JP2013168375A - Dendrite-like copper powder - Google Patents

Dendrite-like copper powder Download PDF

Info

Publication number
JP2013168375A
JP2013168375A JP2013077450A JP2013077450A JP2013168375A JP 2013168375 A JP2013168375 A JP 2013168375A JP 2013077450 A JP2013077450 A JP 2013077450A JP 2013077450 A JP2013077450 A JP 2013077450A JP 2013168375 A JP2013168375 A JP 2013168375A
Authority
JP
Japan
Prior art keywords
copper powder
dendrite
branches
electrolytic
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013077450A
Other languages
Japanese (ja)
Inventor
Taku Fujimoto
卓 藤本
Masahiro Miwa
昌宏 三輪
Yasunari Wakimori
康成 脇森
Tomio Hayashi
富雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2013077450A priority Critical patent/JP2013168375A/en
Publication of JP2013168375A publication Critical patent/JP2013168375A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide new dendrite-like copper powder whose conductivity is further excellent by further developing branches extending from a main shaft to grow dendrite more than in the conventional one.SOLUTION: The present invention suggests dendrite-like copper powder mainly containing copper powder particles, which represents the dendrite shape to be constituted by extension of a plurality of branches from one shaft when copper powder particles are observed by using a scanning electron microscope (SEM), of which the thickness (a) of the shaft is 0.3-5.0 μm, the length b of the longest branch among the branches extended from one shaft is 0.6-10.0 μm.

Description

本発明は、導電性ペーストなどの材料として好適に用いることができる銅粉、特にデンドライト状を呈する銅粉粒子を含有する銅粉(「デンドライト状銅粉」と称する)に関する。   The present invention relates to a copper powder that can be suitably used as a material such as a conductive paste, and more particularly to a copper powder containing copper powder particles having a dendritic shape (referred to as “dendritic copper powder”).

導電性ペーストは、樹脂系バインダと溶媒からなるビヒクル中に導電フィラーを分散させた流動性組成物であり、電気回路の形成や、セラミックコンデンサの外部電極の形成などに広く用いられている。   The conductive paste is a fluid composition in which a conductive filler is dispersed in a vehicle composed of a resin binder and a solvent, and is widely used for forming an electric circuit, an external electrode of a ceramic capacitor, and the like.

この種の導電性ペーストには、樹脂の硬化によって導電性フィラーが圧着されて導通が確保される樹脂硬化型と、焼成によって有機成分が揮発して導電性フィラーが焼結して導通が確保される焼成型とがある。   This type of conductive paste has a resin-cured type in which conductive filler is pressure-bonded by hardening of the resin to ensure conduction, and organic components are volatilized by firing and the conductive filler is sintered to ensure conduction. There are firing types.

前者の樹脂硬化型導電性ペーストは、一般的に、金属粉末からなる導電フィラーと、エポキシ樹脂等の熱硬化性樹脂からなる有機バインダとを含んだペースト状組成物であって、熱を加えることによって熱硬化型樹脂が導電フィラーとともに硬化収縮して、樹脂を介して導電フィラー同士が圧着され接触状態となり、導通性が確保されるものである。この樹脂硬化型導電性ペーストは100℃から精々200℃までの比較的低温域で処理可能であり、熱ダメージが少ないため、プリント配線基板や熱に弱い樹脂基板などに主に使用されている。   The former resin-curable conductive paste is generally a paste-like composition containing a conductive filler made of metal powder and an organic binder made of a thermosetting resin such as an epoxy resin, and is heated. As a result, the thermosetting resin is cured and shrunk together with the conductive filler, and the conductive fillers are pressure-bonded through the resin so as to be in contact with each other, thereby ensuring conductivity. This resin curable conductive paste can be processed in a relatively low temperature range from 100 ° C. to at most 200 ° C. and has little thermal damage, and is therefore mainly used for printed wiring boards and heat-sensitive resin boards.

他方、後者の焼成型導電性ペーストは、一般に導電フィラー(金属粉末)とガラスフリットとを有機ビヒクル中に分散させてなるペースト状組成物であり、500〜900℃にて焼成することにより、有機ビヒクルが揮発し、さらに導電フィラーが焼結することによって導通性が確保されるものである。この際、ガラスフリットは、この導電膜を基板に接着させる作用を有し、有機ビヒクルは、金属粉末およびガラスフリットを印刷可能にするための有機液体媒体として作用する。
焼成型導電性ペーストは、焼成温度が高いため、プリント配線基板や樹脂材料には使用できないが、焼結して金属が一体化することから低抵抗化を実現することができ、例えば積層セラミックコンデンサの外部電極などに使用されている。
On the other hand, the latter fired conductive paste is a paste-like composition in which a conductive filler (metal powder) and glass frit are generally dispersed in an organic vehicle. By firing at 500 to 900 ° C., organic Conductivity is ensured by volatilization of the vehicle and further sintering of the conductive filler. At this time, the glass frit has a function of adhering the conductive film to the substrate, and the organic vehicle functions as an organic liquid medium for enabling printing of the metal powder and the glass frit.
Firing-type conductive paste cannot be used for printed wiring boards or resin materials because of its high firing temperature, but it can be reduced in resistance because it is sintered and the metal is integrated. It is used for external electrodes.

樹脂硬化型導電性ペースト及び高温焼成型導電性ペーストのいずれにおいても、導電フィラーとして、従来は、銀粉が多用されてきたが、銅粉を用いた方が安価である上、マイグレーションが生じ難く、耐ハンダ性にも優れているため、銅粉を用いた導電性ペーストが汎用化されつつある。   In both the resin curable conductive paste and the high-temperature fired conductive paste, silver powder has been conventionally used as a conductive filler, but it is cheaper to use copper powder and migration is less likely to occur. Since the soldering resistance is also excellent, conductive paste using copper powder is being widely used.

ところで、電解法によって得られる電解銅粉粒子は、デンドライト状を呈することが知られている。銅粉粒子がデンドライト状を呈していれば、球状粒子などに比べて、粒子同士の接点の数が多くなるため、導電性ペーストの導電材として用いると、導電材の量を少なくしても導電特性を高めることができる。よって、例えば半導体デバイスの製造において配線接続孔内などを導電性ペーストで埋め込む場合などでは、電気信号を伝達することができる導通がとれれば足りるため、より少ない量の導電材料でも導通がとれるデンドライト状銅粉粒子は特に有効であることが期待される。   By the way, it is known that the electrolytic copper powder particles obtained by the electrolytic method have a dendritic shape. If the copper powder particles have a dendritic shape, the number of contact points between the particles is larger than that of spherical particles. The characteristics can be enhanced. Therefore, for example, in the case of embedding in a wiring connection hole with a conductive paste in the manufacture of a semiconductor device, it is only necessary to be able to conduct an electric signal. Therefore, a dendrite-like shape can be obtained even with a smaller amount of conductive material. Copper powder particles are expected to be particularly effective.

