JP6274076B2 - Copper powder and copper paste, conductive paint, conductive sheet using the same - Google Patents

Copper powder and copper paste, conductive paint, conductive sheet using the same Download PDF

Info

Publication number
JP6274076B2
JP6274076B2 JP2014222710A JP2014222710A JP6274076B2 JP 6274076 B2 JP6274076 B2 JP 6274076B2 JP 2014222710 A JP2014222710 A JP 2014222710A JP 2014222710 A JP2014222710 A JP 2014222710A JP 6274076 B2 JP6274076 B2 JP 6274076B2
Authority
JP
Japan
Prior art keywords
copper powder
copper
dendritic
resin
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014222710A
Other languages
Japanese (ja)
Other versions
JP2016089199A (en
Inventor
岡田 浩
浩 岡田
雄 山下
雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014222710A priority Critical patent/JP6274076B2/en
Publication of JP2016089199A publication Critical patent/JP2016089199A/en
Application granted granted Critical
Publication of JP6274076B2 publication Critical patent/JP6274076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、導電性ペースト等の材料として用いられる銅粉に関するものであり、より詳しくは、導電性を改善させることのできる新規な形状を有する銅粉及びそれを用いた銅ペースト、導電性塗料、導電性シートに関する。   The present invention relates to copper powder used as a material for conductive paste and the like, and more specifically, copper powder having a novel shape capable of improving conductivity, copper paste using the same, and conductive paint The present invention relates to a conductive sheet.

電子機器における配線層や電極等の形成には、樹脂型ペーストや焼成型ペーストのような、銀粉や銅粉等の金属フィラーを使用したペーストが多く用いられている。銀や銅の金属フィラーペーストは、電子機器の各種基材上に塗布又は印刷され、加熱硬化や加熱焼成の処理を受けて、配線層や電極等となる導電膜を形成する。   For the formation of wiring layers, electrodes, and the like in electronic devices, many pastes using metal fillers such as silver powder and copper powder, such as resin paste and fired paste, are used. A metal filler paste of silver or copper is applied or printed on various substrates of an electronic device, and is subjected to heat curing or heat baking treatment to form a conductive film that becomes a wiring layer, an electrode, or the like.

例えば、樹脂型導電性ペーストは、金属フィラーと、樹脂、硬化剤、溶剤等からなり、導電体回路パターン又は端子の上に印刷し、100℃〜200℃で加熱硬化させて導電膜とし、配線や電極を形成する。樹脂型導電性ペーストは、熱によって熱硬化型樹脂が硬化収縮するために金属フィラーが圧着され相互に接触することで金属フィラー同士が重なり、その結果電気的に接続した電流パスが形成される。この樹脂型導電性ペーストは、硬化温度が200℃以下で処理されることから、プリント配線板等の熱に弱い材料を使用している基板に使用されていることが多い。   For example, a resin-type conductive paste is made of a metal filler, a resin, a curing agent, a solvent, etc., printed on a conductor circuit pattern or terminal, and cured by heating at 100 ° C. to 200 ° C. to form a conductive film. And forming electrodes. In the resin-type conductive paste, since the thermosetting resin is cured and contracted by heat, the metal fillers are pressed and contacted with each other so that the metal fillers overlap each other, and as a result, an electrically connected current path is formed. Since this resin-type conductive paste is processed at a curing temperature of 200 ° C. or less, it is often used for a substrate using a heat-sensitive material such as a printed wiring board.

一方、焼成型導電性ペーストは、金属フィラーと、ガラス、溶剤等からなり、導電体回路パターン又は端子の上に印刷し、600℃〜800℃に加熱焼成して導電膜とし、配線や電極を形成する。焼成型導電性ペーストは、高い温度によって処理することで、金属フィラー同士が焼結して導通性が確保されるものである。この焼成型導電性ペーストは、このように高い焼成温度で処理されるため、樹脂材料を使用するようなプリント配線基板には使用できない点があるが、金属フィラーは焼結によって接続するので低抵抗が得られやすい特長がある。このような焼成型導電性ペーストは、例えば、積層セラミックコンデンサの外部電極等に使用されている。   On the other hand, the firing-type conductive paste is made of a metal filler, glass, a solvent, etc., printed on a conductor circuit pattern or terminal, and heated and fired at 600 ° C. to 800 ° C. to form a conductive film. Form. The fired conductive paste is processed at a high temperature to sinter the metal fillers to ensure conductivity. Since this fired conductive paste is processed at such a high firing temperature, it cannot be used for printed wiring boards that use resin materials. However, since metal fillers are connected by sintering, they have low resistance. Is easy to obtain. Such a fired conductive paste is used, for example, for an external electrode of a multilayer ceramic capacitor.

さて、これらの樹脂型導電性ペーストや焼成型導電性ペーストに使用される金属フィラーとしては、従来から銀の粉末が多く用いられてきた。しかしながら、近年では、貴金属価格が高騰し、低コスト化のためにも、銀粉より安価な銅粉の使用が好まれてきた。   As a metal filler used in these resin-type conductive pastes and fired-type conductive pastes, silver powder has been conventionally used in many cases. However, in recent years, the price of precious metals has risen, and the use of copper powder that is cheaper than silver powder has been favored for cost reduction.

ここで、金属フィラーとして用いられる銅等の粉末としては、上述したように、粒子同士が接続して導電するために、粒状や樹枝状、平板状等の形状が多く用いられてきた。特に、粒子を縦・横・厚さの3方向のサイズから評価する場合、厚さが薄い平板状の形状は、厚さが減少することによる配線材の薄型化に貢献するとともに、一定の厚さがある立方体や球状の粒子よりも粒同士が接触する面積を大きく確保でき、それだけ低抵抗、すなわち高導電率が達成できるという利点がある。このため、平板状の形状の銅粉は、特に導電性を維持したい導電塗料や導電性ペーストの用途に適している。   Here, as powders, such as copper used as a metal filler, since particle | grains are connected and electrically conductive as mentioned above, shapes, such as a granular form, a dendritic shape, and flat form, have been used a lot. In particular, when evaluating particles from the size in the three directions of length, width, and thickness, a flat plate shape with a small thickness contributes to a reduction in the thickness of the wiring material due to a decrease in thickness, and a certain thickness. There is an advantage that a larger area where the grains come into contact with each other than a certain cubic or spherical particle can be ensured, and that low resistance, that is, high conductivity can be achieved. For this reason, tabular copper powder is particularly suitable for conductive paints and conductive pastes for which electrical conductivity is desired to be maintained.

なお、導電性ペーストを薄く塗布して用いる場合には、銅粉に含まれる不純物の影響も考慮することが好ましくなる。   In addition, when using a thin conductive paste, it is preferable to consider the influence of impurities contained in the copper powder.

このような平板状の銅粉を作製するために、例えば特許文献1では、導電性ペーストの金属フィラーに適したフレーク状銅粉を得る方法が開示されている。具体的には、平均粒径0.5〜10μmの球状銅粉を原料とし、ボールミルや振動ミルを用いて、ミル内に装填したメディアの機械的エネルギーにより機械的に平板状に加工するものである。   In order to produce such a flat copper powder, for example, Patent Document 1 discloses a method for obtaining a flaky copper powder suitable for a metal filler of a conductive paste. Specifically, a spherical copper powder having an average particle size of 0.5 to 10 μm is used as a raw material, and mechanically processed into a flat plate shape by a mechanical energy of a medium loaded in the mill using a ball mill or a vibration mill. is there.

また、例えば特許文献2では、導電性ペースト用銅粉末、詳しくはスルーホール用及び外部電極用銅ペーストとして高性能が得られる円盤状銅粉末及びその製造方法に関する技術が開示されている。具体的には、粒状アトマイズ銅粉末を媒体撹拌ミルに投入し、粉砕媒体として1/8〜1/4インチ径のスチールボールを使用して、銅粉末に対して脂肪酸を重量で0.5〜1%添加し、空気中あるいは不活性雰囲気中で粉砕することによって平板状に加工するものである。   Further, for example, Patent Document 2 discloses a technique relating to a copper powder for conductive paste, more specifically, a disk-shaped copper powder capable of obtaining high performance as a copper paste for through holes and external electrodes, and a method for manufacturing the same. Specifically, the granular atomized copper powder is put into a medium agitating mill, and a steel ball having a diameter of 1/8 to 1/4 inch is used as a grinding medium. 1% is added and processed into a flat plate shape by grinding in air or in an inert atmosphere.

さらに、例えば特許文献3では、電解銅粉の樹枝を必要以上に発達させることなく、従来の電解銅粉よりも成形性が向上した、高い強度に成形できる電解銅粉を得る方法が開示されている。具体的には、電解銅粉自体の強度を増して高い強度に成形できる電解銅粉を析出させるために、電解銅粉を構成する結晶子のサイズを微細化させることを目的として、電解液である硫酸銅水溶液中にタングステン酸塩、モリブデン酸塩、及び硫黄含有有機化合物から選択される1種又は2種以上を添加して、電解銅粉を析出させるものである。   Furthermore, for example, Patent Document 3 discloses a method for obtaining electrolytic copper powder that can be molded with high strength, with improved formability than conventional electrolytic copper powder, without unnecessarily developing the branches of electrolytic copper powder. Yes. Specifically, in order to increase the strength of the electrolytic copper powder itself and precipitate the electrolytic copper powder that can be molded to a high strength, the electrolytic solution is used for the purpose of reducing the size of the crystallites constituting the electrolytic copper powder. One or two or more selected from tungstate, molybdate, and sulfur-containing organic compounds are added to a certain aqueous copper sulfate solution to deposit electrolytic copper powder.

これらの特許文献に開示された方法は、いずれも得られた粒状の銅粉をボール等の媒体を使用して機械的に変形(加工)させることによって平板状としており、加工してできた平板状の銅粉の大きさは、特許文献1の技術では平均粒径が1〜30μmであり、特許文献3での技術は平均粒径が7〜12μmの大きさとしている。   In any of the methods disclosed in these patent documents, the obtained granular copper powder is mechanically deformed (processed) using a medium such as a ball to form a flat plate. As for the size of the copper powder, the average particle size is 1 to 30 μm in the technique of Patent Document 1, and the average particle diameter is 7 to 12 μm in the technique of Patent Document 3.

一方、デンドライト状と呼ばれる樹枝状に析出した電解銅粉が知られており、形状が樹枝状になっていることから、表面積が大きく、成形性や焼結性が優れており、粉末冶金用途として含油軸受けや機械部品等の原料として使用されている。特に、含油軸受け等では、小型化が進み、それに伴って多孔質化や薄肉化、並びに複雑な形状が要求されるようになっている。それらの要求を満足するために、例えば特許文献4では、複雑3次元形状で寸法精度の高い金属粉末射出成形用銅粉末とそれを用いた射出成形品の製造方法が開示されている。具体的には、樹枝状の形状をより発達させることで、圧縮成形時に隣接する電解銅粉の樹枝が互いに絡み合って強固に連結するようになるため、高い強度に成形できることが示されている。さらに、導電性ペーストや電磁波シールド用の金属フィラーとして利用する場合には、樹枝状の形状であることから、球状と比べて接点を多くできることを利用することができるとしている。   On the other hand, electrolytic copper powder deposited in a dendritic shape called dendritic shape is known, and since the shape is dendritic, it has a large surface area, excellent formability and sinterability, and is used for powder metallurgy applications Used as a raw material for oil-impregnated bearings and machine parts. In particular, oil-impregnated bearings and the like have been reduced in size, and accordingly, have become porous, thin, and have complicated shapes. In order to satisfy these requirements, for example, Patent Document 4 discloses a copper powder for metal powder injection molding having a complicated three-dimensional shape and high dimensional accuracy, and a method for manufacturing an injection molded product using the same. Specifically, it has been shown that by further developing the dendritic shape, the dendrites of the electrolytic copper powder adjacent to each other at the time of compression molding are intertwined and firmly connected to each other, so that it can be molded with high strength. Furthermore, when it is used as a conductive paste or a metal filler for electromagnetic wave shielding, since it has a dendritic shape, it can be used that it can have more contacts than a spherical shape.

