as described above can be produced by the following electrolytic method.

電解法としては、例えば、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状に銅を析出させ、機械的又は電気的方法により掻き落として回収し、洗浄し、乾燥し、必要に応じて篩別工程などを経て電解銅粉を製造する方法を例示できる。   As an electrolysis method, for example, an anode and a cathode are immersed in a sulfuric acid electrolytic solution containing copper ions, and a direct current is passed through the electrolyte to conduct electrolysis. An example is a method of producing electrolytic copper powder by scraping and collecting by an electric method, washing, drying, and passing through a sieving step as necessary.

電解法で銅粉を製造する場合、銅の析出に伴って電解液中の銅イオンが消費されるため、電極板付近の電解液の銅イオン濃度は薄くなり、そのままでは電解効率が低下してしまう。そのため、通常は電解効率を高めるために、電解槽内の電解液の循環を行って電極間の電解液の銅イオン濃度が薄くならないようにする。
しかし、各銅粉粒子のデンドライトを発達させるためには、言い換えれば主軸から伸びる枝の成長を促すためには、電極付近の電解液の銅イオン濃度が低い方が好ましいことが分かってきた。そこで、電解銅粉の製造においては、電解槽の大きさ、電極枚数、電極間距離及び電解液の循環量を調整し、電極付近の電解液の銅イオン濃度を低く調整する、少なくとも電解槽の底部の電解液の銅イオン濃度よりも、電極間の電解液の銅イオン濃度が常に薄くなるように調整するのが好ましい。
When copper powder is produced by the electrolytic method, the copper ions in the electrolyte solution are consumed as copper is deposited, so the copper ion concentration in the electrolyte solution near the electrode plate is reduced, and the electrolytic efficiency decreases as it is. End up. Therefore, normally, in order to increase the electrolysis efficiency, the electrolytic solution in the electrolytic cell is circulated so that the copper ion concentration of the electrolytic solution between the electrodes does not decrease.
However, it has been found that in order to develop the dendrite of each copper powder particle, in other words, to promote the growth of branches extending from the main axis, it is preferable that the copper ion concentration in the electrolyte solution near the electrode is low. Therefore, in the production of electrolytic copper powder, the size of the electrolytic cell, the number of electrodes, the distance between the electrodes, and the circulation amount of the electrolytic solution are adjusted, and the copper ion concentration of the electrolytic solution in the vicinity of the electrodes is adjusted to be low. It is preferable to adjust so that the copper ion concentration of the electrolyte solution between electrodes is always thinner than the copper ion concentration of the electrolyte solution at the bottom.

ここで、一つのモデルケースを紹介すると、電解槽の大きさが2m3〜10m3で、電極枚数が10〜40枚で、電極間距離が5cm〜50cmである場合に、銅イオン濃度1g/L〜50g/Lの電解液の循環量を10〜100L/分に調整することにより、デンドライトを発達させることができ、枝が十分に発達したデンドライト状を呈する電解銅粉を得ることができる。 Here, when introducing a model case, the size of the electrolytic cell is 2m 3 through 10m 3, the electrode number is 10 to 40 sheets, when the inter-electrode distance is 5Cm~50cm, copper ion concentration 1 g / By adjusting the circulation amount of the electrolytic solution of L to 50 g / L to 10 to 100 L / min, dendrites can be developed, and electrolytic copper powder having a dendritic shape with sufficiently developed branches can be obtained.

デンドライト状銅粉粒子の粒子径を調整するには、上記条件の範囲内で技術常識に基づいて適宜条件を設定すればよい。例えば、大きな粒径のデンドライト状銅粉粒子を得ようとするならば、銅濃度は上記好ましい範囲内で比較的高い濃度に設定するのが好ましく、電流密度は、上記好ましい範囲内で比較的低い密度に設定するのが好ましく、電解時間は、上記好ましい範囲内で比較的長い時間に設定するのが好ましい。小さな粒径のデンドライト状銅粉粒子を得ようとするならば、前記の逆の考え方で各条件を設定するのが好ましい。一例としては銅濃度を1g/L〜10g/Lとし、電流密度を100A/m2〜1000A/m2とし、電解時間を5分〜3時間とすればよい。 In order to adjust the particle size of the dendritic copper powder particles, conditions may be set as appropriate based on common general technical knowledge within the range of the above conditions. For example, if it is intended to obtain dendritic copper powder particles having a large particle size, the copper concentration is preferably set to a relatively high concentration within the above preferred range, and the current density is relatively low within the above preferred range. The density is preferably set, and the electrolysis time is preferably set to a relatively long time within the above preferable range. If it is intended to obtain dendritic copper powder particles having a small particle size, it is preferable to set the respective conditions based on the opposite concept. As an example, the copper concentration may be 1 g / L to 10 g / L, the current density may be 100 A / m 2 to 1000 A / m 2 , and the electrolysis time may be 5 minutes to 3 hours.