このようなデンドライト状銅粉に関しては、例えば特許文献1において、半田付け可能な導電性塗料用銅粉として、粒子形状の樹枝状銅粉を解砕してえられた棒状であって、吸油量(JIS K5101)が20ml/100g以下、最大粒径が44μm以下でかつその平均粒径が10μm以下、水素還元減量が0.5%以下であることを特徴とする銅粉が開示されている。   With respect to such a dendrite-like copper powder, for example, in Patent Document 1, as a copper powder for a conductive paint that can be soldered, it is a rod shape obtained by pulverizing a dendritic copper powder having a particle shape, and has an oil absorption amount. A copper powder characterized by (JIS K5101) of 20 ml / 100 g or less, a maximum particle size of 44 μm or less, an average particle size of 10 μm or less, and a hydrogen reduction weight loss of 0.5% or less is disclosed.

特許文献2には、平均粒径20〜35μm、嵩密度0.5〜0.8g/cm3 の樹枝状電解銅粉に油脂を添加、混合し、該電解銅粉表面に油脂を被覆した後、衝突板方式ジェットミルによって粉砕、微粉化することを特徴とする微小銅粉の製造方法が開示されている。   In Patent Document 2, fats and oils are added to and mixed with dendritic electrolytic copper powder having an average particle size of 20 to 35 μm and bulk density of 0.5 to 0.8 g / cm 3, and the surface of the electrolytic copper powder is coated with fats and oils. There is disclosed a method for producing fine copper powder, characterized in that it is pulverized and pulverized by an impact plate jet mill.

特許文献3及び特許文献4には、ヒートパイプ構成原料として、デンドライト状を呈する電解銅粉粒子が開示されている。   Patent Document 3 and Patent Document 4 disclose electrolytic copper powder particles having a dendritic shape as a heat pipe constituent raw material.

特許文献5には、電解銅粉の樹枝を必要以上に発達させることなく、従来の電解銅粉よりも成形性が向上した高い強度に成形できる電解銅粉を得るために、電解液に電流を流すことによって電解銅粉を析出させる電解銅粉の製造方法において、前記電解液が硫酸銅水溶液中にタングステン酸塩、モリブデン酸塩及び硫黄含有有機化合物から選択される一種又は二種以上を添加する方法が開示されている。   In Patent Document 5, in order to obtain an electrolytic copper powder that can be molded to a higher strength with improved moldability than conventional electrolytic copper powder without unnecessarily developing the branches of the electrolytic copper powder, a current is supplied to the electrolytic solution. In the method for producing electrolytic copper powder in which electrolytic copper powder is deposited by flowing, the electrolytic solution is added with one or more selected from tungstate, molybdate and sulfur-containing organic compound in an aqueous copper sulfate solution A method is disclosed.

特開平06−158103号公報Japanese Patent Laid-Open No. 06-158103 特開2000−80408号公報JP 2000-80408 A 特開2008−122030号公報JP 2008-122030 A 特開2009−047383号公報JP 2009-047383 A 特開2011−58027号公報JP 2011-58027 A

上記特許文献5では、電解銅粉の樹枝を発達させてデンドライトをさらに成長させると、電解銅粉同士が必要以上に絡み合い、凝集が生じ易くなるほか、流動性が低下して扱い難くなるという問題点が指摘されている。しかし、電解銅粉の樹枝を発達させてデンドライトをさらに成長させると、粒子同士の接点の数がさらに多くなり、導電特性をさらに高められることが期待できる。   In Patent Document 5, when the dendrite is further grown by developing a branch of electrolytic copper powder, the electrolytic copper powder is entangled more than necessary, and agglomeration is likely to occur. A point has been pointed out. However, when dendrite is further grown by developing a tree of electrolytic copper powder, it can be expected that the number of contact points between particles is further increased and the conductive properties can be further enhanced.

そこで本発明は、優れた導通性を得るのに適したデンドライト成長を呈する銅粉粒子を含有し、導通性がより一層優れた新たなデンドライト状銅粉を提供せんとするものである。   Therefore, the present invention is intended to provide a new dendrite-like copper powder that contains copper powder particles exhibiting dendrite growth suitable for obtaining excellent electrical conductivity, and is further excellent in electrical conductivity.

本発明は、走査型電子顕微鏡(SEM)を用いて銅粉粒子を観察した際、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して、二次元的或いは三次元的に成長したデンドライト状を呈し、かつ、主軸の太さaが0.3μm〜5.0μmであり、主軸から伸びた枝の中で最も長い枝の長さbが0.6μm〜10.0μmであるデンドライト状を呈する銅粉粒子を主として含有するデンドライト状銅粉を提案する。   The present invention is provided with a single main axis when the copper powder particles are observed using a scanning electron microscope (SEM), and a plurality of branches are obliquely branched from the main axis, and are two-dimensional or three-dimensional. It has a dendrite-like shape, has a main axis thickness a of 0.3 μm to 5.0 μm, and the longest branch length b among the branches extending from the main axis is 0.6 μm to 10.0 μm. A dendrite-like copper powder mainly containing copper powder particles having a dendrite-like shape is proposed.

本発明が提案するデンドライト状銅粉は、従来知られていたデンドライト状銅粉とは異なる特徴を有するデンドライト状を呈しており、そのデンドライト状は優れた導電性を得るのに適しているため、従来品に比べてより一層優れた導通性を得ることができる。よって、本発明が提案するデンドライト状銅粉は、導電性ペーストなどの材料、特に半導体デバイスを製造する際に配線接続孔内などに埋め込む導電性ペーストなどの材料として特に有効に用いることができる。   The dendrite-like copper powder proposed by the present invention exhibits a dendrite shape having characteristics different from those of conventionally known dendrite-like copper powder, and the dendrite shape is suitable for obtaining excellent conductivity. Compared with conventional products, it is possible to obtain more excellent conductivity. Therefore, the dendritic copper powder proposed by the present invention can be used particularly effectively as a material such as a conductive paste, particularly as a material such as a conductive paste embedded in a wiring connection hole when a semiconductor device is manufactured.

本発明のデンドライト状銅粉を構成する銅粉粒子の粒子形状のモデル図である。It is a model figure of the particle shape of the copper powder particle which constitutes the dendritic copper powder of the present invention. 実施例1で得られた電解銅粉から任意に選択した一部の粉末を、走査型電子顕微鏡(SEM)を用いて12、000倍の倍率で観察した際のSEM写真である。It is a SEM photograph at the time of observing a part of powder arbitrarily selected from the electrolytic copper powder obtained in Example 1 at 12,000 times magnification using a scanning electron microscope (SEM).

以下、本発明の実施形態について詳述するが、本発明の範囲が以下の実施形態に限定されるものではない。   Hereinafter, although the embodiment of the present invention is described in detail, the scope of the present invention is not limited to the following embodiment.

本実施形態に係る銅粉(「本銅粉」と称する)は、デンドライト状銅粉粒子(「本銅粉粒子」と称する)を含有する銅粉である。   The copper powder according to the present embodiment (referred to as “present copper powder”) is a copper powder containing dendritic copper powder particles (referred to as “present copper powder particles”).