しかしながら、上述のような樹枝状の銅粉を導電性ペーストや電磁波シールド用樹脂等の金属フィラーとして利用する場合、樹脂中の金属フィラーが樹枝状に発達した形状であると、樹枝状の銅粉同士が絡み合って凝集が発生してしまい、樹脂中に均一に分散しないという問題や、凝集によりペーストの粘度が上昇して印刷による配線形成に問題が生じる。このような問題は、例えば特許文献3でも指摘されている。   However, when the dendritic copper powder as described above is used as a metal filler such as a conductive paste or a resin for electromagnetic wave shielding, the dendritic copper powder has a shape in which the metal filler in the resin has developed into a dendritic shape. They are entangled with each other and agglomerate occurs, which causes a problem that they are not uniformly dispersed in the resin, and the viscosity of the paste increases due to agglomeration, resulting in problems in wiring formation by printing. Such a problem is pointed out in Patent Document 3, for example.

このように、樹枝状の銅粉を導電性ペースト等の金属フィラーとして用いるのは容易でなく、ペーストの導電性の改善がなかなか進まない原因ともなっていた。なお、導電性を確保するためには、樹枝状の方が粒状よりも接点を確保しやすく、導電性ペーストや電磁波シールドとして高い導電性を確保することができる。   As described above, it is not easy to use dendritic copper powder as a metal filler such as a conductive paste, and it has been a cause of difficulty in improving the conductivity of the paste. In addition, in order to ensure electroconductivity, a dendritic shape is easy to ensure a contact rather than granular, and can ensure high electroconductivity as a conductive paste or an electromagnetic wave shield.

特開2005−200734号公報Japanese Patent Laid-Open No. 2005-200734 特開2002−15622号公報JP 2002-15622 A 特開2011−58027号公報JP 2011-58027 A 特開平9−3510号公報Japanese Patent Laid-Open No. 9-3510

本発明は、上述したような実情に鑑みて提案されたものであり、銅粉同士の接点を多くして優れた導電性を確保しつつ、導電性ペーストや電磁波シールド等の用途として好適に利用することができる銅粉を提供することを目的とする。   The present invention has been proposed in view of the above-described circumstances, and is preferably used as an application such as a conductive paste or an electromagnetic wave shield while ensuring excellent conductivity by increasing the number of contacts between copper powders. It aims at providing the copper powder which can do.

本発明者らは、上述した課題を解決するための鋭意検討を重ねた。その結果、樹枝状に成長した主幹とその主幹から分かれた複数の枝とを有する形状であり且つ断面平均厚さが特定の範囲である平板状の銅粒子が集合して構成された銅粉であって、当該銅粉の平均粒子径(D50)が特定の範囲であることにより、優れた導電性を確保しつつ、例えば樹脂と均一に混合させることができ導電性ペースト等の用途に好適に用いることができることを見出し、本発明を完成させた。すなわち、本発明は、以下のものを提供する。   The inventors of the present invention have made extensive studies for solving the above-described problems. As a result, it is a copper powder composed of flat copper particles having a shape having a main trunk grown in a dendritic shape and a plurality of branches separated from the main trunk and having a cross-sectional average thickness in a specific range. In addition, the average particle diameter (D50) of the copper powder is in a specific range, so that excellent conductivity can be ensured and, for example, it can be uniformly mixed with a resin, which is suitable for applications such as a conductive paste. The present invention has been completed by finding that it can be used. That is, the present invention provides the following.

(1)本発明に係る第1の発明は、樹枝状に成長した主幹と該主幹から分かれた複数の枝とを有する形状の銅粒子が集合した銅粉であって、前記銅粒子の主幹及び枝は断面平均厚さが0.02μm〜0.3μmの平板状であり、当該銅粉の平均粒子径(D50)が1.0μm〜30μmであることを特徴とする銅粉である。   (1) A first invention according to the present invention is a copper powder in which copper particles having a shape having a main trunk grown in a dendritic shape and a plurality of branches separated from the main trunk are aggregated, wherein the main trunk of the copper particles and The branch is a copper powder having a cross-sectional average thickness of 0.02 μm to 0.3 μm and an average particle diameter (D50) of the copper powder of 1.0 μm to 30 μm.

(2)本発明に係る第2の発明は、第1の発明において、前記銅粒子の表面に微細な凸部があり、該凸部の平均高さが0.01μm〜0.3μmであることを特徴とする銅粉である。   (2) According to a second aspect of the present invention, in the first aspect, the surface of the copper particles has fine convex portions, and the average height of the convex portions is 0.01 μm to 0.3 μm. It is the copper powder characterized by this.

(3)本発明に係る第3の発明は、第1又は第2の発明において、前記平板状の銅粒子の断面厚さを当該銅粉の平均粒子径(D50)で除した比が8.0×10−4〜1.5×10−1の範囲であり、且つ、当該銅粉の嵩密度が0.5g/cm〜5.0g/cmの範囲であることを特徴とする銅粉である。 (3) In the third invention according to the present invention, in the first or second invention, a ratio obtained by dividing the cross-sectional thickness of the tabular copper particles by the average particle diameter (D50) of the copper powder is 8. 0 in the range of × 10 -4 ~1.5 × 10 -1, and the copper bulk density of the copper powder is characterized in that in the range of 0.5g / cm 3 ~5.0g / cm 3 It is powder.

(4)本発明に係る第4の発明は、第1乃至第3のいずれかの発明において、X線回折による(111)面のミラー指数における結晶子径が800Å〜2000Åの範囲に属することを特徴とする銅粉である。   (4) According to a fourth aspect of the present invention, in any one of the first to third aspects, the crystallite diameter at the Miller index of the (111) plane by X-ray diffraction belongs to a range of 800 to 2000 mm. It is a featured copper powder.

(5)本発明に係る第5の発明は、第1乃至第4の発明のいずれかの銅粉を、全体の20質量%以上の割合で含有していることを特徴とする金属フィラーである。   (5) A fifth invention according to the present invention is a metal filler characterized by containing the copper powder of any one of the first to fourth inventions in a proportion of 20% by mass or more of the whole. .

(6)本発明に係る第6の発明は、第5の発明に係る金属フィラーを樹脂に混合させてなることを特徴とする銅ペーストである。   (6) A sixth invention according to the present invention is a copper paste obtained by mixing a metal filler according to the fifth invention with a resin.

(7)本発明に係る第7の発明は、第5の発明に係る金属フィラーを用いたことを特徴とする電磁波シールド用の導電性塗料である。   (7) A seventh invention according to the present invention is a conductive paint for electromagnetic wave shielding, characterized in that the metal filler according to the fifth invention is used.

(8)本発明に係る第8の発明は、第5の発明に係る金属フィラーを用いたことを特徴とする電磁波シールド用の導電性シートである。   (8) An eighth invention according to the present invention is an electromagnetic wave shielding conductive sheet characterized by using the metal filler according to the fifth invention.

本発明に係る銅粉によれば、接点を多く確保することができるとともに接触面積を大きくとることができ、優れた導電性を確保し、また凝集を防止して導電性ペーストや電磁波シールド等の用途に好適に利用することができる。   According to the copper powder according to the present invention, it is possible to secure a large number of contacts and a large contact area, to ensure excellent conductivity, and to prevent aggregation, such as conductive paste and electromagnetic wave shield. It can utilize suitably for a use.

樹枝状銅粉を構成する銅粒子の具体的な形状を模式的に示した図である。It is the figure which showed typically the specific shape of the copper particle which comprises dendritic copper powder. 樹枝状銅粉を走査電子顕微鏡により倍率5,000倍で観察したときの観察像を示す写真図である。It is a photograph figure which shows an observation image when dendritic copper powder is observed at a magnification of 5,000 times with a scanning electron microscope. 樹枝状銅粉を走査電子顕微鏡により倍率1,000倍で観察したときの観察像を示す写真図である。It is a photograph figure which shows an observation image when dendritic copper powder is observed by 1000-times multiplication factor with a scanning electron microscope. 樹枝状銅粉を構成する銅粒子を走査電子顕微鏡により倍率10,000倍で観察したときの観察像を示す写真図である。It is a photograph figure which shows an observation image when the copper particle which comprises dendritic copper powder is observed by 10,000 times magnification with the scanning electron microscope. 樹枝状銅粉を構成する銅粒子を走査電子顕微鏡により倍率30,000倍で観察したときの観察像を示す写真図である。It is a photograph figure which shows an observation image when the copper particle which comprises dendritic copper powder is observed by the scanning electron microscope with a magnification of 30,000 times. 比較例1にて得られた銅粉を走査電子顕微鏡により倍率250倍で観察したときの観察像を示す写真図である。It is a photograph figure which shows an observation image when the copper powder obtained in the comparative example 1 is observed by 250 times of magnification with a scanning electron microscope.

以下、本発明に係る銅粉の具体的な実施形態(以下、「本実施の形態」という)について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。   Hereinafter, a specific embodiment of the copper powder according to the present invention (hereinafter referred to as “the present embodiment”) will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention.

≪1.樹枝状銅粉≫
図1は、本実施の形態に係る銅粉を構成する銅粒子の具体的な形状を示した模式図である。図1の模式図に示すように、銅粒子1は、2次元又は3次元の形態である樹枝状の形状を有している。より具体的に、銅粒子1は、樹枝状に成長した主幹2とその主幹2から分かれた複数の枝3を有する形状を有しており、その断面平均厚さが0.02μm〜0.3μmの平板状である。本実施の形態に係る銅粉は、このような平板状の銅粒子1が集合して構成された、主幹と複数の枝とを有する樹枝状形状の銅粉(以下、「樹枝状銅粉」ともいう)であり(図2、図3の銅粉のSEM像参照)、この平板状の銅粒子1から構成される樹枝状銅粉の平均粒子径(D50)は、1.0μm〜30μmである。
<< 1. Dendritic copper powder >>
FIG. 1 is a schematic diagram showing a specific shape of copper particles constituting the copper powder according to the present embodiment. As shown in the schematic diagram of FIG. 1, the copper particles 1 have a dendritic shape that is a two-dimensional or three-dimensional form. More specifically, the copper particles 1 have a shape having a main trunk 2 grown in a dendritic shape and a plurality of branches 3 separated from the main trunk 2, and an average cross-sectional thickness of 0.02 μm to 0.3 μm. It is a flat plate shape. The copper powder according to the present embodiment is a dendritic copper powder (hereinafter referred to as “dendritic copper powder”) having a main trunk and a plurality of branches, which are configured by aggregating such flat copper particles 1. (Refer to SEM images of the copper powder in FIGS. 2 and 3), and the average particle diameter (D50) of the dendritic copper powder composed of the tabular copper particles 1 is 1.0 μm to 30 μm. is there.

なお、銅粒子1における枝3は、主幹2から分岐した枝3aと、その枝3aからさらに分岐した枝3bの両方を意味する。   Note that the branch 3 in the copper particle 1 means both a branch 3a branched from the main trunk 2 and a branch 3b further branched from the branch 3a.