芯材は、必要に応じて、置換反応前に表面酸化物(酸化皮膜)を除去する処理を行なうのがよい。例えば、芯材を水に投入して攪拌混合した後、ヒドラジン等の還元剤を加えて攪拌混合して反応させればよい。この際、加えた還元剤を十分に洗浄して芯材から除去するのが好ましい。   If necessary, the core material may be subjected to a treatment for removing the surface oxide (oxide film) before the substitution reaction. For example, after the core material is put into water and stirred and mixed, a reducing agent such as hydrazine is added and stirred and mixed to react. At this time, it is preferable that the added reducing agent is sufficiently washed and removed from the core material.

(用途)
本銀被覆銅粉は、導電特性に優れているため、本銀被覆銅粉を用いて導電性ペーストや導電性接着剤などの導電性樹脂組成物、さらには導電性塗料など、各種導電性材料の主要構成材料として好適に用いることができる。
(Use)
Since the present silver-coated copper powder has excellent conductive properties, the present silver-coated copper powder is used to conduct various conductive materials such as conductive resin compositions such as conductive pastes and conductive adhesives, and conductive paints. It can be suitably used as the main constituent material.

例えば導電性ペーストを作製するには、本銀被覆銅粉をバインダ及び溶剤、さらに必要に応じて硬化剤やカップリング剤、腐食抑制剤などと混合して導電性ペーストを作製することができる。
この際、バインダとしては、液状のエポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂等を挙げることができるが、これらに限定するものではない。
溶剤としては、テルピネオール、エチルカルビトール、カルビトールアセテート、ブチルセロソルブ等が挙げることができる。
硬化剤としては、2エチル4メチルイミダゾールなどを挙げることができる。
腐食抑制剤としては、ベンゾチアゾール、ベンゾイミダゾール等を挙げることができる。
For example, in order to produce a conductive paste, the present silver-coated copper powder can be mixed with a binder and a solvent, and further, if necessary, a curing agent, a coupling agent, a corrosion inhibitor, etc. to produce a conductive paste.
In this case, examples of the binder include liquid epoxy resins, phenol resins, unsaturated polyester resins, and the like, but are not limited thereto.
Examples of the solvent include terpineol, ethyl carbitol, carbitol acetate, butyl cellosolve and the like.
Examples of the curing agent include 2-ethyl 4-methylimidazole.
Examples of the corrosion inhibitor include benzothiazole and benzimidazole.

導電性ペーストは、これを用いて基板上に回路パターンを形成して各種電気回路を形成することができる。例えば焼成済み基板或いは未焼成基板に塗布又は印刷し、加熱し、必要に応じて加圧して焼き付けることでプリント配線板や各種電子部品の電気回路や外部電極などを形成することができる。   The conductive paste can be used to form a circuit pattern on a substrate to form various electric circuits. For example, it is possible to form a printed wiring board, an electric circuit of various electronic components, external electrodes, and the like by applying or printing on a fired substrate or an unfired substrate, heating, pressurizing and baking as necessary.

(語句の説明)
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)と表現する場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と表現する場合、特にことわらない限り「好ましくYより小さい」の意を包含する。
(Explanation of words)
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” or “preferably more than Y” with the meaning of “X to Y” unless otherwise specified. The meaning of “small” is also included.
In addition, when expressed as “X or more” (X is an arbitrary number), it means “preferably larger than X” unless otherwise specified, and expressed as “Y or less” (Y is an arbitrary number). In the case, unless otherwise specified, the meaning of “preferably smaller than Y” is included.

以下、本発明の実施例について説明するが、本発明が以下の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

<粒子形状の観察>
走査型電子顕微鏡(5,000倍)にて、任意の100視野において500個の粒子の形状を観察し、それぞれ主軸の太さa(「主軸太さa」)、主軸から伸びた枝の中で最も長い枝の長さb(「枝長b」)、主軸の長径に対する枝の本数(「枝本数/長径L」)を測定し、その平均値を表1に示した。
<Observation of particle shape>
With a scanning electron microscope (5,000 times), the shape of 500 particles was observed in an arbitrary 100 field of view, and the thickness of the main axis a (“main axis thickness a”) and the branches extending from the main axis, respectively. The longest branch length b (“branch length b”) and the number of branches with respect to the major axis major axis (“number of branches / major axis L”) were measured, and the average values are shown in Table 1.

<粒度測定>
銀被覆銅粉(サンプル)を少量ビーカーに取り、3%トリトンX溶液(関東化学製)を2、3滴添加し、粉末になじませてから、0.1%SNディスパーサント41溶液(サンノプコ製)50mLを添加し、その後、超音波分散器TIPφ20(日本精機製作所製)を用いて2分間分散処理して測定用サンプルを調製した。
この測定用サンプルを、レーザー回折散乱式粒度分布測定装置MT3300(日機装製)を用いて体積累積基準D50及び比表面積を測定し、それぞれ「D50」及び「球形近似比表面積」として表1に示した。
<Particle size measurement>
Take a small amount of silver-coated copper powder (sample) in a small beaker, add a few drops of 3% Triton X solution (Kanto Chemical), and let it blend into the powder. Then 0.1% SN Dispersant 41 solution (San Nopco) ) 50 mL was added, and then a measurement sample was prepared by dispersing for 2 minutes using an ultrasonic disperser TIPφ20 (manufactured by Nippon Seiki Seisakusho).
The sample for measurement was measured for volume cumulative standard D50 and specific surface area using a laser diffraction scattering type particle size distribution measuring device MT3300 (manufactured by Nikkiso), and shown in Table 1 as “D50” and “spherical approximate specific surface area”, respectively. .