(デンドライト状銅粉粒子)
本銅粉において「デンドライト状銅粉粒子」とは、図1に示されるように、電子顕微鏡(500〜20、000倍)で観察した際に、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して、二次元的或いは三次元的に成長した形状を呈する銅粉粒子を意味し、幅広の葉が集まって松ぼっくり状を呈するものや、多数の針状部が放射状に伸長してなる形状のものは含まない。
(Dendrite-like copper powder particles)
In the present copper powder, “dendritic copper powder particles”, as shown in FIG. 1, have a single main axis when observed with an electron microscope (500 to 20,000 times). This means copper powder particles that have two-dimensional or three-dimensional growth, with multiple branches branching diagonally, with wide leaves gathering together to form a pinecone, and many needle-shaped parts are radial It does not include those that are elongated.

中でも、本銅粉粒子を電子顕微鏡(500〜20,000倍)で観察した際、次のような所定の特徴を有するデンドライト状を呈するのが好ましい。
・主軸の太さaは0.3μm〜5.0μmであることが重要であり、中でも0.4μm以上或いは4.5μm以下、中でも特に特に0.5μm以上或いは4.0μm以下であるのがさらに好ましい。デンドライトにおける主軸の太さaが0.3μm以下では、主軸がしっかりとしていないために枝が成長し難い一方、5.0μmよりも太くなると、粒子が凝集し易くなり、松ぼっくり状になりやすくなってしまう。
・主軸から伸びた枝の中で最も長い枝の長さb(「枝長b」と称する)は、デンドライトの成長度合いを示しており、0.6μm〜10.0μmであることが重要であり、中でも0.7μm以上或いは9.0μm以下、その中でも0.8μm以上或いは8.0μm以下であるのがさらに好ましい。枝長bが0.6μm未満では、デンドライトが十分に成長しているとは言えない。一方、枝長bが10.0μmを超えると、銅粉の流動性が低下して取り扱いが難しくなるようになる。
・主軸の長径Lに対する枝の本数(枝本数/長径L)は、デンドライトの枝の多さを示しており、0.5本/μm〜4.0本/μmであるのが好ましく、中でも0.6本/μm以上或いは3.5本/μm以下、その中でも特に0.8本/μm以上或いは3.0本/μm以下であるのがさらに好ましい。枝本数/長径Lが0.5本/μm以上であれば、枝の数は十分に多く、接点を十分に確保できる一方、枝本数/長径Lが4.0本/μm以下であれば、枝の数が多過ぎて銅粉の流動性が劣るようになることを防ぐことができる。
Especially, when this copper powder particle | grain is observed with an electron microscope (500-20,000 times), it is preferable to exhibit the dendrite shape which has the following predetermined characteristics.
It is important that the thickness a of the main shaft is 0.3 μm to 5.0 μm, especially 0.4 μm or more or 4.5 μm or less, especially 0.5 μm or more or 4.0 μm or less. preferable. When the thickness a of the dendrite is 0.3 μm or less, branches are difficult to grow because the main axis is not solid. On the other hand, when the thickness is larger than 5.0 μm, the particles tend to aggregate and become pine cones. End up.
-The longest branch length b (referred to as "branch length b") among the branches extending from the main axis indicates the degree of dendrite growth, and it is important that the length is 0.6 μm to 10.0 μm. In particular, 0.7 μm or more or 9.0 μm or less, more preferably 0.8 μm or more or 8.0 μm or less. If the branch length b is less than 0.6 μm, it cannot be said that the dendrite has grown sufficiently. On the other hand, when the branch length b exceeds 10.0 μm, the fluidity of the copper powder is lowered and the handling becomes difficult.
The number of branches relative to the major axis L of the main axis (number of branches / major axis L) indicates the number of dendrite branches, and is preferably 0.5 / μm to 4.0 / μm. .6 / μm or more or 3.5 / μm or less, more preferably 0.8 / μm or more or 3.0 / μm or less. If the number of branches / major axis L is 0.5 / μm or more, the number of branches is sufficiently large and sufficient contact can be secured, while if the number of branches / major axis L is 4.0 / μm or less, It can prevent that the fluidity | liquidity of copper powder becomes inferior because there are too many branches.

但し、電子顕微鏡(500〜20,000倍)で観察した際、多くが上記の如きデンドライト状粒子で占められていれば、それ以外の形状の粒子が混じっていても、上記の如きデンドライト状粒子のみからなる銅粉と同様の効果を得ることができる。よって、かかる観点から、本銀被覆銅粉は、電子顕微鏡(500〜20,000倍)で観察した際、上記の如きデンドライト状の銅粉粒子が全銅粉粒子のうちの80%以上、好ましくは90%以上を占めていれば、上記の如きデンドライト状とは認められない非デンドライト状の銅粉粒子が含まれていてもよい。   However, when observed with an electron microscope (500 to 20,000 times), if many of them are occupied by the dendritic particles as described above, the dendritic particles as described above may be used even if particles of other shapes are mixed. The effect similar to the copper powder which consists only of can be acquired. Therefore, from this point of view, when the present silver-coated copper powder is observed with an electron microscope (500 to 20,000 times), the dendrite-like copper powder particles are preferably 80% or more of the total copper powder particles, preferably As long as it occupies 90% or more, non-dendritic copper powder particles that are not recognized as dendritic may be included.

(酸素濃度)
本銅粉粒子の酸素濃度が0.20質量%以下であれば、導電性を良好に維持することができる。よって、本銅粉粒子の酸素濃度は、0.20質量%以下であるのが好ましく、中でも0.18質量%以下、その中でも0.15質量%以下であるのがさらに好ましい。
本銅粉粒子の酸素濃度を0.20質量%以下とするためには、乾燥雰囲気の酸素濃度、乾燥温度を制御すればよい。
(Oxygen concentration)
If the oxygen concentration of the present copper powder particles is 0.20% by mass or less, the conductivity can be maintained well. Therefore, the oxygen concentration of the present copper powder particles is preferably 0.20% by mass or less, more preferably 0.18% by mass or less, and more preferably 0.15% by mass or less.
In order to control the oxygen concentration of the present copper powder particles to 0.20% by mass or less, the oxygen concentration and the drying temperature in the drying atmosphere may be controlled.

(D50)
本銅粉の中心粒径(D50)、すなわちレーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D50は、5μm〜50μmであるのが好ましく、中でも8μm以上或いは45μm以下、その中でも10μm以上或いは40μm以下、その中でも特に25μm以下であるのがより一層好ましい。D50が5μm以上であれば粘度調整が容易であり、他方、50μm以下であれば様々な導電性ペーストに適用可能となり、好ましい。
(D50)
The central particle diameter (D50) of the present copper powder, that is, the volume cumulative particle diameter D50 measured by a laser diffraction / scattering particle size distribution measuring apparatus is preferably 5 μm to 50 μm, more preferably 8 μm or more or 45 μm or less, and more preferably 10 μm. More preferably, it is 40 μm or less, and more preferably 25 μm or less. If D50 is 5 μm or more, the viscosity can be easily adjusted, and if it is 50 μm or less, it can be applied to various conductive pastes, which is preferable.