本実施の形態に係る樹枝状銅粉は、詳しくは後述するが、例えば、銅イオンを含む硫酸酸性の電解液に陽極と陰極を浸漬し、直流電流を流して電気分解することにより陰極上に析出させて得ることができる。   Although the dendritic copper powder according to the present embodiment will be described in detail later, for example, the anode and the cathode are immersed in a sulfuric acid electrolytic solution containing copper ions, and a direct current is applied to cause electrolysis to occur on the cathode. It can be obtained by precipitation.

図2、図3は、本実施の形態に係る樹枝状銅粉について走査電子顕微鏡(SEM)により観察したときの観察像の一例を示す写真図である。なお、図2は樹枝状銅粉を倍率5,000倍で観察したものであり、図3は樹枝状銅粉を倍率1,000倍で観察したものである。また、図4、図5は、本実施の形態に係る樹枝状銅粉を構成する銅粒子をSEMにより観察したときの観察像の一例を示す写真図である。なお、図4は銅粒子を倍率10,000倍で観察したものであり、図5は銅粒子を倍率30,000倍で観察したものである。   FIG. 2 and FIG. 3 are photographic views showing an example of an observation image when the dendritic copper powder according to the present embodiment is observed by a scanning electron microscope (SEM). 2 shows the dendritic copper powder observed at a magnification of 5,000 times, and FIG. 3 shows the dendritic copper powder observed at a magnification of 1,000 times. FIG. 4 and FIG. 5 are photographic views showing an example of an observation image when the copper particles constituting the dendritic copper powder according to the present embodiment are observed with an SEM. 4 shows the copper particles observed at a magnification of 10,000 times, and FIG. 5 shows the copper particles observed at a magnification of 30,000 times.

図2、図3の観察像に示されるように、本実施の形態に係る樹枝状銅粉は、主幹とその主幹から分岐した枝とを有する、2次元又は3次元の樹枝状の析出状態を呈している。また、本実施の形態に係る樹枝状銅粉においては、その主幹及び枝が、平板状であって樹枝状の形状を有する銅粒子が集合して構成されている。具体的に、図4、図5の銅粒子の観察像に示されるように、本実施の形態に係る樹枝状銅粉を構成する銅粒子は、樹枝状に成長した主幹とその主幹から分かれた複数の枝とを有する樹脂状であって、且つ、所定の断面厚さの平板状である。   2 and 3, the dendritic copper powder according to the present embodiment has a two-dimensional or three-dimensional dendritic precipitation state having a main trunk and a branch branched from the main trunk. Presents. Moreover, in the dendritic copper powder which concerns on this Embodiment, the main trunk and the branch are flat shape, and the copper particle which has a dendritic shape aggregates and is comprised. Specifically, as shown in the observation images of the copper particles in FIGS. 4 and 5, the copper particles constituting the dendritic copper powder according to the present embodiment were separated from the main trunk grown in a dendritic shape and the main trunk. It is a resin having a plurality of branches and is a flat plate having a predetermined cross-sectional thickness.

ここで、本実施の形態に係る樹枝状銅粉を構成し、主幹2及び枝3を有する平板状の銅粒子1は、その断面平均厚さが0.02μm〜0.3μmである。平板状の銅粒子1の断面平均厚さは、より薄い方が平板としての効果が発揮されることになる。すなわち、断面平均厚さが0.3μm以下の平板状の銅粒子1により樹枝状銅粉の主幹及び枝が構成されることで、その銅粒子1同士、またそれにより構成される樹枝状銅粉同士が接触する面積を大きく確保することができる。そして、その接触面積が大きくなることで、低抵抗、すなわち高導電率を実現することができる。このことにより、より導電性に優れ、またその導電性を良好に維持することができ、導電性塗料や導電性ペーストの用途に好適に用いることができる。また、樹枝状銅粉が平板状の銅粒子1により構成されていることで、配線材等の薄型化にも貢献することができる。   Here, the flat copper particles 1 constituting the dendritic copper powder according to the present embodiment and having the main trunk 2 and the branches 3 have an average cross-sectional thickness of 0.02 μm to 0.3 μm. The thinner the cross-sectional average thickness of the flat copper particles 1, the more effective the flat plate will be. That is, the main trunk and branches of the dendritic copper powder are constituted by the flat copper particles 1 having a cross-sectional average thickness of 0.3 μm or less, whereby the copper particles 1 and the dendritic copper powder constituted thereby are formed. It is possible to secure a large area for contact with each other. And since the contact area becomes large, low resistance, that is, high conductivity can be realized. Thereby, it is more excellent in electroconductivity, can maintain the electroconductivity favorably, and can be used suitably for the use of an electroconductive coating material or an electroconductive paste. Further, since the dendritic copper powder is composed of the flat copper particles 1, it can contribute to thinning of the wiring material and the like.

なお、平板状の銅粒子1の断面平均厚さの下限としては、特に限定されるものではないが、後述する銅イオンを含む硫酸酸性の電解液から電気分解することにより陰極上に析出させる方法では、0.02μm以上の断面平均厚さを有する平板状の銅粒子1が集合した樹枝状銅粉を得ることができる。   In addition, as a minimum of the cross-sectional average thickness of the flat copper particle 1, although not specifically limited, the method of making it deposit on a cathode by electrolyzing from the sulfuric acid electrolyte solution containing the copper ion mentioned later Then, the dendritic copper powder which the flat copper particle 1 which has a cross-sectional average thickness of 0.02 micrometer or more gathered can be obtained.

また、本実施の形態に係る樹枝状銅粉を構成し、主幹2及び枝3を有する平板状の銅粒子1は、その表面に微細な凸部を有する。具体的に、上述した図4、図5に示す銅粒子の観察像からも、平板状の銅粒子の表面に微細な凸部が存在することが分かる。そして、銅粒子1においては、その表面に有する凸部の平均高さが0.01μm〜0.3μmであることが好ましい。   Moreover, the flat copper particle 1 which comprises the dendritic copper powder which concerns on this Embodiment, and has the main trunk 2 and the branch 3 has a fine convex part on the surface. Specifically, it can be seen from the observation images of the copper particles shown in FIGS. 4 and 5 described above that fine convex portions exist on the surface of the flat copper particles. And in the copper particle 1, it is preferable that the average height of the convex part which it has on the surface is 0.01 micrometer-0.3 micrometer.

ここで、特許文献1や特許文献2に記載されているように、機械的な方法で例えば球状銅粉を平板状にする場合には、機械的加工時に銅の酸化を防止する必要があるため、脂肪酸を添加し、空気中あるいは不活性雰囲気中で粉砕することによって平板状に加工している。しかしながら、完全に酸化を防止することができないことや、加工時に添加している脂肪酸がペースト化するときに分散性に影響を及ぼす場合があるため、加工終了後に除去することが必要となるが、その脂肪酸が機械加工時の圧力で銅表面に強固に固着する場合があり、完全に除去できないという問題が発生する。また、機械的加工によって平板にするため、表面は平滑なものとなり、また機械的な圧力によって平板にするため、形成された平板状銅粉は水平な面ではなく反った形になる。そのことから、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に金属フィラー同士の接点を確保しようとすると、機械的に平板にした銅粉は表面が平滑で反った状態となるため、接点の確保が困難となり、利用時には平板状の銅粉だけでなく粒状の銅粉を混ぜ合わせる等の方法によって、金属フィラー同士の接点を確保しなければならない。   Here, as described in Patent Document 1 and Patent Document 2, for example, when spherical copper powder is formed into a flat plate shape by a mechanical method, it is necessary to prevent copper oxidation during mechanical processing. It is processed into a flat plate shape by adding a fatty acid and pulverizing it in air or in an inert atmosphere. However, it cannot be completely prevented from oxidation, and the fatty acid added during processing may affect dispersibility when it is made into a paste, so it is necessary to remove it after the end of processing, The fatty acid may firmly adhere to the copper surface due to the pressure during machining, which causes a problem that it cannot be completely removed. Further, since the surface is flattened by mechanical processing, the surface becomes smooth, and since the surface is flattened by mechanical pressure, the formed flat copper powder has a warped shape rather than a horizontal surface. Therefore, when using as a metal filler such as conductive paste and resin for electromagnetic wave shielding, when trying to secure the contact between the metal fillers, the mechanically flattened copper powder has a smooth and warped surface. Therefore, it becomes difficult to secure the contacts, and when used, the contacts between the metal fillers must be secured by a method of mixing not only the flat copper powder but also the granular copper powder.

これに対して、本実施の形態に係る樹枝状銅粉を構成する平板状の銅粒子1は、その表面に微細な凸部を有し、その凸部の平均高さが好ましくは0.01μm〜0.3μmである。このような銅粒子1が集合してなる樹枝状銅粉では、機械的に加工して得られた平板状銅粉に比べて金属フィラー同士の接点を容易に確保できるという特徴を有している。つまり、本実施の形態に係る樹枝状銅粉は、それを構成する平板状の銅粒子1の表面に微細な凸部があるため、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に、その平板状の銅粒子1の表面の凸部によって容易に接点を確保することができる。さらに、この樹枝状銅粉は、機械的な加工を行うことなく直接樹枝状銅粉の形状に成長させて作製するため、機械加工で問題となる酸化の発生や脂肪酸の除去は必要なく、電気導電性の特性を極めて良好な状態とすることができる。   On the other hand, the flat copper particles 1 constituting the dendritic copper powder according to the present embodiment have fine convex portions on the surface, and the average height of the convex portions is preferably 0.01 μm. ~ 0.3 μm. The dendritic copper powder in which the copper particles 1 are aggregated has a feature that a contact between metal fillers can be easily ensured as compared with a flat copper powder obtained by mechanical processing. . That is, the dendritic copper powder according to the present embodiment has fine convex portions on the surface of the flat copper particles 1 constituting the dendritic copper powder, and is therefore used as a metal filler such as a conductive paste or a resin for electromagnetic wave shielding. In this case, the contact can be easily secured by the convex portions on the surface of the flat copper particles 1. Furthermore, since this dendritic copper powder is produced by directly growing into the shape of dendritic copper powder without mechanical processing, generation of oxidation and removal of fatty acids, which are problematic in mechanical processing, are not necessary. The conductive characteristics can be made extremely good.

平板状の銅粒子1の表面にある微細な凸部の平均高さは、上述したように、0.01μm〜0.3μmの形状が好ましい。平均高さが0.01μm未満であると、接点を確保するための形状としては十分な効果が得られず、一方で、平均高さが0.3μmを超えると、導電性ペースト等に利用した場合にペースト中の金属フィラーの充填率が上がらず、かえって満足できる抵抗値が得られなくなる可能性がある。   As described above, the average height of the fine protrusions on the surface of the flat copper particles 1 is preferably 0.01 μm to 0.3 μm. When the average height is less than 0.01 μm, a sufficient effect cannot be obtained as a shape for securing the contacts. On the other hand, when the average height exceeds 0.3 μm, it is used for a conductive paste or the like. In some cases, the filling rate of the metal filler in the paste does not increase, and a satisfactory resistance value may not be obtained.

また、本実施の形態に係る樹枝状銅粉においては、その平均粒子径(D50)(樹枝状銅粉の平均粒子径)が1.0μm〜30μmである。なお、平均粒子径(D50)は、例えば、レーザー回折散乱式粒度分布測定法により測定することができる。   Moreover, in the dendritic copper powder which concerns on this Embodiment, the average particle diameter (D50) (average particle diameter of dendritic copper powder) is 1.0 micrometer-30 micrometers. In addition, an average particle diameter (D50) can be measured by the laser diffraction scattering type particle size distribution measuring method, for example.