<BET比表面積の測定>
比表面積は、ユアサアイオニクス社製モノソーブにて、BET一点法で測定し、BET比表面積として表1に示した。
<Measurement of BET specific surface area>
The specific surface area was measured by the BET single point method using a monosorb manufactured by Yuasa Ionics, and shown in Table 1 as the BET specific surface area.

<導電性ペーストの導電性(比抵抗)評価>
シリコーンシーラント(スリーボンド社製、型番5211)に対し、銀被覆銅粉(サンプル)を70質量%の比率で配合し、更に銀被覆銅粉(サンプル)と同じ質量のトルエンを添加し、シンキー社製あわ取り練太郎(型番AR−100)を用いて十分に混合した後、ガラス板状にスクリーン印刷により1cm×10cmの帯状のパターンを印刷した。そのペーストを大気中にて70℃で60分間乾燥させ後、デジタルボルトメーター(YOKOGAWA ELECTRICWORKS製)にて電気抵抗を測定した。
また、マイクロメーターにて膜厚を測定し、
比抵抗(Ω・cm)=幅(cm)×膜厚(μm)×電気抵抗(Ω)/(長さ(cm)×104
という式にて、導電性ペーストの導電性(比抵抗)を算出し、表1に示した。
<Evaluation of conductivity (specific resistance) of conductive paste>
To the silicone sealant (manufactured by ThreeBond Co., Ltd., model number 5211), silver-coated copper powder (sample) is blended at a ratio of 70% by mass, and toluene having the same mass as the silver-coated copper powder (sample) is added. After thoroughly mixing using Awatori Netaro (model number AR-100), a 1 cm × 10 cm band-like pattern was printed on a glass plate by screen printing. The paste was dried in the atmosphere at 70 ° C. for 60 minutes, and then the electrical resistance was measured with a digital voltmeter (manufactured by Yokogawa Electronics Works).
Also, measure the film thickness with a micrometer,
Specific resistance (Ω · cm) = width (cm) × film thickness (μm) × electric resistance (Ω) / (length (cm) × 10 4 )
The electrical conductivity (specific resistance) of the conductive paste was calculated using the formula:

<実施例1>
2.5m×1.1m×1.5mの大きさ(約4m3)の電解槽内に、それぞれ大きさ(1.0m×1.0m)9枚の銅陰極板と銅陽極板とを電極間距離5cmとなるように吊設し、電解液としての硫酸銅溶液を30L/分で循環させて、この電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状の銅を析出させた。
この際、循環させる電解液のCu濃度を5g/L、硫酸(H2SO4)濃度を100g/L、電流密度を80A/mに調整して1時間電解を実施した。
電解中、電解槽の底部の電解液の銅イオン濃度よりも、電極間の電解液の銅イオン濃度が常に薄く維持されていた。
<Example 1>
In an electrolytic cell having a size of 2.5 m × 1.1 m × 1.5 m (about 4 m 3 ), nine copper cathode plates and a copper anode plate (electrodes) each having a size (1.0 m × 1.0 m) are electrodes. Suspended so as to have a distance of 5 cm, and circulated a copper sulfate solution as an electrolytic solution at 30 L / min, immersed an anode and a cathode in this electrolytic solution, and conducted a direct current to conduct electrolysis. Powdered copper was deposited on the cathode surface.
At this time, the electrolytic solution to be circulated was adjusted to a Cu concentration of 5 g / L, a sulfuric acid (H 2 SO 4 ) concentration of 100 g / L, and a current density of 80 A / m 2 for electrolysis for 1 hour.
During electrolysis, the copper ion concentration of the electrolyte solution between the electrodes was always kept lower than the copper ion concentration of the electrolyte solution at the bottom of the electrolytic cell.

そして、陰極表面に析出した銅を、機械的に掻き落として回収し、その後、洗浄し、銅粉1kg相当の含水銅粉ケーキを得た。このケーキを水3Lに分散させ、工業用ゼラチン(:新田ゼラチン社製)10g/Lの水溶液1Lを加えて10分間攪拌した後、ブフナー漏斗で濾過し、洗浄後、減圧状態(1×10-3Pa)で80℃、6時間乾燥させ、電解銅粉を得た。 Then, the copper deposited on the cathode surface was mechanically scraped and collected, and then washed to obtain a hydrated copper powder cake equivalent to 1 kg of copper powder. This cake was dispersed in 3 L of water, 1 L of an industrial gelatin (made by Nitta Gelatin Co., Ltd.) 10 g / L aqueous solution was added, stirred for 10 minutes, filtered through a Buchner funnel, washed, and then under reduced pressure (1 × 10 −3 Pa) at 80 ° C. for 6 hours to obtain electrolytic copper powder.