(比表面積)
本銅粉のBET一点法で測定される比表面積は、0.30〜1.50m2/gであるのが好ましい。0.30m2/gより著しく小さいと、枝が発達しておらず、松ぼっくり〜球状に近づくため、本発明のデンドライト状を呈することができなくなる。他方、1.50m2/gよりも著しく大きくなると、デンドライトの枝が細くなりすぎて、ペースト加工工程で枝が折れるなどの不具合が発生して、導電性を阻害する可能性がある。
よって、本銅粉のBET一点法で測定される比表面積は0.30〜1.50m2/gであるのが好しく、中でも0.40m2/g以上或いは1.40m2/g以下、その中でも特に1.00m2/g以下であるのがさらに好ましい。
(Specific surface area)
The specific surface area of the copper powder measured by the BET single point method is preferably 0.30 to 1.50 m 2 / g. If it is remarkably smaller than 0.30 m 2 / g, the branch is not developed and it becomes close to a pinecone to a sphere, so that the dendrite shape of the present invention cannot be exhibited. On the other hand, if it is significantly larger than 1.50 m 2 / g, the dendrite branch becomes too thin, and there is a possibility that the branch breaks in the paste processing step, thereby impeding conductivity.
Therefore, the specific surface area as measured by single point method BET of the copper powder is 0.30~1.50m 2 / g at and even good properly, inter alia 0.40 m 2 / g or more or 1.40 m 2 / g or less, Among these, it is more preferable that it is 1.00 m < 2 > / g or less especially.

(製造方法)
本銅粉は、所定の電解法によって製造することができる。
電解法としては、例えば、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状に銅を析出させ、機械的又は電気的方法により掻き落として回収し、洗浄し、乾燥し、必要に応じて篩別工程などを経て電解銅粉を製造する方法を例示できる。
(Production method)
This copper powder can be manufactured by a predetermined electrolytic method.
As an electrolysis method, for example, an anode and a cathode are immersed in a sulfuric acid electrolytic solution containing copper ions, and a direct current is passed through the electrolyte to conduct electrolysis. An example is a method of producing electrolytic copper powder by scraping and collecting by an electric method, washing, drying, and passing through a sieving step as necessary.

電解法で銅粉を製造する場合、銅の析出に伴って電解液中の銅イオンが消費されるため、電極板付近の電解液の銅イオン濃度は薄くなり、そのままでは電解効率が低下してしまう。そのため、通常は電解効率を高めるために、電解槽内の電解液の循環を行って電極間の電解液の銅イオン濃度が薄くならないようにする。
しかし、各銅粉粒子のデンドライトを発達させるためには、言い換えれば主軸から伸びる枝の成長を促すためには、電極付近の電解液の銅イオン濃度が低い方が好ましいことが分かってきた。そこで、本銅粉の製造においては、電解槽の大きさ、電極枚数、電極間距離及び電解液の循環量を調整し、電極付近の電解液の銅イオン濃度を低く調整する、少なくとも電解槽の底部の電解液の銅イオン濃度よりも、電極間の電解液の銅イオン濃度が常に薄くなるように調整するのが好ましい。
When copper powder is produced by the electrolytic method, the copper ions in the electrolyte solution are consumed as copper is deposited, so the copper ion concentration in the electrolyte solution near the electrode plate is reduced, and the electrolytic efficiency decreases as it is. End up. Therefore, normally, in order to increase the electrolysis efficiency, the electrolyte solution in the electrolytic cell is circulated so that the copper ion concentration of the electrolyte solution between the electrodes does not become thin.
However, it has been found that in order to develop the dendrite of each copper powder particle, in other words, in order to promote the growth of branches extending from the main axis, it is preferable that the copper ion concentration in the electrolyte solution near the electrode is low. Therefore, in the production of the present copper powder, the size of the electrolytic cell, the number of electrodes, the distance between the electrodes, and the circulation amount of the electrolytic solution are adjusted, and the copper ion concentration of the electrolytic solution in the vicinity of the electrode is adjusted to be low. It is preferable to adjust so that the copper ion concentration of the electrolyte solution between electrodes is always thinner than the copper ion concentration of the electrolyte solution at the bottom.

ここで、一つのモデルケースを紹介すると、電解槽の大きさが2m3〜10m3で、電極枚数が10〜40枚で、電極間距離が5cm〜50cmである場合に、銅イオン濃度1g/L〜50g/Lの電解液の循環量を10〜100L/分に調整することにより、デンドライトを発達させることができ、本銅粉を得ることができる。 Here, when introducing a model case, the size of the electrolytic cell is 2m 3 through 10m 3, the electrode number is 10 to 40 sheets, when the inter-electrode distance is 5Cm~50cm, copper ion concentration 1 g / Dendrites can be developed and the present copper powder can be obtained by adjusting the circulating amount of the electrolytic solution of L to 50 g / L to 10 to 100 L / min.

デンドライト状銅粉粒子の粒子径を調整するには、上記条件の範囲内で技術常識に基づいて適宜条件を設定すればよい。例えば、大きな粒径のデンドライト状銅粉粒子を得ようとするならば、銅濃度は上記好ましい範囲内で比較的高い濃度に設定するのが好ましく、電流密度は、上記好ましい範囲内で比較的低い密度に設定するのが好ましく、電解時間は、上記好ましい範囲内で比較的長い時間に設定するのが好ましい。小さな粒径のデンドライト状銅粉粒子を得ようとするならば、前記の逆の考え方で各条件を設定するのが好ましい。一例としては銅濃度を1g/L〜10g/Lとし、電流密度を100A/m2〜1000A/m2とし、電解時間を5分〜3時間とすればよい。 In order to adjust the particle size of the dendritic copper powder particles, conditions may be set as appropriate based on common general technical knowledge within the range of the above conditions. For example, if it is intended to obtain dendritic copper powder particles having a large particle size, the copper concentration is preferably set to a relatively high concentration within the above preferred range, and the current density is relatively low within the above preferred range. The density is preferably set, and the electrolysis time is preferably set to a relatively long time within the above preferable range. If it is intended to obtain dendritic copper powder particles having a small particle size, it is preferable to set the respective conditions based on the opposite concept. As an example, the copper concentration may be 1 g / L to 10 g / L, the current density may be 100 A / m 2 to 1000 A / m 2 , and the electrolysis time may be 5 minutes to 3 hours.