例えば特許文献1でも指摘されているように、樹枝状銅粉の問題点としては、導電性ペーストや電磁波シールド用の樹脂等の金属フィラーとして利用する場合に、樹脂中の金属フィラーが樹枝状に発達した形状であると、樹枝状の銅粉同士が絡み合って凝集が発生し、樹脂中に均一に分散しないことが挙げられる。また、その凝集により、ペーストの粘度が上昇して印刷による配線形成に問題が生じる。このことは、樹枝状銅粉の形状(粒子径)が大きいために発生するものであり、樹枝状の形状を有効に活かしながらこの問題を解決するためには、樹枝状銅粉の形状を小さくすることが必要となる。ところが、樹枝状銅粉の粒子径を小さくし過ぎると、その樹枝状形状を確保することができなくなる。そのため、樹枝状形状であることの効果、すなわち3次元的形状であることにより表面積が大きく成形性や焼結性に優れ、また枝状の箇所を介して強固に連結されて高い強度に成形できるという効果を確保するには、樹枝状銅粉が所定以上の大きさであることが必要となる。   For example, as pointed out in Patent Document 1, when the dendritic copper powder is used as a metal filler such as a conductive paste or a resin for electromagnetic wave shielding, the metal filler in the resin is dendritic. When the shape is developed, the dendritic copper powders are entangled with each other to cause agglomeration and are not uniformly dispersed in the resin. In addition, the agglomeration increases the viscosity of the paste and causes problems in wiring formation by printing. This occurs because the shape (particle diameter) of the dendritic copper powder is large, and in order to solve this problem while effectively utilizing the dendritic shape, the shape of the dendritic copper powder is reduced. It is necessary to do. However, if the particle diameter of the dendritic copper powder is too small, the dendritic shape cannot be secured. Therefore, the effect of being in a dendritic shape, that is, a three-dimensional shape, has a large surface area and excellent moldability and sinterability, and can be molded with high strength by being firmly connected via a branch-like portion. In order to secure the effect, it is necessary that the dendritic copper powder is larger than a predetermined size.

この点において、本実施の形態に係る樹枝状銅粉では、その平均粒子径が1.0μm〜30μmであることにより、表面積が大きくなり、良好な成形性や焼結性を確保することができる。そして、この樹枝状銅粉は、樹枝状の形状であることに加えて、主幹2及び枝3を有する樹脂状であって平板形状を有する銅粒子1が集合して構成されているため、樹枝状であることの3次元的効果と、その樹枝形状を構成する銅粒子1が平板状であることの効果により、銅粉同士の接点をより多く確保することができる。   In this respect, in the dendritic copper powder according to the present embodiment, the average particle diameter is 1.0 μm to 30 μm, so that the surface area is increased and good moldability and sinterability can be ensured. . In addition to the dendritic shape, this dendritic copper powder is constituted by a collection of copper particles 1 having a main plate 2 and branches 3 and having a flat plate shape. More contact points between the copper powders can be ensured by the three-dimensional effect of being in the shape of a plate and the effect of the copper particles 1 constituting the dendritic shape being flat.

また、本実施の形態に係る樹枝状銅粉は、特に限定されないが、上述した平板状の銅粒子1の断面平均厚さを、当該樹枝状銅粉の平均粒子径(D50)で除した比(断面平均厚さ/平均粒子径)が8.0×10−4〜1.5×10−1の範囲であることが好ましい。「断面平均厚さ/平均粒子径」で表される比(アスペクト比)は、例えば導電性の銅ペーストとして加工するときの凝集度合や分散性、また銅ペーストの塗布時における外観形状の保持性等の指標となる。このアスペクト比が8.0×10−4未満であると、球状の銅粒子からなる銅粉に近似するようになり、凝集が生じやすくなってペースト化に際して樹脂中に均一に分散させることが困難となる。一方で、アスペクト比が1.5×10−1を超えると、ペースト化に際して粘性が高まり、その銅ペーストの塗布時の外観形状の保持性や表面平滑性が悪化することがある。 Moreover, although the dendritic copper powder which concerns on this Embodiment is not specifically limited, The ratio which remove | divided the cross-sectional average thickness of the flat copper particle 1 mentioned above by the average particle diameter (D50) of the said dendritic copper powder. (Cross section average thickness / average particle diameter) is preferably in the range of 8.0 × 10 −4 to 1.5 × 10 −1 . The ratio (aspect ratio) represented by “average cross-sectional thickness / average particle diameter” is, for example, the degree of aggregation and dispersibility when processed as a conductive copper paste, and the retention of appearance when coating copper paste It becomes an indicator such as. If this aspect ratio is less than 8.0 × 10 −4 , it approximates to copper powder made of spherical copper particles, and aggregation tends to occur, making it difficult to uniformly disperse in the resin during paste formation. It becomes. On the other hand, when the aspect ratio exceeds 1.5 × 10 −1 , the viscosity increases during paste formation, and the external shape retainability and surface smoothness during application of the copper paste may deteriorate.

また、本実施の形態に係る樹枝状銅粉の嵩密度としては、特に限定されないが、0.5g/cm〜5.0g/cmの範囲であることが好ましい。嵩密度が0.5g/cm未満であると、銅粉同士の接点を十分に確保することができない可能性がある。一方で、嵩密度が5.0g/cmを超えると、樹枝状銅粉の平均粒子径も大きくなってしまい、すると表面積が小さくなって成形性や焼結性が悪化することがある。 As the bulk density of the dendritic copper powder according to the present embodiment is not particularly limited, is preferably in the range of 0.5g / cm 3 ~5.0g / cm 3 . If the bulk density is less than 0.5 g / cm 3 , there is a possibility that sufficient contact between the copper powders cannot be ensured. On the other hand, if the bulk density exceeds 5.0 g / cm 3 , the average particle diameter of the dendritic copper powder also increases, and the surface area may decrease to deteriorate the moldability and sinterability.

また、本実施の形態に係る樹枝状銅粉は、特に限定されないが、その結晶子径が800Å(オングストローム)〜2000Åの範囲に属することが好ましい。結晶子径が800Å未満であると、その主幹や枝を構成する銅粒子1が平板状ではなく球状に近い形状となる傾向があり、接触面積を十分に大きく確保することが困難となり、導電性が低下する可能性がある。一方で、結晶子径が2000Åを超えると、樹枝状銅粉の平均粒子径も大きくなってしまい、すると表面積が小さくなって成形性や焼結性が悪化することがある。   Moreover, although the dendritic copper powder which concerns on this Embodiment is not specifically limited, It is preferable that the crystallite diameter belongs to the range of 800 to (angstrom)-2000 to. When the crystallite diameter is less than 800 mm, the copper particles 1 constituting the main trunk and branches tend to be in a shape close to a spherical shape instead of a flat shape, and it becomes difficult to ensure a sufficiently large contact area. May be reduced. On the other hand, when the crystallite diameter exceeds 2000 mm, the average particle diameter of the dendritic copper powder is also increased, and the surface area is decreased and the moldability and the sinterability may be deteriorated.

なお、ここでの結晶子径とは、X線回折測定装置により得られる回折パターンから下記数式で示されるScherrerの計算式に基づいて求められるものであり、X線回折による(111)面のミラー指数における結晶子径である。
D=0.9λ/βcosθ
(なお、D:結晶子径(Å)、β:結晶子の大きさによる回折ピークの拡がり(rad)、λ:X線の波長[CuKα](Å)、θ:回折角(°)である。)
Here, the crystallite diameter is obtained from a diffraction pattern obtained by an X-ray diffraction measurement device based on Scherrer's calculation formula shown below, and is a (111) plane mirror by X-ray diffraction. It is the crystallite diameter in the index.
D = 0.9λ / βcos θ
(D: crystallite diameter (Å), β: diffraction peak spread (rad) depending on crystallite size, λ: X-ray wavelength [CuKα] (Å), θ: diffraction angle (°). .)

≪2.樹枝状銅粉の製造方法≫
本実施の形態に係る樹枝状銅粉は、例えば、銅イオンを含有する硫酸酸性溶液を電解液として用いて所定の電解法により製造することができる。
≪2. Method for producing dendritic copper powder >>
The dendritic copper powder according to the present embodiment can be produced, for example, by a predetermined electrolytic method using a sulfuric acid acidic solution containing copper ions as an electrolytic solution.

電解に際しては、例えば、金属銅を陽極(アノード)とし、ステンレス板やチタン板等を陰極(カソード)とし設置した電解槽中に、上述した銅イオンを含有する硫酸酸性の電解液を収容し、その電解液に所定の電流密度で直流電流を通電することによって電解処理を施す。これにより、通電に伴って陰極上に樹枝状銅粉を析出(電析)させることができる。特に、本実施の形態においては、電解により得られた粒状等の銅粉をボール等の媒体を用いて機械的に変形加工等することなく、その電解のみによって、平板状の微細銅粒子が集合して樹枝状を形成した樹枝状銅粉を陰極表面に析出させることができる。   In the electrolysis, for example, the above-described sulfuric acid-containing electrolytic solution containing copper ions is contained in an electrolytic cell in which metallic copper is used as an anode (anode) and a stainless plate or titanium plate is used as a cathode (cathode). The electrolytic solution is subjected to electrolytic treatment by applying a direct current at a predetermined current density. Thereby, a dendritic copper powder can be deposited (electrodeposition) on a cathode with electricity supply. In particular, in this embodiment, the fine copper particles in the form of a plate are gathered only by the electrolysis without mechanically deforming the granular copper powder obtained by electrolysis using a medium such as a ball. Thus, the dendritic copper powder having a dendritic shape can be deposited on the cathode surface.

より具体的に、電解液としては、例えば、水溶性銅塩と、硫酸と、アミン化合物等の添加剤と、塩化物イオンとを含有するものを用いることができる。   More specifically, as the electrolytic solution, for example, a solution containing a water-soluble copper salt, sulfuric acid, an additive such as an amine compound, and chloride ions can be used.

水溶性銅塩は、銅イオンを供給する銅イオン源であり、例えば硫酸銅五水和物等の硫酸銅、塩化銅、硝酸銅等が挙げられるが特に限定されない。また、電解液中での銅イオン濃度としては、1g/L〜20g/L程度、好ましくは5g/L〜10g/L程度とすることができる。   The water-soluble copper salt is a copper ion source that supplies copper ions, and examples thereof include copper sulfate such as copper sulfate pentahydrate, copper chloride, and copper nitrate, but are not particularly limited. The copper ion concentration in the electrolytic solution can be about 1 g / L to 20 g / L, preferably about 5 g / L to 10 g / L.

硫酸は、硫酸酸性の電解液とするためのものである。電解液中の硫酸の濃度としては、遊離硫酸濃度として20g/L〜300g/L程度、好ましくは50g/L〜150g/L程度とすることができる。この硫酸濃度は、電解液の電導度に影響するため、カソード上に得られる銅粉の均一性に影響する。   Sulfuric acid is for making a sulfuric acid electrolyte. The sulfuric acid concentration in the electrolytic solution can be about 20 g / L to 300 g / L, preferably about 50 g / L to 150 g / L, as the free sulfuric acid concentration. Since the sulfuric acid concentration affects the conductivity of the electrolyte, it affects the uniformity of the copper powder obtained on the cathode.

添加剤としては、例えばアミン化合物を用いることができる。このアミン化合物が、後述する塩化物イオンと共に、析出する銅粉の形状制御に寄与し、陰極表面に析出させる銅粉を、樹枝状形状を有し且つ所定の断面平均厚さの平板状である銅粒子から構成される、主幹と複数の枝とを有する樹枝状銅粉とすることができる。   As the additive, for example, an amine compound can be used. This amine compound, together with chloride ions described later, contributes to shape control of the deposited copper powder, and the copper powder deposited on the cathode surface has a dendritic shape and is a flat plate having a predetermined average cross-sectional thickness. A dendritic copper powder composed of copper particles and having a main trunk and a plurality of branches can be obtained.