こうして得られた電解銅粉25kgを、50℃に保温した純水50L中に投入してよく攪拌させた。これとは別に、純水5Lに硝酸銀4.5kg投入して硝酸銀溶液を作製した。先ほど銅粉を溶解した溶液に硝酸銀溶液を一括添加した。この状態で2時間攪拌を行い、銀被覆銅粉スラリーを得た。
次に、真空ろ過にて銀被覆銅粉スラリーのろ過を行い、ろ過が終わった後、EDTA(エチレンジアミン四酢酸)600gを純水6Lに溶解させた溶液を用いて洗浄し、続いて3Lの純水で残留EDTAを洗浄した。その後、120℃で3時間乾燥させてデンドライト状銀被覆銅粉(サンプル)を得た。銀の被覆量は、銀被覆銅粉全体の10.8質量%であった。
25 kg of the obtained electrolytic copper powder was put into 50 L of pure water kept at 50 ° C. and stirred well. Separately, 4.5 kg of silver nitrate was put into 5 L of pure water to prepare a silver nitrate solution. The silver nitrate solution was added all at once to the solution in which the copper powder was dissolved. In this state, stirring was performed for 2 hours to obtain a silver-coated copper powder slurry.
Next, the silver-coated copper powder slurry is filtered by vacuum filtration. After the filtration is completed, the slurry is washed with a solution obtained by dissolving 600 g of EDTA (ethylenediaminetetraacetic acid) in 6 L of pure water, followed by 3 L of pure water. Residual EDTA was washed with water. Then, it was made to dry at 120 degreeC for 3 hours, and dendritic silver covering copper powder (sample) was obtained. The silver coating amount was 10.8% by mass of the total silver-coated copper powder.

得られたデンドライト状銀被覆銅粉(サンプル)を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
When the obtained dendrite-like silver-coated copper powder (sample) was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and from the main axis It was confirmed that a plurality of branches were obliquely branched and had a dendritic shape that grew three-dimensionally.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

<実施例2>
電解時間を40分、循環液量を20L/分とした以外は、実施例1と同様にして電解銅粉を得た。そして、実施例1と同様に銀を被覆させてデンドライト状銀被覆銅粉(サンプル)を得た。銀の被覆量は、銀被覆銅粉全体の10.9質量%であった。
<Example 2>
An electrolytic copper powder was obtained in the same manner as in Example 1 except that the electrolysis time was 40 minutes and the circulating fluid amount was 20 L / min. Then, silver was coated in the same manner as in Example 1 to obtain a dendrite-like silver-coated copper powder (sample). The silver coating amount was 10.9% by mass of the total silver-coated copper powder.

得られたデンドライト状銀被覆銅粉(サンプル)を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
When the obtained dendrite-like silver-coated copper powder (sample) was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and from the main axis It was confirmed that a plurality of branches were obliquely branched and had a dendritic shape that grew three-dimensionally.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

<実施例3>
電解時間を40分、電解液のCu濃度を1g/L、循環液量を10L/分とした以外は、実施例1と同様にして電解銅粉を得た。そして、実施例1と同様に銀を被覆させてデンドライト状銀被覆銅粉(サンプル)を得た。銀の被覆量は、銀被覆銅粉全体の10.8質量%であった。
<Example 3>
An electrolytic copper powder was obtained in the same manner as in Example 1 except that the electrolysis time was 40 minutes, the Cu concentration of the electrolytic solution was 1 g / L, and the amount of circulating liquid was 10 L / min. Then, silver was coated in the same manner as in Example 1 to obtain a dendrite-like silver-coated copper powder (sample). The silver coating amount was 10.8% by mass of the total silver-coated copper powder.

得られたデンドライト状銀被覆銅粉(サンプル)を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
When the obtained dendrite-like silver-coated copper powder (sample) was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and from the main axis It was confirmed that a plurality of branches were obliquely branched and had a dendritic shape that grew three-dimensionally.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

<実施例4>
5.0m×1.1m×1.5mの大きさ(約8m3)の電解槽内に、それぞれ大きさ(1.0m×1.0m)19枚の銅陰極板と銅陽極板とを電極間距離10cmとなるように吊設し、電解液としての硫酸銅溶液を40L/分で循環させて、この電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状の銅を析出させた。
この際、循環させる電解液のCu濃度を5g/L、硫酸(H2SO4)濃度を200g/L、電流密度を150A/mに調整して1時間電解を実施した。
電解中、電解槽の底部の電解液の銅イオン濃度よりも、電極間の電解液の銅イオン濃度が常に薄く維持されていた。
<Example 4>
In an electrolytic cell having a size of 5.0 m × 1.1 m × 1.5 m (about 8 m 3 ), 19 copper cathode plates and copper anode plates each having a size (1.0 m × 1.0 m) are electrodes. Suspended so as to have a distance of 10 cm, circulated a copper sulfate solution as an electrolytic solution at 40 L / min, immersed an anode and a cathode in the electrolytic solution, and conducted a direct current to conduct electrolysis. Powdered copper was deposited on the cathode surface.
At this time, the electrolytic solution to be circulated was adjusted to a Cu concentration of 5 g / L, a sulfuric acid (H 2 SO 4 ) concentration of 200 g / L, and a current density of 150 A / m 2 for electrolysis for 1 hour.
During electrolysis, the copper ion concentration of the electrolyte solution between the electrodes was always kept lower than the copper ion concentration of the electrolyte solution at the bottom of the electrolytic cell.