電解銅粉粒子の表面は、必要に応じて、有機物を用いて耐酸化処理を施し、銅粉粒子表面に有機物層を形成するようにしてもよい。必ずしも有機物層を形成する必要はないが、銅粉粒子表面の酸化による経時変化を考慮すると形成した方がより好ましい。
この耐酸化処理に用いる有機物は、特にその種類を限定するものではなく、例えば膠、ゼラチン、有機脂肪酸、カップリング剤等を挙げることができる。
耐酸化処理の方法、すなわち有機物層の形成方法は、乾式法でも湿式法でもよい。乾式法であれば有機物と芯材をV型混合器等で混合する方法、湿式法であれば水-芯材スラリーに有機物を添加し表面に吸着させる方法等を挙げることができる。但し、これらに限ったものではない。例えば、電解銅粉析出後のスラリーを洗浄した後、銅粉ケーキ及び所望の有機物を含んだ水溶液と、有機溶媒とを混合して、銅粉表面に有機物を付着させる方法は好ましい一例である。
If necessary, the surface of the electrolytic copper powder particles may be subjected to an oxidation resistance treatment using an organic material to form an organic material layer on the surface of the copper powder particles. It is not always necessary to form the organic layer, but it is more preferable that the organic layer is formed in consideration of the change over time due to oxidation of the copper powder particle surface.
The organic substance used for this oxidation resistance treatment is not particularly limited, and examples thereof include glue, gelatin, organic fatty acid, and a coupling agent.
The oxidation-resistant treatment method, that is, the organic layer forming method may be a dry method or a wet method. In the case of a dry method, a method of mixing an organic substance and a core material with a V-type mixer or the like, and in the case of a wet method, a method of adding an organic substance to a water-core material slurry and adsorbing it on the surface can be exemplified. However, it is not limited to these. For example, after washing the slurry after electrolytic copper powder deposition, a method of adhering the organic substance to the copper powder surface by mixing an aqueous solution containing a copper powder cake and a desired organic substance with an organic solvent is a preferred example.

(用途)
本銅粉は導電特性に優れているため、本銅粉を用いて導電性ペーストや導電性接着剤などの導電性樹脂組成物、さらには導電性塗料など、各種導電性材料の主要構成材料として好適に用いることができる。
(Use)
Since this copper powder has excellent conductive properties, it is used as a main constituent material of various conductive materials such as conductive pastes and conductive adhesives, and conductive paints. It can be used suitably.

例えば導電性ペーストを作製するには、本銅粉をバインダ及び溶剤、さらに必要に応じて硬化剤やカップリング剤、腐食抑制剤などと混合して導電性ペーストを作製することができる。
この際、バインダとしては、液状のエポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂等を挙げることができるが、これらに限定するものではない。
溶剤としては、テルピネオール、エチルカルビトール、カルビトールアセテート、ブチルセロソルブ等が挙げることができる。
硬化剤としては、2エチル4メチルイミダゾールなどを挙げることができる。
腐食抑制剤としては、ベンゾチアゾール、ベンゾイミダゾール等を挙げることができる。
For example, in order to produce a conductive paste, the copper powder can be mixed with a binder and a solvent, and further, if necessary, a curing agent, a coupling agent, a corrosion inhibitor, etc. to produce a conductive paste.
In this case, examples of the binder include liquid epoxy resins, phenol resins, unsaturated polyester resins, and the like, but are not limited thereto.
Examples of the solvent include terpineol, ethyl carbitol, carbitol acetate, butyl cellosolve and the like.
Examples of the curing agent include 2-ethyl 4-methylimidazole.
Examples of the corrosion inhibitor include benzothiazole and benzimidazole.

導電性ペーストは、これを用いて基板上に回路パターンを形成して各種電気回路を形成することができる。例えば焼成済み基板或いは未焼成基板に塗布又は印刷し、加熱し、必要に応じて加圧して焼き付けることでプリント配線板や各種電子部品の電気回路や外部電極などを形成することができる。
特に本銅粉の銅粉粒子はデンドライトが特に発達しており、粒子同士の接点の数が多くなり、導電性粉末の含有量を少なくしても優れた導電特性を得ることができるため、例えば半導体デバイスを製造する際に配線接続孔内などを埋め込む用途に用いる導電性ペースト材料として好適である。
The conductive paste can be used to form a circuit pattern on a substrate to form various electric circuits. For example, it is possible to form a printed wiring board, an electric circuit of various electronic components, external electrodes, and the like by applying or printing on a fired substrate or an unfired substrate, heating, pressurizing and baking as necessary.
In particular, the copper powder particles of the present copper powder have particularly developed dendrites, the number of contacts between the particles is increased, and excellent conductive properties can be obtained even if the content of the conductive powder is reduced. It is suitable as a conductive paste material used for the purpose of embedding the inside of a wiring connection hole when manufacturing a semiconductor device.

半導体デバイスを製造する際、素子間を接続する配線溝(トレンチ)や、多層配線間を電気的に接続する配線接続孔(ビアホール或いはコンタクトホール)が多数設けられる。これら配線溝や配線接続孔内に埋め込む導電性材料として、従来、アルミニウムが使用されてきたが、半導体デバイスの高集積化、微細化に伴い、これまでのアルミニウムに代わり、電気抵抗率が低く、エレクトロマイグレーション耐性にも優れた銅が注目され実用化が進められており、電材として銅粉を含む導電性ペーストが配線接続孔内などに埋め込むために用いられている。この種の用途では、大量の電流を通電する必要はなく、電気信号を通電することができれは十分であるため、特に本銅粉には好適である。   When a semiconductor device is manufactured, a large number of wiring grooves (trench) for connecting elements and wiring connection holes (via holes or contact holes) for electrically connecting multilayer wirings are provided. Conventionally, aluminum has been used as a conductive material embedded in these wiring grooves and wiring connection holes, but due to high integration and miniaturization of semiconductor devices, instead of the conventional aluminum, the electrical resistivity is low, Copper having excellent electromigration resistance has attracted attention and is being put to practical use, and a conductive paste containing copper powder as an electric material is used for embedding in wiring connection holes. In this type of application, it is not necessary to energize a large amount of current, and it is sufficient that an electric signal can be energized.

(語句の説明)
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)と表現する場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と表現する場合、特にことわらない限り「好ましくYより小さい」の意を包含する。
(Explanation of words)
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” or “preferably more than Y” with the meaning of “X to Y” unless otherwise specified. The meaning of “small” is also included.
In addition, when expressed as “X or more” (X is an arbitrary number), it means “preferably larger than X” unless otherwise specified, and expressed as “Y or less” (Y is an arbitrary number). In the case, unless otherwise specified, the meaning of “preferably smaller than Y” is included.

以下、本発明の実施例について説明するが、本発明が以下の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

<粒子形状の観察>
走査型電子顕微鏡(2,000倍)にて、任意の100視野において、それぞれ500個の粒子の形状を観察し、主軸の太さa(「主軸太さa」)、主軸から伸びた枝の中で最も長い枝の長さb(「枝長b」)、主軸の長径に対する枝の本数(「枝本数/長径L」)を測定し、その平均値を表1に示した。
<Observation of particle shape>
With a scanning electron microscope (2,000 times), the shape of 500 particles was observed in 100 arbitrary fields of view, and the thickness of the main axis a (“main axis thickness a”) and the branch extending from the main axis The longest branch length b (“branch length b”) and the number of branches with respect to the major axis of the main axis (“number of branches / major axis L”) were measured, and the average values are shown in Table 1.