アミン化合物としては、例えばヤヌスグリーン(Janus Green、C3031Cl、CAS番号:2869−83−2)等を用いることができる。なお、アミン化合物としては、1種単独で添加してもよく、2種類以上を併用して添加してもよい。また、アミン化合物類の添加量としては、電解液中における濃度が0.1mg/L〜500mg/L程度の範囲となる量とすることが好ましい。 The amine compounds, for example, Janus Green B (Janus Green, C 30 H 31 N 6 Cl, CAS Number: 2869-83-2), or the like can be used. In addition, as an amine compound, you may add individually by 1 type and may add it in combination of 2 or more types. Moreover, it is preferable to set it as the quantity from which the density | concentration in electrolyte solution will be the range of about 0.1 mg / L-500 mg / L as addition amount of amine compounds.

塩化物イオンとしては、塩酸、塩化ナトリウム等の塩化物イオンを供給する化合物(塩化物イオン源)を電解液中に添加することによって含有させることができる。塩化物イオンは、上述したアミン化合物等の添加剤と共に、析出する銅粉の形状制御に寄与する。電解液中の塩化物イオン濃度としては、特に限定されないが、200mg/L〜1000mg/L程度、好ましくは250mg/L〜800mg/L程度とすることができる。   As a chloride ion, it can be made to contain by adding the compound (chloride ion source) which supplies chloride ions, such as hydrochloric acid and sodium chloride, in electrolyte solution. A chloride ion contributes to shape control of the copper powder to precipitate with additives, such as an amine compound mentioned above. Although it does not specifically limit as a chloride ion density | concentration in electrolyte solution, About 200 mg / L-1000 mg / L, Preferably it can be set as about 250 mg / L-800 mg / L.

本実施の形態に係る樹枝状銅粉の製造方法においては、例えば、上述したような組成の電解液を用いて電解することによって陰極上に銅粉を析出生成させて製造する。電解方法としては、公知の方法を用いることができる。例えば、電流密度としては、硫酸酸性の電解液を用いて電解するにあたっては5A/dm〜30A/dmの範囲とすることが好ましく、電解液を撹拌しながら通電させる。また、電解液の液温(浴温)としては、例えば20℃〜60℃程度とすることができる。 In the method for producing a dendritic copper powder according to the present embodiment, for example, the copper powder is deposited and produced on the cathode by electrolysis using the electrolytic solution having the composition as described above. As the electrolysis method, a known method can be used. For example, the current density is preferably in the range of 5 A / dm 2 to 30 A / dm 2 when electrolyzing using a sulfuric acid electrolytic solution, and the electrolytic solution is energized while stirring. Moreover, as a liquid temperature (bath temperature) of electrolyte solution, it can be set as about 20 to 60 degreeC, for example.

≪3.導電性ペースト、導電塗料等の用途≫
本実施の形態に係る樹枝状銅粉は、上述したように、主幹と複数の枝とを有する樹枝状の銅粉であり、この樹枝状銅粉は、図1の模式図に示したような、主幹2及びその主幹2から分岐した複数の枝3とを有する樹枝状であって且つ断面厚さが0.02μm〜0.3μmである平板状の銅粒子1が集合して構成されている。そして、当該樹枝状銅粉の平均粒子径(D50)は、1.0μm〜30μmである。このような樹枝状銅粉では、樹枝状の形状であることにより表面積が大きくなり、成形性や焼結性に優れたものとなり、また樹枝状であって且つ所定の断面平均厚さを有する平板状の銅粒子1から構成されていることにより、接点の数を多く確保することができ、優れた導電性を発揮する。
≪3. Applications of conductive paste, conductive paint, etc. >>
As described above, the dendritic copper powder according to the present embodiment is a dendritic copper powder having a main trunk and a plurality of branches, and the dendritic copper powder is as shown in the schematic diagram of FIG. And a plate-like copper particle 1 having a main branch 2 and a plurality of branches 3 branched from the main trunk 2 and having a cross-sectional thickness of 0.02 μm to 0.3 μm. . And the average particle diameter (D50) of the said dendritic copper powder is 1.0 micrometer-30 micrometers. In such a dendritic copper powder, a dendritic shape has a large surface area, an excellent moldability and sinterability, and a dendritic flat plate having a predetermined cross-sectional average thickness. By being comprised from the shape-like copper particle 1, many contact points can be ensured and the outstanding electroconductivity is exhibited.

また、このような所定の構造を有する樹枝状銅粉によれば、銅ペースト等とした場合であっても、凝集を抑制することができ、樹脂中に均一に分散させることが可能となり、またペーストの粘度上昇等による印刷性不良等の発生を抑制することができる。したがって、樹枝状銅粉は、導電性ペーストや導電塗料等の用途に好適に用いることができる。   In addition, according to the dendritic copper powder having such a predetermined structure, even when a copper paste or the like is used, aggregation can be suppressed, and the resin can be uniformly dispersed in the resin. Occurrence of poor printability due to an increase in paste viscosity can be suppressed. Therefore, the dendritic copper powder can be suitably used for applications such as conductive paste and conductive paint.

本実施の形態においては、金属フィラー中に、上述した樹枝状銅粉が20質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上の量の割合となるよう構成する。金属フィラー中の樹枝状銅粉の割合を20質量%以上とすれば、例えばその金属フィラーを銅ペーストに用いた場合、樹脂中に均一に分散させることができ、またペーストの粘度が過度に上昇して印刷性不良が生じることを防ぐことができる。また、平板状の微細な銅粒子1の集合体からなる樹枝状銅粉であることにより、導電性ペーストとして優れた導電性を発揮させることができる。なお、金属フィラーとしては、上述したように樹枝状銅粉が20質量%以上の量の割合となるように含んでいればよく、その他は例えば1μm〜10μm程度の球状銅粉等を混ぜ合わせてもよい。   In this Embodiment, it comprises so that the dendritic copper powder mentioned above may become a ratio of the quantity of 20 mass% or more, Preferably it is 30 mass% or more, More preferably, it is 50 mass% or more in a metal filler. If the ratio of the dendritic copper powder in the metal filler is 20% by mass or more, for example, when the metal filler is used in the copper paste, it can be uniformly dispersed in the resin, and the viscosity of the paste excessively increases. As a result, it is possible to prevent printability defects. Moreover, the electroconductivity excellent as an electrically conductive paste can be exhibited by being dendritic copper powder which consists of an aggregate | assembly of the flat copper particle 1 of flat form. In addition, as a metal filler, what is necessary is just to contain so that dendritic copper powder may become the ratio of the quantity of 20 mass% or more as mentioned above, others mix spherical copper powder etc. about 1 micrometer-10 micrometers, etc., for example. Also good.

例えば導電性ペースト(銅ペースト)としては、本実施の形態に係る樹枝状銅粉を金属フィラーとして含み、バインダ樹脂、溶剤、さらに必要に応じて酸化防止剤やカップリング剤等の添加剤と混練することによって作製することができる。   For example, as a conductive paste (copper paste), the dendritic copper powder according to the present embodiment is contained as a metal filler, and kneaded with a binder resin, a solvent, and further an additive such as an antioxidant or a coupling agent as necessary. It can produce by doing.

具体的に、バインダ樹脂としては、特に限定されないが、エポキシ樹脂、フェノール樹脂等を用いることができる。また、溶剤としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン、ターピネオール等の有機溶剤を用いることができる。また、その有機溶剤の添加量としては、特に限定されないが、スクリーン印刷やディスペンサー等の導電膜形成方法に適した粘度となるように、樹枝状銅粉の粒度を考慮して添加量を調整することができる。   Specifically, the binder resin is not particularly limited, but an epoxy resin, a phenol resin, or the like can be used. Moreover, as a solvent, organic solvents, such as ethylene glycol, diethylene glycol, triethylene glycol, glycerol, and terpineol, can be used. Further, the amount of the organic solvent added is not particularly limited, but the amount added is adjusted in consideration of the particle size of the dendritic copper powder so that the viscosity is suitable for a conductive film forming method such as screen printing or a dispenser. be able to.

さらに、粘度調整のために他の樹脂成分を添加することもできる。例えば、エチルセルロースに代表されるセルロース系樹脂等が挙げられ、ターピネオール等の有機溶剤に溶解した有機ビヒクルとして添加される。なお、その樹脂成分の添加量としては、焼結性を阻害しない程度に抑える必要があり、好ましくは全体の5質量%以下とする。   Furthermore, other resin components can be added for viscosity adjustment. For example, a cellulose-based resin typified by ethyl cellulose can be used, which is added as an organic vehicle dissolved in an organic solvent such as terpineol. In addition, it is necessary to suppress the addition amount of the resin component to an extent that does not impair the sinterability, and is preferably 5% by mass or less of the whole.

また、添加剤としては、焼成後の導電性を改善するために酸化防止剤等を添加することができる。酸化防止剤としては、特に限定されないが、例えばヒドロキシカルボン酸等を挙げることができる。より具体的には、クエン酸、リンゴ酸、酒石酸、乳酸等のヒドロキシカルボン酸が好ましく、銅への吸着力が高いクエン酸又はリンゴ酸が特に好ましい。酸化防止剤の添加量としては、酸化防止効果やペーストの粘度等を考慮して、例えば1〜15質量%程度とすることができる。   Moreover, as an additive, in order to improve the electroconductivity after baking, antioxidant etc. can be added. Although it does not specifically limit as antioxidant, For example, a hydroxycarboxylic acid etc. can be mentioned. More specifically, hydroxycarboxylic acids such as citric acid, malic acid, tartaric acid, and lactic acid are preferable, and citric acid or malic acid having a high adsorptive power to copper is particularly preferable. The addition amount of the antioxidant can be, for example, about 1 to 15% by mass in consideration of the antioxidant effect and the viscosity of the paste.

次に、電磁波シールド用材料として、本実施の形態に係る金属フィラーを利用する場合においても、特に限定された条件で使用することはなく、一般的な方法、例えば金属フィラーを樹脂と混合して使用することができる。   Next, even when the metal filler according to the present embodiment is used as an electromagnetic wave shielding material, it is not used under particularly limited conditions. For example, a metal filler is mixed with a resin. Can be used.

例えば、電磁波シールド用導電性シートの電磁波シールド層を形成するために使用される樹脂としては、特に限定されるものではなく、従来使用されている、塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニリデン樹脂、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、オレフィン樹脂、塩素化オレフィン樹脂、ポリビニルアルコール系樹脂、アルキッド樹脂、フェノール樹脂などの各種重合体及び共重合体からなる熱可塑性樹脂、熱硬化性樹脂、放射線硬化型樹脂等を適宜使用することができる。   For example, the resin used for forming the electromagnetic wave shielding layer of the electromagnetic wave shielding conductive sheet is not particularly limited, and conventionally used vinyl chloride resin, vinyl acetate resin, vinylidene chloride resin, Thermoplastic resin, thermosetting resin, radiation curable type made of various polymers and copolymers such as acrylic resin, polyurethane resin, polyester resin, olefin resin, chlorinated olefin resin, polyvinyl alcohol resin, alkyd resin, phenol resin, etc. Resin etc. can be used suitably.