陰極表面に析出した銅を、機械的に掻き落として回収し、その後、洗浄し、銅粉1kg相当の含水銅粉ケーキを得た。このケーキを水6Lに分散させ、工業用ゼラチン(:新田ゼラチン社製)10g/Lの水溶液2Lを加えて10分間攪拌した後、ブフナー漏斗で濾過し、洗浄後、減圧状態(1×10-3Pa)で80℃、6時間乾燥させて電解銅粉を得た。
そして、実施例1と同様に銀を被覆させてデンドライト状銀被覆銅粉(サンプル)を得た。銀の被覆量は、銀被覆銅粉全体の10.7質量%であった。
The copper deposited on the cathode surface was mechanically scraped and collected, and then washed to obtain a hydrous copper powder cake equivalent to 1 kg of copper powder. This cake was dispersed in 6 L of water, 2 L of an industrial gelatin (made by Nitta Gelatin) 10 g / L aqueous solution 2 L was added, stirred for 10 minutes, filtered through a Buchner funnel, washed, and then under reduced pressure (1 × 10 -3 Pa) at 80 ° C. for 6 hours to obtain electrolytic copper powder.
Then, silver was coated in the same manner as in Example 1 to obtain a dendrite-like silver-coated copper powder (sample). The silver coating amount was 10.7% by mass of the entire silver-coated copper powder.

得られたデンドライト状銀被覆銅粉(サンプル)を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
When the obtained dendrite-like silver-coated copper powder (sample) was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and from the main axis It was confirmed that a plurality of branches were obliquely branched and had a dendritic shape that grew three-dimensionally.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

<実施例5>
Cu濃度を1g/L、電解時間を30分、循環液量を20L/分とした以外は、実施例4と同様にして電解銅粉を得た。そして、実施例1と同様に銀を被覆させてデンドライト状銀被覆銅粉(サンプル)を得た。銀の被覆量は、銀被覆銅粉全体の10.8質量%であった。
<Example 5>
An electrolytic copper powder was obtained in the same manner as in Example 4 except that the Cu concentration was 1 g / L, the electrolysis time was 30 minutes, and the circulating fluid amount was 20 L / min. Then, silver was coated in the same manner as in Example 1 to obtain a dendrite-like silver-coated copper powder (sample). The silver coating amount was 10.8% by mass of the total silver-coated copper powder.

得られたデンドライト状銀被覆銅粉(サンプル)を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
When the obtained dendrite-like silver-coated copper powder (sample) was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and from the main axis It was confirmed that a plurality of branches were obliquely branched and had a dendritic shape that grew three-dimensionally.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

<実施例6>
実施例5と同様にして電解銅粉を得た。
<Example 6>
In the same manner as in Example 5, an electrolytic copper powder was obtained.

こうして得られた電解銅粉25kgを、50℃に保温した純水50L中に投入してよく攪拌させた。これとは別に、純水3Lに硝酸銀2.25kg投入して硝酸銀溶液を作製した。先ほど銅粉を溶解した溶液に硝酸銀溶液を一括添加した。この状態で2時間攪拌を行い、銀被覆銅粉スラリーを得た。
次に、真空ろ過にて銀被覆銅粉スラリーのろ過を行い、ろ過が終わった後、EDTA(エチレンジアミン四酢酸)300gを純水3Lに溶解させた溶液を用いて洗浄し、続いて1.5Lの純水で残留EDTAを洗浄した。その後、120℃で3時間乾燥させてデンドライト状銀被覆銅粉(サンプル)を得た。銀の被覆量は、銀被覆銅粉全体の5.4質量%であった。
25 kg of the obtained electrolytic copper powder was put into 50 L of pure water kept at 50 ° C. and stirred well. Separately, 2.25 kg of silver nitrate was introduced into 3 L of pure water to prepare a silver nitrate solution. The silver nitrate solution was added all at once to the solution in which the copper powder was dissolved. In this state, stirring was performed for 2 hours to obtain a silver-coated copper powder slurry.
Next, the silver-coated copper powder slurry is filtered by vacuum filtration. After the filtration is finished, the slurry is washed with a solution of 300 g of EDTA (ethylenediaminetetraacetic acid) in 3 L of pure water, followed by 1.5 L. The residual EDTA was washed with pure water. Then, it was made to dry at 120 degreeC for 3 hours, and dendritic silver covering copper powder (sample) was obtained. The silver coating amount was 5.4% by mass of the total silver-coated copper powder.

得られたデンドライト状銀被覆銅粉(サンプル)を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
When the obtained dendrite-like silver-coated copper powder (sample) was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and from the main axis It was confirmed that a plurality of branches were obliquely branched and had a dendritic shape that grew three-dimensionally.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

<実施例7>
実施例5と同様にして電解銅粉を得た。
<Example 7>
In the same manner as in Example 5, an electrolytic copper powder was obtained.