<粒度測定>
測定サンプル(銅粉)を少量ビーカーに取り、3%トリトンX溶液(関東化学製)を2、3滴添加し、粉末になじませてから、0.1%SNディスパーサント41溶液(サンノプコ製)50mLを添加し、その後、超音波分散器TIPφ20(日本精機製作所製)を用いて2分間分散処理して測定用サンプルを調製した。
この測定用サンプルを、レーザー回折散乱式粒度分布測定装置MT3300(日機装製)を用いて、体積累積基準D50を測定し、表1に示した。
<Particle size measurement>
Take a measurement sample (copper powder) in a small amount of beaker, add a few drops of 3% Triton X solution (manufactured by Kanto Chemical Co., Ltd.), and blend it into the powder. 50 mL was added, and then a measurement sample was prepared by dispersing for 2 minutes using an ultrasonic disperser TIPφ20 (manufactured by Nippon Seiki Seisakusho).
This sample for measurement was measured for volume accumulation standard D50 using a laser diffraction / scattering particle size distribution measuring device MT3300 (manufactured by Nikkiso), and is shown in Table 1.

<比表面積の測定>
比表面積は、ユアサアイオニクス社製モノソーブにて、BET一点法で測定し、BETとして表1に示した。
<Measurement of specific surface area>
The specific surface area was measured by the BET single-point method using a monosorb manufactured by Yuasa Ionics, and shown in Table 1 as BET.

<酸素濃度の測定>
実施例・比較例で得た銅粉(試料)を、堀場製作所社製「EMGA-820ST」を用いてHe雰囲気中で加熱溶融し、酸素濃度(wt%)を測定し、表1に示した。
<Measurement of oxygen concentration>
The copper powders (samples) obtained in Examples and Comparative Examples were heated and melted in a He atmosphere using “EMGA-820ST” manufactured by Horiba, Ltd., and the oxygen concentration (wt%) was measured. .

<実施例1>
2.5m×1.1m×1.5mの大きさ(約4m3)の電解槽内に、それぞれ大きさ(1.0m×1.0m)9枚の陰極板と不溶性陽極板(DSE(ペルメレック電極社製))とを電極間距離5cmとなるように吊設し、電解液としての硫酸銅溶液を30L/分で循環させて、この電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状の銅を析出させた。
この際、循環させる電解液のCu濃度を5g/L、硫酸(H2SO4)濃度を100g/L、電流密度を100A/mに調整して1時間電解を実施した。
電解中、電解槽の底部の電解液の銅イオン濃度よりも、電極間の電解液の銅イオン濃度が常に薄く維持されていた。
<Example 1>
In an electrolytic cell having a size of 2.5 m × 1.1 m × 1.5 m (about 4 m 3 ), 9 cathode plates (1.0 m × 1.0 m) and an insoluble anode plate (DSE (Permelec) Electrode))) is suspended so that the distance between the electrodes is 5 cm, a copper sulfate solution as an electrolytic solution is circulated at 30 L / min, and an anode and a cathode are immersed in the electrolytic solution, and a direct current is supplied thereto. To conduct electrolysis to deposit powdered copper on the cathode surface.
At this time, the electrolytic solution to be circulated was adjusted to a Cu concentration of 5 g / L, a sulfuric acid (H 2 SO 4 ) concentration of 100 g / L, and a current density of 100 A / m 2 for electrolysis for 1 hour.
During electrolysis, the copper ion concentration of the electrolyte solution between the electrodes was always kept lower than the copper ion concentration of the electrolyte solution at the bottom of the electrolytic cell.

そして、陰極表面に析出した銅を、機械的に掻き落として回収し、その後、洗浄し、銅粉1kg相当の含水銅粉ケーキを得た。このケーキを水3Lに分散させ、工業用ゼラチン(:新田ゼラチン社製)10g/Lの水溶液1Lを加えて10分間攪拌した後、ブフナー漏斗で濾過し、洗浄後、減圧状態(1×10-3Pa)で80℃、6時間乾燥させ、電解銅粉を得た。
こうして得られた電解銅粉を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
Then, the copper deposited on the cathode surface was mechanically scraped and collected, and then washed to obtain a hydrated copper powder cake equivalent to 1 kg of copper powder. This cake was dispersed in 3 L of water, 1 L of an industrial gelatin (made by Nitta Gelatin Co., Ltd.) 10 g / L aqueous solution was added, stirred for 10 minutes, filtered through a Buchner funnel, washed, and then under reduced pressure (1 × 10 −3 Pa) at 80 ° C. for 6 hours to obtain electrolytic copper powder.
When the electrolytic copper powder thus obtained was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and a plurality of branches were oblique from the main axis. It was confirmed that it had a dendritic shape that was branched into three-dimensionally.

<実施例2>
電解時間を40分、循環液量を20L/分とした以外は、実施例1と同様にして電解銅粉を得た。
得られた電解銅粉を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
<Example 2>
An electrolytic copper powder was obtained in the same manner as in Example 1 except that the electrolysis time was 40 minutes and the circulating fluid amount was 20 L / min.
When the obtained electrolytic copper powder was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and a plurality of branches were oblique from the main axis. It was confirmed that it had a dendritic shape that branched and grew three-dimensionally.

<実施例3>
電解時間を40分、電解液のCu濃度を1g/L、循環液量を10L/分とした以外は、実施例1と同様にして電解銅粉を得た。
得られた電解銅粉を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
<Example 3>
An electrolytic copper powder was obtained in the same manner as in Example 1 except that the electrolysis time was 40 minutes, the Cu concentration of the electrolytic solution was 1 g / L, and the amount of circulating liquid was 10 L / min.
When the obtained electrolytic copper powder was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and a plurality of branches were oblique from the main axis. It was confirmed that it had a dendritic shape that branched and grew three-dimensionally.

<実施例4>
5.0m×1.1m×1.5mの大きさ(約8m3)の電解槽内に、それぞれ大きさ(1.0m×1.0m)19枚の陰極板と不溶性陽極板(DSE(ペルメレック電極社製))とを電極間距離10cmとなるように吊設し、電解液としての硫酸銅溶液を40L/分で循環させて、この電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状の銅を析出させた。
この際、循環させる電解液のCu濃度を5g/L、硫酸(H2SO4)濃度を200g/L、電流密度を200A/mに調整して1時間電解を実施した。
電解中、電解槽の底部の電解液の銅イオン濃度よりも、電極間の電解液の銅イオン濃度が常に薄く維持されていた。
<Example 4>
In an electrolytic cell having a size of 5.0 m × 1.1 m × 1.5 m (about 8 m 3 ), 19 cathode plates (1.0 m × 1.0 m) and insoluble anode plates (DSE (Permelec) Electrode))) is suspended so that the distance between the electrodes is 10 cm, a copper sulfate solution as an electrolytic solution is circulated at 40 L / min, and an anode and a cathode are immersed in the electrolytic solution, and a direct current is supplied thereto. To conduct electrolysis to deposit powdered copper on the cathode surface.
At this time, electrolysis was carried out for 1 hour by adjusting the Cu concentration of the circulating electrolyte to 5 g / L, the sulfuric acid (H 2 SO 4 ) concentration to 200 g / L, and the current density to 200 A / m 2 .
During electrolysis, the copper ion concentration of the electrolyte solution between the electrodes was always kept lower than the copper ion concentration of the electrolyte solution at the bottom of the electrolytic cell.