電磁波シールド材を製造する方法としては、例えば、上述したような金属フィラーと樹脂とを、溶媒に分散又は溶解して塗料とし、その塗料を基材上に塗布又は印刷によって電磁波シールド層を形成し、表面が固化する程度に乾燥することで製造することができる。また、本実施の形態に係る金属フィラーを導電性シートの導電性接着剤層に利用することもできる。   As a method for producing an electromagnetic wave shielding material, for example, a metal filler and a resin as described above are dispersed or dissolved in a solvent to form a paint, and an electromagnetic wave shielding layer is formed on the substrate by coating or printing. It can be produced by drying to such an extent that the surface solidifies. Moreover, the metal filler which concerns on this Embodiment can also be utilized for the conductive adhesive layer of a conductive sheet.

また、本実施の形態に係る金属フィラーを利用して電磁波シールド用導電性塗料とする場合においても、特に限定された条件で使用することはなく、一般的な方法、例えば金属フィラーを樹脂及び溶剤と混合し、さらに必要に応じて酸化防止剤、増粘剤、沈降防止剤等と混合して混練することで導電性塗料として利用することができる。   Further, even when a conductive paint for electromagnetic wave shielding is used by using the metal filler according to the present embodiment, it is not used under particularly limited conditions, and a general method, for example, a metal filler is used as a resin and a solvent. And further mixed with an antioxidant, a thickener, an anti-settling agent, etc., if necessary, and kneaded, and can be used as a conductive paint.

このときに使用するバインダ樹脂及び溶剤についても、特に限定されたものではなく、従来使用されている塩化ビニル樹脂、酢酸ビニル樹脂、アクリル樹脂、ポリエステル樹脂、フッ素樹脂、シリコン樹脂やフェノール樹脂等を利用することができる。また、溶剤についても、従来使用されているイソプロパノール等のアルコール類、トルエン等の芳香族炭化水素類、酢酸メチル等のエステル類、メチルエチルケトン等のケトン類等を利用することができる。まあ、添加剤としての酸化防止剤についても、従来使用されている脂肪酸アミド、高級脂肪酸アミン、フェニレンジアミン誘導体、チタネート系カップリング剤等を利用することができる。   The binder resin and solvent used at this time are not particularly limited, and conventionally used vinyl chloride resin, vinyl acetate resin, acrylic resin, polyester resin, fluorine resin, silicon resin, phenol resin, etc. are used. can do. As the solvent, conventionally used alcohols such as isopropanol, aromatic hydrocarbons such as toluene, esters such as methyl acetate, ketones such as methyl ethyl ketone, and the like can be used. Well, as the antioxidant as an additive, conventionally used fatty acid amides, higher fatty acid amines, phenylenediamine derivatives, titanate coupling agents and the like can be used.

以下、本発明の実施例を比較例と共に示してさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   Examples of the present invention will be described below in more detail with reference to comparative examples, but the present invention is not limited to the following examples.

<評価方法>
下記実施例及び比較例にて得られた銅粉について、以下の方法により、形状の観察、平均粒子径の測定、結晶子径の測定を行った。
<Evaluation method>
The copper powder obtained in the following Examples and Comparative Examples was subjected to shape observation, average particle diameter measurement, and crystallite diameter measurement by the following methods.

(形状の観察)
走査型電子顕微鏡(日本電子株式会社製,JSM−7100F型)により、所定の倍率の視野で任意に20視野を観察し、その視野内に含まれる銅粉を観察した。
(Observation of shape)
With a scanning electron microscope (manufactured by JEOL Ltd., JSM-7100F type), 20 visual fields were arbitrarily observed with a predetermined magnification, and copper powder contained in the visual field was observed.

(平均粒子径の測定)
得られた銅粉の平均粒子径(D50)は、レーザー回折・散乱法粒度分布測定器(日機装株式会社製,HRA9320 X−100)を用いて測定した。
(Measurement of average particle size)
The average particle diameter (D50) of the obtained copper powder was measured using a laser diffraction / scattering particle size distribution analyzer (manufactured by Nikkiso Co., Ltd., HRA9320 X-100).

(結晶子径の測定)
X線回折測定装置(PANanalytical社製,X‘Pert PRO)により得られた回折パターンから、一般にScherrerの式として知られる公知の方法を用いて算出した。
(Measurement of crystallite diameter)
From a diffraction pattern obtained by an X-ray diffractometer (manufactured by PANanalytical, X'Pert PRO), calculation was performed using a known method generally known as Scherrer's equation.

(アスペクト比の測定)
得られた銅粉をエポキシ樹脂に埋め込んで測定試料を作製し、その試料に対して切断・研磨を行い、走査型電子顕微鏡で観察することによって銅粉の断面を観察した。先ず、銅粉を20個観察して、その銅粉の平均厚さ(断面平均厚さ)を求めた。次に、その平均厚さの値とレーザー回折・散乱法粒度分布測定器で求めた平均粒子径(D50)との比から、アスペクト比(平均厚さ/D50)を求めた。
(Aspect ratio measurement)
The obtained copper powder was embedded in an epoxy resin to prepare a measurement sample, the sample was cut and polished, and observed with a scanning electron microscope to observe the cross section of the copper powder. First, 20 copper powders were observed, and the average thickness (cross-sectional average thickness) of the copper powder was determined. Next, the aspect ratio (average thickness / D50) was determined from the ratio between the average thickness value and the average particle size (D50) determined with a laser diffraction / scattering particle size distribution analyzer.

(比抵抗値測定)
被膜の比抵抗値は、低抵抗率計(三菱化学株式会社製,Loresta−GP MCP−T600)を用いて四端子法によりシート抵抗値を測定し、表面粗さ形状測定器(東京精密株式会社製,SURFCOM130A)により被膜の膜厚を測定して、シート抵抗値を膜厚で除することによって求めた。
(Specific resistance measurement)
The specific resistance value of the film was measured by measuring the sheet resistance value by a four-terminal method using a low resistivity meter (Loresta-GP MCP-T600, manufactured by Mitsubishi Chemical Corporation), and a surface roughness shape measuring instrument (Tokyo Seimitsu Co., Ltd.). The film thickness of the coating was measured by SURFCOM130A) and the sheet resistance value was divided by the film thickness.

(電磁波シールド特性)
電磁波シールド特性の評価は、各実施例及び比較例にて得られた試料について、周波数1GHzの電磁波を用いて、その減衰率を測定して評価した。具体的には、樹枝状銅粉を使用していない比較例3の場合のレベルを『△』として、その比較例3のレベルよりも悪い場合を『×』とし、その比較例3のレベルよりも良好な場合を『○』とし、さらに優れている場合を『◎』として評価した。
(Electromagnetic wave shielding characteristics)
The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate of the samples obtained in the examples and comparative examples using an electromagnetic wave having a frequency of 1 GHz. Specifically, the level in the case of Comparative Example 3 not using the dendritic copper powder is set as “△”, and the level worse than the level of Comparative Example 3 is set as “X”. Was evaluated as “◯”, and when it was excellent, “◎”.

また、電磁波シールドの可撓性についても評価するために、作製した電磁波シールドを折り曲げて電磁波シールド特性が変化するか否かを確認した。   Moreover, in order to evaluate also about the flexibility of an electromagnetic wave shield, the produced electromagnetic wave shield was bent and it was confirmed whether the electromagnetic wave shielding characteristic changed.

<実施例、比較例>
[実施例1]
容量が100Lの電解槽に、電極面積が200mm×200mmのチタン製の電極板を陰極として、電極面積が200mm×200mmの銅製の電極板を陽極として用いて、その電解槽中に電解液を装入し、これに直流電流を通電して銅粉を陰極板に析出させた。
<Examples and comparative examples>
[Example 1]
In an electrolytic cell having a capacity of 100 L, a titanium electrode plate having an electrode area of 200 mm × 200 mm is used as a cathode and a copper electrode plate having an electrode area of 200 mm × 200 mm is used as an anode, and an electrolytic solution is loaded in the electrolytic cell. Then, a direct current was applied thereto to deposit copper powder on the cathode plate.

このとき、電解液としては、銅イオン濃度が10g/L、硫酸濃度が100g/Lの組成のものを用いた。また、この電解液に、添加剤としてヤヌスグリーン(和光純薬工業株式会社製)を電解液中の濃度として125mg/Lとなるように添加し、さらに塩酸溶液(和光純薬工業株式会社製)を電解液中の塩化物イオン(塩素イオン)濃度として50mg/Lとなるように添加した。そして、上述したような濃度に調整した電解液を、定量ポンプを用いて15L/minの流量で循環しながら、温度を25℃に維持し、陰極の電流密度が15A/dmになるように通電して陰極板上に銅粉を析出させた。陰極板上に析出した電解銅粉を、スクレーパーを用いて機械的に電解槽の槽底に掻き落として回収し、回収した銅粉を純水で洗浄した後、減圧乾燥器に入れて乾燥した。 At this time, an electrolytic solution having a composition with a copper ion concentration of 10 g / L and a sulfuric acid concentration of 100 g / L was used. In addition, Janus Green (manufactured by Wako Pure Chemical Industries, Ltd.) as an additive is added to this electrolytic solution so that the concentration in the electrolytic solution is 125 mg / L, and further a hydrochloric acid solution (manufactured by Wako Pure Chemical Industries, Ltd.) Was added so that the chloride ion (chlorine ion) concentration in the electrolyte solution was 50 mg / L. Then, while circulating the electrolytic solution adjusted to the concentration as described above at a flow rate of 15 L / min using a metering pump, the temperature is maintained at 25 ° C. and the current density of the cathode is 15 A / dm 2. Current was applied to deposit copper powder on the cathode plate. The electrolytic copper powder deposited on the cathode plate was recovered by mechanically scraping it off the bottom of the electrolytic cell using a scraper, and the recovered copper powder was washed with pure water and then put in a vacuum dryer and dried. .

得られた電解銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で観察した結果、析出した銅粉は、2次元又は3次元の樹枝状の形状の銅粉であって、主幹とその主幹から分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する樹枝状形状を呈した銅粒子が集合してなる樹枝状銅粉であった。また、その主幹及び枝を有する樹枝状形状の銅粒子は、その断面厚さ(断面平均厚さ)が0.03μmの平板状であり、その表面に微細な凸部を有していた。なお、その表面に形成されている凸部の高さは平均で0.02μmであった。また、その樹枝状銅粉の平均粒子径(D50)は26.7μmであった。そして、その銅粒子の断面平均厚さと樹枝状銅粉の平均粒子径から算出されるアスペクト比(断面平均厚さ/平均粒子径)は1.1×10−3であった。また、得られた樹枝状銅粉の嵩密度は1.2g/cmであった。また、樹枝状銅粉の結晶子径は1826Åであった。なお、このような樹枝状銅粉は、得られた銅粉全体の中に少なくとも65%以上の割合で存在することが確認された。表1に、これらの結果をまとめて示す。 As a result of observing the shape of the obtained electrolytic copper powder by the method using the scanning electron microscope (SEM) described above, the deposited copper powder is a two-dimensional or three-dimensional dendritic copper powder, And a plurality of branches branched from the main trunk, and a dendritic copper powder formed by agglomeration of copper particles having a dendritic shape having a branch further branched from the branch. Further, the dendritic copper particles having the main trunk and the branch were flat plate having a cross-sectional thickness (cross-sectional average thickness) of 0.03 μm, and had fine convex portions on the surface thereof. The height of the convex portions formed on the surface was 0.02 μm on average. Moreover, the average particle diameter (D50) of the dendritic copper powder was 26.7 μm. And the aspect ratio (cross-sectional average thickness / average particle diameter) calculated from the cross-sectional average thickness of the copper particles and the average particle diameter of the dendritic copper powder was 1.1 × 10 −3 . Moreover, the bulk density of the obtained dendritic copper powder was 1.2 g / cm 3 . The crystallite diameter of the dendritic copper powder was 1826cm. In addition, it was confirmed that such dendritic copper powder exists in the ratio of at least 65% or more in the whole obtained copper powder. Table 1 summarizes these results.