こうして得られた電解銅粉25kgを、50℃に保温した純水50L中に投入してよく攪拌させた。これとは別に、純水10Lに硝酸銀9.0kg投入して硝酸銀溶液を作製した。先ほど銅粉を溶解した溶液に硝酸銀溶液を一括添加した。この状態で2時間攪拌を行い、銀被覆銅粉スラリーを得た。
次に、真空ろ過にて銀被覆銅粉スラリーのろ過を行い、ろ過が終わった後、EDTA(エチレンジアミン四酢酸)1200gを純水12Lに溶解させた溶液を用いて洗浄し、続いて6.0Lの純水で残留EDTAを洗浄した。その後、120℃で3時間乾燥させてデンドライト状銀被覆銅粉(サンプル)を得た。銀の被覆量は、銀被覆銅粉全体の20.3質量%であった。
25 kg of the obtained electrolytic copper powder was put into 50 L of pure water kept at 50 ° C. and stirred well. Separately, 9.0 kg of silver nitrate was added to 10 L of pure water to prepare a silver nitrate solution. The silver nitrate solution was added all at once to the solution in which the copper powder was dissolved. In this state, stirring was performed for 2 hours to obtain a silver-coated copper powder slurry.
Next, the silver-coated copper powder slurry is filtered by vacuum filtration. After the filtration is completed, the slurry is washed with a solution of 1200 g of EDTA (ethylenediaminetetraacetic acid) in 12 L of pure water, and subsequently 6.0 L. The residual EDTA was washed with pure water. Then, it was made to dry at 120 degreeC for 3 hours, and dendritic silver covering copper powder (sample) was obtained. The silver coating amount was 20.3% by mass of the total silver-coated copper powder.

得られたデンドライト状銀被覆銅粉(サンプル)を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
When the obtained dendrite-like silver-coated copper powder (sample) was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and from the main axis It was confirmed that a plurality of branches were obliquely branched and had a dendritic shape that grew three-dimensionally.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

<比較例1>
2.5m×1.1m×1.5mの大きさ(約4m3)の電解槽内に、それぞれ大きさ(1.0m×1.0m)9枚の銅陰極板と銅陽極板とを電極間距離5cmとなるように吊設し、電解液としての硫酸銅溶液を2L/分で循環させて、この電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状の銅を析出させた。
この際、循環させる電解液のCu濃度を100g/L、硫酸(H2SO4)濃度を100g/L、電流密度を80A/mに調整して5時間電解を実施した。
電解中、電極間の電解液の銅イオン濃度は電解槽の底部の電解液の銅イオン濃度よりも、常に濃い状況であった。
<Comparative Example 1>
In an electrolytic cell having a size of 2.5 m × 1.1 m × 1.5 m (about 4 m 3 ), nine copper cathode plates and a copper anode plate (electrodes) each having a size (1.0 m × 1.0 m) are electrodes. Suspend so that the distance is 5 cm, circulate a copper sulfate solution as an electrolytic solution at 2 L / min, immerse the anode and the cathode in this electrolytic solution, conduct a direct current through this to perform electrolysis, Powdered copper was deposited on the cathode surface.
At this time, electrolysis was carried out for 5 hours while adjusting the Cu concentration of the electrolyte to be circulated to 100 g / L, the sulfuric acid (H 2 SO 4 ) concentration to 100 g / L, and the current density to 80 A / m 2 .
During electrolysis, the copper ion concentration in the electrolyte solution between the electrodes was always higher than the copper ion concentration in the electrolyte solution at the bottom of the electrolytic cell.

陰極表面に析出した銅を、機械的に掻き落として回収し、その後、洗浄し、銅粉1kg相当の含水銅粉ケーキを得た。このケーキを水3Lに分散させ、工業用ゼラチン(:新田ゼラチン社製)10g/Lの水溶液1Lを加えて10分間攪拌した後、ブフナー漏斗で濾過し、洗浄後大気雰囲気にて100℃、6時間乾燥させて電解銅粉を得た。
そして、実施例1と同様に銀を被覆させて銀被覆銅粉(サンプル)を得た。銀の被覆量は、銀被覆銅粉全体の10.7質量%であった。
The copper deposited on the cathode surface was mechanically scraped and collected, and then washed to obtain a hydrous copper powder cake equivalent to 1 kg of copper powder. This cake was dispersed in 3 L of water, 1 L of an industrial gelatin (made by Nitta Gelatin) 10 g / L aqueous solution was added and stirred for 10 minutes, and then filtered through a Buchner funnel. It was dried for 6 hours to obtain electrolytic copper powder.
Then, silver was coated in the same manner as in Example 1 to obtain a silver-coated copper powder (sample). The silver coating amount was 10.7% by mass of the entire silver-coated copper powder.