陰極表面に析出した銅を、機械的に掻き落として回収し、その後、洗浄し、銅粉1kg相当の含水銅粉ケーキを得た。このケーキを水6Lに分散させ、工業用ゼラチン(:新田ゼラチン社製)10g/Lの水溶液2Lを加えて10分間攪拌した後、ブフナー漏斗で濾過し、洗浄後、減圧状態(1×10-3Pa)で80℃、6時間乾燥させて電解銅粉を得た。
得られた電解銅粉を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
The copper deposited on the cathode surface was mechanically scraped and collected, and then washed to obtain a hydrous copper powder cake equivalent to 1 kg of copper powder. This cake was dispersed in 6 L of water, 2 L of an industrial gelatin (made by Nitta Gelatin) 10 g / L aqueous solution 2 L was added, stirred for 10 minutes, filtered through a Buchner funnel, washed, and then under reduced pressure (1 × 10 -3 Pa) at 80 ° C. for 6 hours to obtain electrolytic copper powder.
When the obtained electrolytic copper powder was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and a plurality of branches were oblique from the main axis. It was confirmed that it had a dendritic shape that branched and grew three-dimensionally.

<実施例5>
Cu濃度を1g/L、電解時間を30分、循環液量を20L/分とした以外は、実施例4と同様にして電解銅粉を得た。
得られた電解銅粉を、走査型電子顕微鏡(SEM)を用いて観察したところ、少なくとも90%以上の銅粉粒子は、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して三次元的に成長したデンドライト状を呈していることを確認できた。
<Example 5>
An electrolytic copper powder was obtained in the same manner as in Example 4 except that the Cu concentration was 1 g / L, the electrolysis time was 30 minutes, and the circulating fluid amount was 20 L / min.
When the obtained electrolytic copper powder was observed using a scanning electron microscope (SEM), at least 90% or more of the copper powder particles had one main axis, and a plurality of branches were oblique from the main axis. It was confirmed that it had a dendritic shape that branched and grew three-dimensionally.

<比較例1>
2.5m×1.1m×1.5mの大きさ(約4m3)の電解槽内に、それぞれ大きさ(1.0m×1.0m)9枚の陰極板と不溶性陽極板(DSE(ペルメレック電極社製))とを電極間距離5cmとなるように吊設し、電解液としての硫酸銅溶液を2L/分で循環させて、この電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状の銅を析出させた。
この際、循環させる電解液のCu濃度を100g/L、硫酸(H2SO4)濃度を100g/L、電流密度を80A/mに調整して5時間電解を実施した。
電解中、電極間の電解液の銅イオン濃度は電解槽の底部の電解液の銅イオン濃度よりも、常に濃い状況であった。
<Comparative Example 1>
In an electrolytic cell having a size of 2.5 m × 1.1 m × 1.5 m (about 4 m 3 ), 9 cathode plates (1.0 m × 1.0 m) and an insoluble anode plate (DSE (Permelec) Electrode))) is suspended so that the distance between the electrodes is 5 cm, a copper sulfate solution as an electrolytic solution is circulated at 2 L / min, and an anode and a cathode are immersed in this electrolytic solution, and a direct current is supplied to this. To conduct electrolysis to deposit powdered copper on the cathode surface.
At this time, electrolysis was carried out for 5 hours while adjusting the Cu concentration of the electrolyte to be circulated to 100 g / L, the sulfuric acid (H 2 SO 4 ) concentration to 100 g / L, and the current density to 80 A / m 2 .
During electrolysis, the copper ion concentration in the electrolyte solution between the electrodes was always higher than the copper ion concentration in the electrolyte solution at the bottom of the electrolytic cell.

陰極表面に析出した銅を、機械的に掻き落として回収し、その後、洗浄し、銅粉1kg相当の含水銅粉ケーキを得た。このケーキを水3Lに分散させ、工業用ゼラチン(:新田ゼラチン社製)10g/Lの水溶液1Lを加えて10分間攪拌した後、ブフナー漏斗で濾過し、洗浄後大気雰囲気にて100℃、6時間乾燥させて電解銅粉を得た。得られた電解銅粉の粒子形状は松ぼっくり状であり、主軸太さ、枝長、枝本数/長径Lの測定は出来なかった。   The copper deposited on the cathode surface was mechanically scraped and collected, and then washed to obtain a hydrous copper powder cake equivalent to 1 kg of copper powder. This cake was dispersed in 3 L of water, 1 L of an industrial gelatin (made by Nitta Gelatin) 10 g / L aqueous solution was added and stirred for 10 minutes, and then filtered through a Buchner funnel. It was dried for 6 hours to obtain electrolytic copper powder. The particle shape of the obtained electrolytic copper powder was pinecone-like, and the main shaft thickness, branch length, number of branches / long diameter L could not be measured.

<比較例2>
5.0m×1.1m×1.5mの大きさ(約8m3)の電解槽内に、それぞれ大きさ(1.0m×1.0m)19枚の陰極板と不溶性陽極板(DSE(ペルメレック電極社製))とを電極間距離10cmとなるように吊設し、電解液としての硫酸銅溶液を150L/分で循環させて、この電解液に陽極と陰極を浸漬し、これに直流電流を流して電気分解を行い、陰極表面に粉末状の銅を析出させた。
この際、循環させる電解液のCu濃度を70g/L、硫酸(H2SO4)濃度を200g/L、電流密度を90A/mに調整して6時間電解を実施した。
電解中、電極間の電解液の銅イオン濃度は電解槽の底部の電解液の銅イオン濃度と同等であった。
<Comparative example 2>
In an electrolytic cell having a size of 5.0 m × 1.1 m × 1.5 m (about 8 m 3 ), 19 cathode plates (1.0 m × 1.0 m) and insoluble anode plates (DSE (Permelec) Electrode))) is suspended so that the distance between the electrodes is 10 cm, a copper sulfate solution as an electrolytic solution is circulated at 150 L / min, and an anode and a cathode are immersed in the electrolytic solution, and a direct current is supplied thereto. To conduct electrolysis to deposit powdered copper on the cathode surface.
At this time, the electrolytic solution to be circulated was adjusted to a Cu concentration of 70 g / L, a sulfuric acid (H 2 SO 4 ) concentration of 200 g / L, and a current density of 90 A / m 2 for electrolysis for 6 hours.
During electrolysis, the copper ion concentration of the electrolyte solution between the electrodes was equal to the copper ion concentration of the electrolyte solution at the bottom of the electrolytic cell.

陰極表面に析出した銅を、機械的に掻き落として回収し、その後、洗浄し、銅粉1kg相当の含水銅粉ケーキを得た。このケーキを水6Lに分散させ、工業用ゼラチン(:新田ゼラチン社製)10g/Lの水溶液2Lを加えて10分間攪拌した後、ブフナー漏斗で濾過し、洗浄後大気雰囲気にて120℃、5時間乾燥させて電解銅粉を得た。得られた電解銅粉の粒子形状は松ぼっくり状であり、主軸太さ、枝長、枝本数/長径Lの測定は出来なかった。   The copper deposited on the cathode surface was mechanically scraped and collected, and then washed to obtain a hydrous copper powder cake equivalent to 1 kg of copper powder. This cake was dispersed in 6 L of water, 2 L of an industrial gelatin (made by Nitta Gelatin Co., Ltd.) 10 g / L aqueous solution 2 L was added, stirred for 10 minutes, filtered through a Buchner funnel, washed, and then washed at 120 ° C. in an air atmosphere. It was dried for 5 hours to obtain electrolytic copper powder. The particle shape of the obtained electrolytic copper powder was pinecone-like, and the main shaft thickness, branch length, number of branches / long diameter L could not be measured.

(考察)
上記実施例とこれまで行った試験結果を総合的に考えると、主軸の太さaが0.3μm〜5.0μmであり、且つ主軸から伸びた枝の中で最も長い枝の長さが0.6μm〜10.0μmであるデンドライト状を呈する銅粉粒子であれば、優れた導通性を得るのに必要十分にデンドライトが成長しており、優れた導通性を得ることができることが分かった。
(Discussion)
Considering the above examples and the test results conducted so far, the thickness a of the main shaft is 0.3 μm to 5.0 μm, and the longest branch length among the branches extending from the main shaft is 0. It was found that if the copper powder particles have a dendrite shape of .6 μm to 10.0 μm, the dendrite has grown sufficiently and sufficiently to obtain excellent conductivity, and excellent conductivity can be obtained.

Claims (3)

走査型電子顕微鏡(SEM)を用いて銅粉粒子を観察した際、一本の主軸を備えており、該主軸から複数の枝が斜めに分岐して、二次元的或いは三次元的に成長したデンドライト状を呈し、かつ、主軸の太さaが0.3μm〜5.0μmであり、主軸から伸びた枝の中で最も長い枝の長さbが0.6μm〜10.0μmであるデンドライト状を呈する銅粉粒子を含有するデンドライト状銅粉。   When observing copper powder particles using a scanning electron microscope (SEM), it has a single main axis, and a plurality of branches branch obliquely from the main axis and grow in two or three dimensions. It has a dendritic shape and has a main axis thickness a of 0.3 μm to 5.0 μm, and a longest branch length b among the branches extending from the main axis is 0.6 μm to 10.0 μm. Dendritic copper powder containing copper powder particles exhibiting 請求項1のデンドライト状を呈する銅粉粒子において、主軸の長径Lに対する枝の分岐本数(枝本数/長径L)0.5本/μm〜4.0本/μmであることを特徴とする請求項1記載のデンドライト状銅粉。   The copper powder particles having a dendritic shape according to claim 1, wherein the number of branches (the number of branches / long diameter L) is 0.5 / μm to 4.0 / μm with respect to the major axis L of the main axis. Item 4. A dendrite-like copper powder according to Item 1. 酸素濃度が0.20%以下であることを特徴とする請求項1又は2に記載のデンドライト状銅粉。   The dendrite-like copper powder according to claim 1 or 2, wherein the oxygen concentration is 0.20% or less.
JP2013077450A 2013-04-03 2013-04-03 Dendrite-like copper powder Withdrawn JP2013168375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013077450A JP2013168375A (en) 2013-04-03 2013-04-03 Dendrite-like copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013077450A JP2013168375A (en) 2013-04-03 2013-04-03 Dendrite-like copper powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011154577A Division JP5320442B2 (en) 2011-07-13 2011-07-13 Dendritic copper powder

Publications (1)

Publication Number Publication Date
JP2013168375A true JP2013168375A (en) 2013-08-29

Family

ID=49178605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013077450A Withdrawn JP2013168375A (en) 2013-04-03 2013-04-03 Dendrite-like copper powder

Country Status (1)

Country Link
JP (1) JP2013168375A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168866A (en) * 2014-03-10 2015-09-28 住友金属鉱山株式会社 Sulfuric acid-based copper electrolyte and production method of granular copper powder using the same
JP2015168867A (en) * 2014-03-10 2015-09-28 住友金属鉱山株式会社 Sulfuric acid-based copper electrolyte, and production method of dendrite-like copper powder using the same
JP5907302B1 (en) * 2015-05-15 2016-04-26 住友金属鉱山株式会社 Copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing copper powder
JP2016138301A (en) * 2015-01-26 2016-08-04 住友金属鉱山株式会社 Manufacturing method of dendritic copper powder, and conductive copper paste, conductive coating and conductive sheet using the same
US10654101B2 (en) 2015-05-15 2020-05-19 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015168866A (en) * 2014-03-10 2015-09-28 住友金属鉱山株式会社 Sulfuric acid-based copper electrolyte and production method of granular copper powder using the same
JP2015168867A (en) * 2014-03-10 2015-09-28 住友金属鉱山株式会社 Sulfuric acid-based copper electrolyte, and production method of dendrite-like copper powder using the same
JP2016138301A (en) * 2015-01-26 2016-08-04 住友金属鉱山株式会社 Manufacturing method of dendritic copper powder, and conductive copper paste, conductive coating and conductive sheet using the same
JP5907302B1 (en) * 2015-05-15 2016-04-26 住友金属鉱山株式会社 Copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing copper powder
WO2016185629A1 (en) * 2015-05-15 2016-11-24 住友金属鉱山株式会社 Copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing copper powder
CN107614156A (en) * 2015-05-15 2018-01-19 住友金属矿山株式会社 Copper powder and the manufacture method using its copper cream, conductive coating paint, conductive sheet and copper powder
US10654101B2 (en) 2015-05-15 2020-05-19 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder
US10695830B2 (en) 2015-05-15 2020-06-30 Sumitomo Metal Mining Co., Ltd. Copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing copper powder

Similar Documents

Publication Publication Date Title
JP5320442B2 (en) Dendritic copper powder
JP5631910B2 (en) Silver coated copper powder
JP2013053347A (en) Dendritic copper powder
JP5631841B2 (en) Silver coated copper powder
JP5876971B2 (en) Copper powder
JP5858201B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
JP2013136818A (en) Copper powder
JP2013168375A (en) Dendrite-like copper powder
JP6165399B1 (en) Silver coated copper powder
CN107405683A (en) Copper powder and copper cream, conductive coating paint, the conductive sheet using the copper powder
JP6278969B2 (en) Silver coated copper powder
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JP2014159646A (en) Silver-coated copper powder
JP5858200B1 (en) Copper powder and conductive paste, conductive paint, conductive sheet, antistatic paint using the same
JP5711435B2 (en) Copper powder
JP2007188845A (en) Conductive powder, conductive paste and electrical circuit
JP6225711B2 (en) Copper sulfide-coated copper powder, conductive paste, and methods for producing them
TWI541305B (en) Copper powder and the use of its copper paste, conductive paint, conductive film
JP2016204686A (en) Copper powder and conductive paste using the same, conductive coating and conductive sheet

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007