[実施例2]
電解液として、銅イオン濃度が8g/L、硫酸濃度が100g/Lの組成のものを用い、その電解液に、添加剤としてヤヌスグリーンを電解液中の濃度として150mg/Lとなるように添加し、さらに塩酸溶液を電解液中の塩素イオン濃度として125mg/Lとなるように添加した。そして、上述したような濃度に調整した電解液を、定量ポンプを用いて20L/minの流量で循環しながら、温度を30℃に維持し、陰極の電流密度が20A/dmになるように通電し陰極板上に銅粉を析出させた。これら以外の条件は実施例1と同一として電解銅粉を作製した。
[Example 2]
As an electrolytic solution, a composition having a copper ion concentration of 8 g / L and a sulfuric acid concentration of 100 g / L is used, and Janus Green is added to the electrolytic solution so that the concentration in the electrolytic solution is 150 mg / L. Further, a hydrochloric acid solution was added so that the chlorine ion concentration in the electrolytic solution was 125 mg / L. Then, while circulating the electrolytic solution adjusted to the concentration as described above at a flow rate of 20 L / min using a metering pump, the temperature is maintained at 30 ° C. and the current density of the cathode is 20 A / dm 2. Energization was performed to deposit copper powder on the cathode plate. The electrolytic copper powder was prepared under the same conditions as in Example 1 except for these conditions.

得られた電解銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で観察した結果、析出した銅粉は、2次元又は3次元の樹枝状の形状の銅粉であって、主幹から分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する樹枝状形状を呈した銅粒子が集合してなる樹枝状銅粉であった。また、その主幹及び枝を有する樹枝状形状の銅粒子は、その断面厚さ(断面平均厚さ)が0.08μmの平板状であり、その表面に微細な凸部を有していた。なお、その表面に形成されている凸部の高さは平均で0.02μmであった。また、その樹枝状銅粉の平均粒子径(D50)は14.3μmであった。そして、その銅粒子の断面平均厚さと樹枝状銅粉の平均粒子径から算出されるアスペクト比(断面平均厚さ/平均粒子径)は5.6×10−3であった。また、得られた樹枝状銅粉の嵩密度は2.2g/cmであった。また、樹枝状銅粉の結晶子径は1568Åであった。なお、このような樹枝状銅粉は、得られた銅粉全体の銅粉中に少なくとも70%以上の割合で存在することが確認された。表1に、これらの結果をまとめて示す。 As a result of observing the shape of the obtained electrolytic copper powder by the method using the scanning electron microscope (SEM) described above, the deposited copper powder is a two-dimensional or three-dimensional dendritic copper powder, It was a dendritic copper powder formed by aggregating copper particles having a dendritic shape having a plurality of branches branched from and a branch further branched from the branches. In addition, the dendritic copper particles having the main trunk and the branches had a flat plate shape with a cross-sectional thickness (average cross-sectional thickness) of 0.08 μm, and had fine convex portions on the surface thereof. The height of the convex portions formed on the surface was 0.02 μm on average. Moreover, the average particle diameter (D50) of the dendritic copper powder was 14.3 μm. And the aspect ratio (cross-sectional average thickness / average particle diameter) calculated from the cross-sectional average thickness of the copper particle and the average particle diameter of the dendritic copper powder was 5.6 × 10 −3 . Moreover, the bulk density of the obtained dendritic copper powder was 2.2 g / cm 3 . The crystallite diameter of the dendritic copper powder was 1568 mm. In addition, it was confirmed that such dendritic copper powder exists in the copper powder of the whole obtained copper powder in the ratio of at least 70% or more. Table 1 summarizes these results.

[実施例3]
電解液として、銅イオン濃度が5g/L、硫酸濃度が125g/Lの組成のものを用い、その電解液に、添加剤としてヤヌスグリーンを電解液中の濃度として200mg/Lとなるように添加し、さらに塩酸溶液を電解液中の塩素イオン濃度として150mg/Lとなるように添加した。そして、上述したような濃度に調整した電解液を、定量ポンプを用いて25L/minの流量で循環しながら、温度を35℃に維持し、陰極の電流密度が25A/dmになるように通電して陰極板上に銅粉を析出させた。これら以外の条件は実施例1と同一として電解銅粉を作製した。
[Example 3]
An electrolytic solution having a copper ion concentration of 5 g / L and a sulfuric acid concentration of 125 g / L is used, and Janus Green is added to the electrolytic solution so that the concentration in the electrolytic solution is 200 mg / L. Further, a hydrochloric acid solution was added so that the chlorine ion concentration in the electrolytic solution was 150 mg / L. Then, while circulating the electrolyte adjusted to the concentration as described above at a flow rate of 25 L / min using a metering pump, the temperature is maintained at 35 ° C. and the current density of the cathode is 25 A / dm 2. Current was applied to deposit copper powder on the cathode plate. The electrolytic copper powder was prepared under the same conditions as in Example 1 except for these conditions.

得られた電解銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で観察した結果、析出した銅粉は、2次元又は3次元の樹枝状の形状の銅粉であって、主幹から直線的に分岐した複数の枝と、さらにその枝からさらに分岐した枝とを有する樹枝状形状を呈した銅粒子が集合してなる樹枝状銅粉であった。また、その主幹及び枝を有する銅粒子は、その断面厚さ(断面平均厚さ)が0.12μmの平板状であり、その表面に微細な凸部を有していた。なお、その表面に形成されている凸部の高さは平均で0.02μmであった。また、その樹枝状銅粉の平均粒子径(D50)は7.8μmであった。そして、その銅粒子の断面平均厚さと樹枝状銅粉の平均粒子径から算出されるアスペクト比(断面平均厚さ/平均粒子径)は1.5×10−2であった。また、得られた樹枝状銅粉の嵩密度は3.8g/cmであった。また、樹枝状銅粉の結晶子径は912Åであった。なお、このような樹枝状銅粉は、得られた銅粉全体の銅粉中に少なくとも75%以上の割合で存在することが確認された。表1に、これらの結果をまとめて示す。 As a result of observing the shape of the obtained electrolytic copper powder by the method using the scanning electron microscope (SEM) described above, the deposited copper powder is a two-dimensional or three-dimensional dendritic copper powder, It was a dendritic copper powder formed by agglomerating copper particles having a dendritic shape having a plurality of branches branched linearly from and further branched from the branches. Moreover, the copper particle which has the main trunk and the branch was flat form whose cross-sectional thickness (cross-sectional average thickness) is 0.12 micrometer, and had the fine convex part on the surface. The height of the convex portions formed on the surface was 0.02 μm on average. Moreover, the average particle diameter (D50) of the dendritic copper powder was 7.8 μm. And the aspect-ratio (cross-sectional average thickness / average particle diameter) computed from the cross-sectional average thickness of the copper particle and the average particle diameter of dendritic copper powder was 1.5 * 10 <-2 >. Moreover, the bulk density of the obtained dendritic copper powder was 3.8 g / cm 3 . The crystallite diameter of the dendritic copper powder was 912 mm. In addition, it was confirmed that such dendritic copper powder exists in the copper powder of the whole obtained copper powder in the ratio of at least 75% or more. Table 1 summarizes these results.

[実施例4]
実施例1で得られた樹枝状銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL−2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK−1)を用い、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間硬化させた。
[Example 4]
15 parts by mass of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 parts by mass of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 55 parts by mass of the dendritic copper powder obtained in Example 1. Then, using a small kneader (manufactured by Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), it was made into a paste by repeating kneading at 1200 rpm for 3 minutes three times. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 150 ° C. and 200 ° C. for 30 minutes in an air atmosphere.

硬化により得られた被膜の比抵抗値は、それぞれ、7.8×10−5Ω・cm(硬化温度150℃)、2.2×10−5Ω・cm(硬化温度200℃)であった。表1に、これらの結果をまとめて示す。 The specific resistance values of the films obtained by curing were 7.8 × 10 −5 Ω · cm (curing temperature 150 ° C.) and 2.2 × 10 −5 Ω · cm (curing temperature 200 ° C.), respectively. . Table 1 summarizes these results.

[実施例5]
実施例2で得られた樹枝状銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL−2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK−1)を用い、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間硬化させた。
[Example 5]
15 parts by mass of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211) and 10 parts by mass of butyl cellosolve (manufactured by Kanto Chemical Co., Ltd., deer special grade) are mixed with 55 parts by mass of the dendritic copper powder obtained in Example 2. Then, using a small kneader (manufactured by Nippon Seiki Seisakusho, non-bubbling kneader NBK-1), it was made into a paste by repeating kneading at 1200 rpm for 3 minutes three times. The obtained conductive paste was printed on a glass with a metal squeegee and cured at 150 ° C. and 200 ° C. for 30 minutes in an air atmosphere.

硬化により得られた被膜の比抵抗値は、それぞれ、8.1×10−5Ω・cm(硬化温度150℃)、2.6×10−5Ω・cm(硬化温度200℃)であった。表1にこれらの結果をまとめて示す。 The specific resistance values of the films obtained by curing were 8.1 × 10 −5 Ω · cm (curing temperature 150 ° C.) and 2.6 × 10 −5 Ω · cm (curing temperature 200 ° C.), respectively. . Table 1 summarizes these results.

[実施例6]
実施例1にて作製した樹枝状銅粉を樹脂に分散して電磁波シールド材とした。
[Example 6]
The dendritic copper powder prepared in Example 1 was dispersed in a resin to obtain an electromagnetic wave shielding material.

すなわち、実施例1にて得られた樹枝状銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを、100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。   That is, 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone were mixed with 40 g of the dendritic copper powder obtained in Example 1, and kneading at 1200 rpm for 3 minutes was repeated three times using a small kneader. To make a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried on a base material made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm using a Mayer bar to form an electromagnetic wave shielding layer having a thickness of 25 μm.

電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に、特性評価の結果を示す。   The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.

[比較例1]
電解液に、添加剤としてのヤヌスグリーンと、塩素イオンとを添加しない条件としたこと以外は、実施例1と同じ条件で銅粉を陰極板上に析出させて電解銅粉を作製した。
[Comparative Example 1]
Copper powder was deposited on the cathode plate under the same conditions as in Example 1 except that Janus Green as an additive and chlorine ions were not added to the electrolytic solution to produce electrolytic copper powder.

得られた電解銅粉の形状を、上述した走査型電子顕微鏡(SEM)による方法で観察した結果、得られた銅粉は樹枝状の形状を呈していたものの、粒状の銅粒子が集合したものであった。なお、図6は、この比較例1にて得られた銅粉のSEM観察像(倍率:250倍)である。また、得られた銅粉の平均粒子径(D50)は40μm以上にもなる非常に大きな樹枝状銅粉であることが確認された。また、樹枝状部には微小な凸部は形成されていなかった。   As a result of observing the shape of the obtained electrolytic copper powder by the method using the scanning electron microscope (SEM) described above, the obtained copper powder had a dendritic shape, but granular copper particles were aggregated. Met. FIG. 6 is an SEM observation image (magnification: 250 times) of the copper powder obtained in Comparative Example 1. Moreover, it was confirmed that the obtained copper powder is a very large dendritic copper powder having an average particle diameter (D50) of 40 μm or more. Further, no minute convex portion was formed on the dendritic portion.