得られた銀被覆銅粉(サンプル)を、走査型電子顕微鏡(SEM)を用いて観察したところ、得られた電解銅粉の粒子形状は松ぼっくり状であり、主軸太さ、枝長、枝本数/長径Lの測定は出来なかった。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、デントライトが発達したものと比べ劣った値を示した。
When the obtained silver-coated copper powder (sample) was observed using a scanning electron microscope (SEM), the particle shape of the obtained electrolytic copper powder was pinecone, and the main shaft thickness, branch length, number of branches / The major axis L could not be measured.
Moreover, as shown in Table 1, when the conductivity of this silver-coated copper powder was measured, it showed an inferior value as compared with the developed dentlite.

<比較例2>
5.0m×1.1m×1.5mの大きさ(約8m3)の電解槽内に、それぞれ大きさ(1.0m×1.0m)19枚の銅陰極板と銅陽極板とを電極間距離10cmとなるように吊設し、電解液としての硫酸銅溶液を150L/分で循環させて、この電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状の銅を析出させた。
この際、循環させる電解液のCu濃度を70g/L、硫酸(H2SO4)濃度を200g/L、電流密度を90A/mに調整して6時間電解を実施した。
電解中、電極間の電解液の銅イオン濃度は電解槽の底部の電解液の銅イオン濃度と同等であった。
<Comparative example 2>
In an electrolytic cell having a size of 5.0 m × 1.1 m × 1.5 m (about 8 m 3 ), 19 copper cathode plates and copper anode plates each having a size (1.0 m × 1.0 m) are electrodes. Suspended so as to have a distance of 10 cm, and circulated a copper sulfate solution as an electrolytic solution at 150 L / min, immersed an anode and a cathode in the electrolytic solution, and conducted a direct current to conduct electrolysis. Powdered copper was deposited on the cathode surface.
At this time, the electrolytic solution to be circulated was adjusted to a Cu concentration of 70 g / L, a sulfuric acid (H 2 SO 4 ) concentration of 200 g / L, and a current density of 90 A / m 2 for electrolysis for 6 hours.
During electrolysis, the copper ion concentration of the electrolyte solution between the electrodes was equal to the copper ion concentration of the electrolyte solution at the bottom of the electrolytic cell.

陰極表面に析出した銅を、機械的に掻き落として回収し、その後、洗浄し、銅粉1kg相当の含水銅粉ケーキを得た。このケーキを水6Lに分散させ、工業用ゼラチン(:新田ゼラチン社製)10g/Lの水溶液2Lを加えて10分間攪拌した後、ブフナー漏斗で濾過し、洗浄後大気雰囲気にて120℃、5時間乾燥させて電解銅粉を得た。
そして、実施例1と同様に銀を被覆させて銀被覆銅粉(サンプル)を得た。銀の被覆量は、銀被覆銅粉全体の10.8質量%であった。
The copper deposited on the cathode surface was mechanically scraped and collected, and then washed to obtain a hydrous copper powder cake equivalent to 1 kg of copper powder. This cake was dispersed in 6 L of water, 2 L of an industrial gelatin (made by Nitta Gelatin Co., Ltd.) 10 g / L aqueous solution 2 L was added, stirred for 10 minutes, filtered through a Buchner funnel, washed, and then washed at 120 ° C. in an air atmosphere. It was dried for 5 hours to obtain electrolytic copper powder.
Then, silver was coated in the same manner as in Example 1 to obtain a silver-coated copper powder (sample). The silver coating amount was 10.8% by mass of the total silver-coated copper powder.

得られた銀被覆銅粉(サンプル)を、走査型電子顕微鏡(SEM)を用いて観察したところ、得られた電解銅粉の粒子形状は松ぼっくり状であり、主軸太さ、枝長、枝本数/長径Lの測定は出来なかった。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、デントライトが発達したものと比べ劣った値を示した。
When the obtained silver-coated copper powder (sample) was observed using a scanning electron microscope (SEM), the particle shape of the obtained electrolytic copper powder was pinecone, and the main shaft thickness, branch length, number of branches / The major axis L could not be measured.
Moreover, as shown in Table 1, when the conductivity of this silver-coated copper powder was measured, it showed an inferior value as compared with the developed dentlite.

(考察)
上記実施例とこれまで行った試験結果を総合的に考えると、BET比表面積/球形近似比表面積が6.0〜15.0である銅粉は、デンドライトがより一層成長しており、特に異形状のデンドライト状銅粉粒子を主として含むものであり、より一層優れた導通性を得ることができることが分かった。
(Discussion)
Considering the above examples and the results of the tests conducted so far, the copper powder having a BET specific surface area / spherical approximate specific surface area of 6.0 to 15.0 has a further increased dendrite. It was found to contain mainly shaped dendritic copper powder particles, and it was possible to obtain even better electrical conductivity.

Claims (3)

銅粉粒子表面が銀で被覆されてなる銀被覆銅粉粒子からなる銀被覆銅粉であって、
レーザー回折散乱式粒度分布測定装置によって測定される比表面積(「球形近似比表面積」と称する)に対するBET一点法で測定される比表面積(「BET比表面積」と称する)の比率(BET比表面積/球形近似比表面積)が6.0〜15.0であり、
レーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D50が3.0μm〜30.0μmであり、
走査型電子顕微鏡(SEM)を用いて銀被覆銅粉粒子を観察した際、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して、二次元的或いは三次元的に成長したデンドライト状を呈し、かつ、主軸の太さaが0.3μm〜5.0μmであり、主軸から伸びた枝の中で最も長い枝の長さbが0.6μm〜10.0μmであるデンドライト状を呈する銀被覆銅粉粒子が、全銀被覆銅粉粒子のうちの80個数%以上を占めることを特徴とする銀被覆銅粉。
A silver-coated copper powder composed of silver-coated copper powder particles whose surface is coated with silver,
Ratio of specific surface area (referred to as “BET specific surface area”) measured by the BET single point method to specific surface area (referred to as “spherical approximate specific surface area”) measured by a laser diffraction / scattering particle size distribution analyzer (BET specific surface area / Spherical approximate specific surface area) is 6.0 to 15.0,
The volume cumulative particle diameter D50 measured by a laser diffraction / scattering particle size distribution analyzer is 3.0 μm to 30.0 μm,
When observing silver-coated copper powder particles using a scanning electron microscope (SEM), it has a single main axis, and a plurality of branches are obliquely branched from the main axis, two-dimensionally or three-dimensionally. It has a dendritic shape that grows, the thickness a of the main axis is 0.3 μm to 5.0 μm, and the length b of the longest branch among the branches extending from the main axis is 0.6 μm to 10.0 μm. Silver-coated copper powder, wherein the silver-coated copper powder particles having a dendritic shape occupy 80% by number or more of the total silver-coated copper powder particles.
請求項1のデンドライト状を呈する銀被覆銅粉粒子は、主軸の長径Lに対する枝の分岐本数(枝本数/長径L)0.5本/μm〜4.0本/μmであることを特徴とする請求項1記載の銀被覆銅粉。   The silver-coated copper powder particles having a dendritic shape according to claim 1 are characterized in that the number of branches branches (number of branches / major axis L) is 0.5 / μm to 4.0 / μm with respect to the major axis L of the main axis. The silver-coated copper powder according to claim 1. 銀の被覆量が、銀被覆銅粉全体の0.5〜35.0質量%であることを特徴とする請求項1又は2に記載の銀被覆銅粉。

The silver-coated copper powder according to claim 1 or 2, wherein the silver coating amount is 0.5 to 35.0 mass% of the entire silver-coated copper powder.

JP2014120720A 2014-06-11 2014-06-11 Silver-coated copper powder Pending JP2014159646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014120720A JP2014159646A (en) 2014-06-11 2014-06-11 Silver-coated copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014120720A JP2014159646A (en) 2014-06-11 2014-06-11 Silver-coated copper powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011232205A Division JP5631841B2 (en) 2011-10-21 2011-10-21 Silver coated copper powder

Publications (1)

Publication Number Publication Date
JP2014159646A true JP2014159646A (en) 2014-09-04

Family

ID=51611508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014120720A Pending JP2014159646A (en) 2014-06-11 2014-06-11 Silver-coated copper powder

Country Status (1)

Country Link
JP (1) JP2014159646A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180079000A1 (en) * 2015-03-26 2018-03-22 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder and conductive paste, conductive material, and conductive sheet using same
EP3192597A4 (en) * 2014-09-12 2018-06-06 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
EP3296042A4 (en) * 2015-05-15 2019-01-16 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder
US10695830B2 (en) 2015-05-15 2020-06-30 Sumitomo Metal Mining Co., Ltd. Copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing copper powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3192597A4 (en) * 2014-09-12 2018-06-06 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
US20180079000A1 (en) * 2015-03-26 2018-03-22 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder and conductive paste, conductive material, and conductive sheet using same
EP3275571A4 (en) * 2015-03-26 2018-11-21 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder and conductive paste, conductive material, and conductive sheet using same
EP3296042A4 (en) * 2015-05-15 2019-01-16 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder
US10654101B2 (en) 2015-05-15 2020-05-19 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder
US10695830B2 (en) 2015-05-15 2020-06-30 Sumitomo Metal Mining Co., Ltd. Copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing copper powder

Similar Documents

Publication Publication Date Title
JP5631910B2 (en) Silver coated copper powder
JP5631841B2 (en) Silver coated copper powder
JP5320442B2 (en) Dendritic copper powder
JP5503813B1 (en) Conductive film
JP5701695B2 (en) Silver-coated copper powder and method for producing the same
JP2013053347A (en) Dendritic copper powder
JP5858201B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
JP6165399B1 (en) Silver coated copper powder
WO2016185628A1 (en) Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder
JP2012153967A (en) Conductive powder, and conductive paste
JP5876971B2 (en) Copper powder
JP6278969B2 (en) Silver coated copper powder
JP2013136818A (en) Copper powder
JP2014159646A (en) Silver-coated copper powder
JP2013168375A (en) Dendrite-like copper powder
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP5711435B2 (en) Copper powder
JP6274076B2 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
TWI553661B (en) Silver powder and its use of conductive paste, conductive paint, conductive film
JP2015183291A (en) Silver-coated copper powder and conductive paste using the same
JP2016204686A (en) Copper powder and conductive paste using the same, conductive coating and conductive sheet