[比較例2]
従来の平板状銅粉との比較を行うため、機械的に扁平化して平板状銅粉を作製した。具体的に、平板状銅粉の作製は、平均粒子径5.4μmの粒状アトマイズ銅粉(メイキンメタルパウダーズ社製)500gにステアリン酸5gを添加し、ボールミルで扁平化処理を行った。ボールミルには、3mmのジルコニアビーズを5kg投入し、500rpmの回転速度で90分間回転した。こうして作製した平板状銅粉をレーザー回折・散乱法粒度分布測定器で測定した結果、平均粒子径が12.6μmであり、走査型電子顕微鏡で観察した結果、厚さは0.5μmであり、表面は平滑で微小な凸部は形成されていなかった。そして、その断面平均厚さと平均粒子径から算出されるアスペクト比(断面平均厚さ/平均粒子径)は3.9×10−3であった。
[Comparative Example 2]
In order to compare with the conventional flat copper powder, it was flattened mechanically to produce a flat copper powder. Specifically, the flat copper powder was prepared by adding 5 g of stearic acid to 500 g of granular atomized copper powder (manufactured by Mekin Metal Powders) having an average particle diameter of 5.4 μm, and performing a flattening treatment with a ball mill. The ball mill was charged with 5 kg of 3 mm zirconia beads and rotated for 90 minutes at a rotation speed of 500 rpm. As a result of measuring the flat copper powder thus produced with a laser diffraction / scattering particle size distribution measuring instrument, the average particle diameter was 12.6 μm, and the thickness was 0.5 μm as a result of observation with a scanning electron microscope. The surface was smooth and no minute protrusions were formed. And the aspect ratio (cross-sectional average thickness / average particle diameter) calculated from the cross-sectional average thickness and average particle diameter was 3.9 * 10 < -3 >.

得られた平板状銅粉を、実施例4と同様にして、平板銅粉55質量部に、フェノール樹脂(群栄化学株式会社製,PL−2211)15質量部、ブチルセロソルブ(関東化学株式会社製,鹿特級)10質量部を混合し、小型ニーダー(日本精機製作所製,ノンバブリングニーダーNBK−1)を用い、1200rpm、3分間の混錬を3回繰り返すことでペースト化した。得られた導電ペーストを金属スキージでガラス上に印刷し、大気雰囲気中にて150℃、200℃でそれぞれ30分間硬化させた。   In the same manner as in Example 4, the obtained flat copper powder was added to 55 parts by mass of flat copper powder, 15 parts by mass of phenol resin (manufactured by Gunei Chemical Co., Ltd., PL-2211), and butyl cellosolve (manufactured by Kanto Chemical Co., Ltd.). , Deer special grade) 10 parts by mass were mixed, and paste was made by repeating kneading at 1200 rpm for 3 minutes three times using a small kneader (Nippon Seiki Seisakusho, non-bubbling kneader NBK-1). The obtained conductive paste was printed on a glass with a metal squeegee and cured at 150 ° C. and 200 ° C. for 30 minutes in an air atmosphere.

硬化により得られた被膜の比抵抗値は、それぞれ、5.6×10−4Ω・cm(硬化温度150℃)、8.3×10−5Ω・cm(硬化温度200℃)であった。表1に、これらの結果をまとめて示す。 The specific resistance values of the films obtained by curing were 5.6 × 10 −4 Ω · cm (curing temperature 150 ° C.) and 8.3 × 10 −5 Ω · cm (curing temperature 200 ° C.), respectively. . Table 1 summarizes these results.

[比較例3]
比較例2にて作製した平板状銅粉を樹脂に分散して電磁波シールド材とした。
[Comparative Example 3]
The flat copper powder produced in Comparative Example 2 was dispersed in a resin to obtain an electromagnetic wave shielding material.

すなわち、比較例2にて得られた平板状銅粉40gに対して、塩化ビニル樹脂100gと、メチルエチルケトン200gとをそれぞれ混合し、小型ニーダーを用いて、1200rpm、3分間の混錬を3回繰り返すことによってペースト化した。ペースト化に際しては、銅粉が凝集することなく、樹脂中に均一に分散した。これを100μmの厚さの透明ポリエチレンテレフタレートシートからなる基材の上にメイヤーバーを用いて塗布・乾燥し、厚さ25μmの電磁波シールド層を形成した。   That is, 100 g of vinyl chloride resin and 200 g of methyl ethyl ketone are mixed with 40 g of the flat copper powder obtained in Comparative Example 2, and kneading at 1200 rpm for 3 minutes is repeated three times using a small kneader. To make a paste. During pasting, the copper powder was uniformly dispersed in the resin without agglomeration. This was coated and dried using a Mayer bar on a substrate made of a transparent polyethylene terephthalate sheet having a thickness of 100 μm to form an electromagnetic wave shielding layer having a thickness of 25 μm.

電磁波シールド特性については、周波数1GHzの電磁波を用いて、その減衰率を測定することによって評価した。表1に、特性評価の結果を示す。   The electromagnetic shielding characteristics were evaluated by measuring the attenuation rate using an electromagnetic wave having a frequency of 1 GHz. Table 1 shows the results of the characteristic evaluation.

1 銅粒子
2 (銅粒子の)主幹
3,3a,3b (銅粒子の)枝
1 Copper particle 2 Main trunk (of copper particle) 3, 3a, 3b (copper particle) branch

Claims (8)

樹枝状に成長した主幹と該主幹から分かれた複数の枝とを有する形状の銅粒子が集合した銅粉であって、
前記銅粒子の主幹及び枝は断面平均厚さが0.02μm〜0.3μmの平板状であり、
当該銅粉の平均粒子径(D50)が1.0μm〜30μmである
ことを特徴とする銅粉。
A copper powder in which copper particles in a shape having a main trunk grown in a dendritic shape and a plurality of branches separated from the main trunk are assembled,
The main trunks and branches of the copper particles have a flat plate shape with a cross-sectional average thickness of 0.02 μm to 0.3 μm,
The copper powder is characterized in that the average particle diameter (D50) of the copper powder is 1.0 μm to 30 μm.
前記銅粒子の表面に微細な凸部があり、該凸部の平均高さが0.01μm〜0.3μmであることを特徴とする請求項1に記載の銅粉。   The copper powder according to claim 1, wherein the surface of the copper particles has fine convex portions, and the average height of the convex portions is 0.01 μm to 0.3 μm. 前記平板状の銅粒子の断面厚さを当該銅粉の平均粒子径(D50)で除した比が8.0×10−4〜1.5×10−1の範囲であり、且つ、当該銅粉の嵩密度が0.5g/cm〜5.0g/cmの範囲であることを特徴とする請求項1又は2に記載の銅粉。 The ratio obtained by dividing the cross-sectional thickness of the flat copper particles by the average particle diameter (D50) of the copper powder is in the range of 8.0 × 10 −4 to 1.5 × 10 −1 , and the copper copper powder according to claim 1 or 2 the bulk density of the powder is characterized in that in the range of 0.5g / cm 3 ~5.0g / cm 3 . X線回折による(111)面のミラー指数における結晶子径が800Å〜2000Åの範囲に属することを特徴とする請求項1乃至3のいずれかに記載の銅粉。   The copper powder according to any one of claims 1 to 3, wherein a crystallite diameter in a Miller index of a (111) plane by X-ray diffraction belongs to a range of 800 to 2000 mm. 請求項1乃至4のいずれかに記載の銅粉を、全体の20質量%以上の割合で含有していることを特徴とする金属フィラー。   A metal filler containing the copper powder according to any one of claims 1 to 4 at a ratio of 20% by mass or more of the whole. 請求項5に記載の金属フィラーを樹脂に混合させてなることを特徴とする銅ペースト。   A copper paste obtained by mixing the metal filler according to claim 5 into a resin. 請求項5に記載の金属フィラーを用いたことを特徴とする電磁波シールド用の導電性塗料。   6. A conductive paint for electromagnetic wave shielding, wherein the metal filler according to claim 5 is used. 請求項5に記載の金属フィラーを用いたことを特徴とする電磁波シールド用の導電性シート。   An electroconductive sheet for electromagnetic wave shielding, wherein the metal filler according to claim 5 is used.
JP2014222710A 2014-10-31 2014-10-31 Copper powder and copper paste, conductive paint, conductive sheet using the same Expired - Fee Related JP6274076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014222710A JP6274076B2 (en) 2014-10-31 2014-10-31 Copper powder and copper paste, conductive paint, conductive sheet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014222710A JP6274076B2 (en) 2014-10-31 2014-10-31 Copper powder and copper paste, conductive paint, conductive sheet using the same

Publications (2)

Publication Number Publication Date
JP2016089199A JP2016089199A (en) 2016-05-23
JP6274076B2 true JP6274076B2 (en) 2018-02-07

Family

ID=56018923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014222710A Expired - Fee Related JP6274076B2 (en) 2014-10-31 2014-10-31 Copper powder and copper paste, conductive paint, conductive sheet using the same

Country Status (1)

Country Link
JP (1) JP6274076B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061443A1 (en) * 2015-10-05 2017-04-13 住友金属鉱山株式会社 Sn-COATED COPPER POWDER, CONDUCTIVE PASTE USING SAME, AND PRODUCING METHOD FOR Sn-COATED COPPER POWDER
CN111834231A (en) * 2019-04-19 2020-10-27 中国科学院深圳先进技术研究院 Copper-based conductive paste and preparation method and application thereof
WO2024185862A1 (en) * 2023-03-07 2024-09-12 国立大学法人九州大学 Core-shell particle and production method for same, and production method for basic chemical

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381706A (en) * 1986-09-26 1988-04-12 三井金属鉱業株式会社 Composition for copper based thick film
JPH01247584A (en) * 1988-03-30 1989-10-03 Nippon Mining Co Ltd Production of electrolytic copper powder
JPH0353092A (en) * 1989-07-19 1991-03-07 Nippon Mining Co Ltd Production of copper fine powder
JP4697643B2 (en) * 2009-09-07 2011-06-08 福田金属箔粉工業株式会社 Aggregate of electrolytic copper powder and method for producing the electrolytic copper powder

Also Published As

Publication number Publication date
JP2016089199A (en) 2016-05-23

Similar Documents

Publication Publication Date Title
JP5858201B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
JP5920540B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
WO2016038914A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP5920541B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP5907301B1 (en) Silver-coated copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing silver-coated copper powder
WO2016031286A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JP5907302B1 (en) Copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing copper powder
JP2016139598A (en) Silver coated copper powder, and copper paste, conductive coating and conductive sheet using the same
JP6274076B2 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
JP5858200B1 (en) Copper powder and conductive paste, conductive paint, conductive sheet, antistatic paint using the same
JP2017071819A (en) Silver powder and conductive paste, conductive coating and conductive sheet using the same
JP5790900B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP6332125B2 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP6332124B2 (en) Copper powder and conductive paste, conductive paint, conductive sheet using the same
JP2016008333A (en) Copper powder and copper paste using the same
JP6350475B2 (en) Method for producing copper powder and method for producing conductive paste using the same
JP6332058B2 (en) Copper powder, and copper paste, conductive paint, and conductive sheet using the same
JP2016060966A (en) Silver coat copper powder and conductive paste using the same, conductive coating and conductive sheet
JP2016138301A (en) Manufacturing method of dendritic copper powder, and conductive copper paste, conductive coating and conductive sheet using the same
JP5858202B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
TWI541305B (en) Copper powder and the use of its copper paste, conductive paint, conductive film
JP2017066462A (en) Method for manufacturing silver coated copper powder and method for manufacturing conductive paste using the same
JP5994897B1 (en) Method for producing dendritic copper powder, and copper paste, conductive paint, and conductive sheet using the dendritic copper powder
JP2016094658A (en) Silver-coated copper powder, conductive paste using the same, conductive coating material, and conductive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R150 Certificate of patent or registration of utility model

Ref document number: 6274076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees