JP5701695B2 - Silver-coated copper powder and method for producing the same - Google Patents

Silver-coated copper powder and method for producing the same Download PDF

Info

Publication number
JP5701695B2
JP5701695B2 JP2011131545A JP2011131545A JP5701695B2 JP 5701695 B2 JP5701695 B2 JP 5701695B2 JP 2011131545 A JP2011131545 A JP 2011131545A JP 2011131545 A JP2011131545 A JP 2011131545A JP 5701695 B2 JP5701695 B2 JP 5701695B2
Authority
JP
Japan
Prior art keywords
silver
copper powder
coated copper
powder
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011131545A
Other languages
Japanese (ja)
Other versions
JP2013001917A (en
Inventor
卓 藤本
卓 藤本
昌宏 三輪
昌宏 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2011131545A priority Critical patent/JP5701695B2/en
Publication of JP2013001917A publication Critical patent/JP2013001917A/en
Application granted granted Critical
Publication of JP5701695B2 publication Critical patent/JP5701695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導電性ペーストなどの材料として好適に用いることができる銀被覆銅粉の製造方法に関する。   The present invention relates to a method for producing a silver-coated copper powder that can be suitably used as a material such as a conductive paste.

銀は導電性に優れているため、異方導電性フィルム、導電性ペースト、導電性接着剤など、各種導電性材料の主要構成材料として用いられている。例えば銀粒子に、結合剤および溶剤を混合して導電性ペーストとし、この導電性ペーストを用いて基板上に回路パターンを印刷し、焼き付けることでプリント配線板や電子部品の電気回路などを形成することができる。   Since silver is excellent in conductivity, it is used as a main constituent material of various conductive materials such as anisotropic conductive films, conductive pastes, and conductive adhesives. For example, silver particles are mixed with a binder and a solvent to form a conductive paste. A circuit pattern is printed on the substrate using this conductive paste and baked to form a printed wiring board or an electric circuit of an electronic component. be able to.

しかし、銀はとても高価であるため、無電解メッキなどによって芯材粒子の表面に、貴金属の膜をメッキしてなる被覆粉と呼ばれる導電性粉末が開発され使用されている。例えば特許文献1には、芯材としての銀被覆銅粒子の表面を、酸化銀、炭酸銀、及び有機酸銀のいずれかの銀化合物で被覆してなる銀化合物被覆銅粉であって、SSA(m/g)が0.1〜10.0であり、D50(μm)が0.5〜10.0であり、1wt%〜40wt%の割合で銀化合物を粒子表面に付着させてなる銀化合物被覆銅粉が開示されている。 However, since silver is very expensive, conductive powder called coating powder, which is obtained by plating a noble metal film on the surface of core material particles by electroless plating or the like, has been developed and used. For example, Patent Document 1 discloses a silver compound-coated copper powder obtained by coating the surface of silver-coated copper particles as a core material with a silver compound of silver oxide, silver carbonate, and organic acid silver, and SSA (M 3 / g) is 0.1 to 10.0, D50 (μm) is 0.5 to 10.0, and a silver compound is adhered to the particle surface at a rate of 1 wt% to 40 wt%. Silver compound-coated copper powder is disclosed.

銅粉粒子表面に銀を被覆させる方法として、還元メッキ被覆法と置換メッキ被覆の2種類を挙げることができる。   As a method for coating the surface of the copper powder particles with silver, there can be mentioned two types, ie, a reduction plating coating method and a displacement plating coating.

還元メッキ被覆法は、銅粉粒子の表面に、還元剤で還元された銀の微粒子を緻密に被覆させていく方法であり、例えば特許文献2には、還元剤が溶存した水溶液中で金属銅粉と硝酸銀を反応させる銀被覆銅粉の製造方法が提案されている。   The reduction plating coating method is a method in which fine particles of silver reduced with a reducing agent are densely coated on the surface of copper powder particles. For example, Patent Document 2 discloses metallic copper in an aqueous solution in which a reducing agent is dissolved. A method for producing a silver-coated copper powder in which powder and silver nitrate are reacted is proposed.

他方、置換メッキ被覆法は、銅粉粒子の界面で、銀イオンが金属の銅と電子の授受を行い、銀イオンが金属の銀に還元され、代わりに金属の銅が酸化され銅イオンになることで、銅粉粒子の表面層を銀層とする方法であり、例えば特許文献3には、銀イオンが存在する有機溶媒含有溶液中で、銀イオンと金属銅との置換反応により、銀を銅粒子の表面に被覆する銀被覆銅粉の製造方法が記載されている。   On the other hand, in the displacement plating coating method, silver ions exchange electrons with metallic copper at the interface of copper powder particles, silver ions are reduced to metallic silver, and instead metallic copper is oxidized into copper ions. That is, a method in which the surface layer of the copper powder particles is a silver layer. For example, in Patent Document 3, silver is exchanged between silver ions and metallic copper in an organic solvent-containing solution in which silver ions are present. A method for producing silver-coated copper powder for coating the surface of copper particles is described.

特開2008―106368号公報JP 2008-106368 A 特開2000−248303号公報JP 2000-248303 A 特開2006−161081号公報JP 2006-161081 A

従来の置換メッキ被覆法においては、銀の置換反応が進むにつれて、反応溶液中の銅イオン濃度が高まるため、該反応溶液から銀被覆銅粉を取り出す時に、水などで洗浄することが行われていた。しかし、水で洗浄しただけでは、銅イオンの一部が銀被覆銅粉に再吸着するため、粒子表面に銅イオンが残留することになる。この状態で乾燥させると、銅イオンが酸化銅を形成し、粒子表面に酸化銅の被膜を形成するため、粉末が黒くなるばかりか、導電性が低下することが分かってきた。
そこで本発明は、より一層優れた導電性を発揮し得る銀被覆銅粉を提供することを目的とする。
In the conventional displacement plating coating method, as the silver substitution reaction proceeds, the concentration of copper ions in the reaction solution increases. Therefore, when the silver-coated copper powder is removed from the reaction solution, it is washed with water or the like. It was. However, only by washing with water, some of the copper ions are re-adsorbed on the silver-coated copper powder, so that the copper ions remain on the particle surface. It has been found that, when dried in this state, the copper ions form copper oxide and form a copper oxide film on the particle surface, so that not only the powder becomes black, but also the conductivity decreases.
Then, an object of this invention is to provide the silver covering copper powder which can exhibit the further outstanding electroconductivity.

本発明は、銅粉粒子表面が銀で被覆されてなる銀被覆銅粉粒子からなる銀被覆銅粉であって、X線電子分光を測定した際に測定される、銀被覆銅粉粒子の表面に存在する銀の分光強度比から求められる銀量(atomic%)に対する、銀被覆銅粉粒子の表面に存在する銅の分光強度比から求められる銅量(atomic%)に対する比率が0.05未満であることを特徴とする銀被覆銅粉を提案するものである。
The present invention is a silver-coated copper powder composed of silver-coated copper powder particles whose surface is coated with silver, and is measured when X-ray electron spectroscopy is measured, the surface of the silver-coated copper powder particles The ratio of the amount of copper (atomic%) obtained from the spectral intensity ratio of copper present on the surface of silver-coated copper powder particles to the amount of silver (atomic%) obtained from the spectral intensity ratio of silver present in silver is less than 0.05 The present invention proposes a silver-coated copper powder characterized by

本発明はまた、このような銀被覆銅粉の製造方法として、芯材としての銅粉を水に分散させ、キレート剤を添加した後、水に可溶な銀塩を加えて置換反応させて銅粉粒子の表面層を銀に置換させた後、得られた銀被覆銅粉を溶液から取り出してキレート剤を用いて洗浄することを特徴とする、銀被覆銅粉の製造方法を提案するものである。   The present invention also provides a method for producing such silver-coated copper powder by dispersing copper powder as a core material in water, adding a chelating agent, and then adding a water-soluble silver salt to cause a substitution reaction. A method for producing a silver-coated copper powder, characterized in that after the surface layer of the copper powder particles is replaced with silver, the obtained silver-coated copper powder is taken out of the solution and washed with a chelating agent. It is.

銀被覆銅粉粒子の表面に存在する銅の量が、粒子表面に存在する銀の量に対して0.05未満であれば、粒子表面に酸化銅の被膜が形成されるのを抑えることができ、粉末が黒くなるのを防止できるばかりか、導電性をより一層高めることができる。よって、本発明が提案する銀被覆銅粉は、導電性ペーストなどの材料として好適に用いることができる。   If the amount of copper present on the surface of the silver-coated copper powder particles is less than 0.05 with respect to the amount of silver present on the particle surface, it is possible to suppress the formation of a copper oxide film on the particle surface. In addition to preventing the powder from becoming black, the conductivity can be further increased. Therefore, the silver-coated copper powder proposed by the present invention can be suitably used as a material such as a conductive paste.

実施例1で得られた銀被覆銅粉から任意に選択した一部の粉末を、走査型電子顕微鏡(SEM)を用いて1000倍の倍率で観察した際のSEM写真である。It is a SEM photograph at the time of observing a part of powder arbitrarily selected from the silver covering copper powder obtained in Example 1 at 1000 times the magnification using a scanning electron microscope (SEM). 実施例2で得られた銀被覆銅粉から任意に選択した一部の粉末を、走査型電子顕微鏡(SEM)を用いて1000倍の倍率で観察した際のSEM写真である。It is a SEM photograph at the time of observing a part of powder arbitrarily selected from the silver covering copper powder obtained in Example 2 at 1000-times magnification using a scanning electron microscope (SEM). 実施例3で得られた銀被覆銅粉から任意に選択した一部の粉末を、走査型電子顕微鏡(SEM)を用いて1000倍の倍率で観察した際のSEM写真である。It is a SEM photograph at the time of observing a part of powder arbitrarily selected from the silver covering copper powder obtained in Example 3 at 1000 times the magnification using a scanning electron microscope (SEM). 実施例4で得られた銀被覆銅粉から任意に選択した一部の粉末を、走査型電子顕微鏡(SEM)を用いて1000倍の倍率で観察した際のSEM写真である。It is a SEM photograph at the time of observing a part of powder arbitrarily selected from the silver covering copper powder obtained in Example 4 at 1000 times the magnification using a scanning electron microscope (SEM). 実施例5で得られた銀被覆銅粉から任意に選択した一部の粉末を、走査型電子顕微鏡(SEM)を用いて1000倍の倍率で観察した際のSEM写真である。It is a SEM photograph at the time of observing a part of powder arbitrarily selected from the silver covering copper powder obtained in Example 5 at 1000 times the magnification using a scanning electron microscope (SEM). 比較例1で得られた銀被覆銅粉から任意に選択した一部の粉末を、走査型電子顕微鏡(SEM)を用いて1000倍の倍率で観察した際のSEM写真である。It is a SEM photograph at the time of observing some powder arbitrarily selected from the silver covering copper powder obtained in comparative example 1 using a scanning electron microscope (SEM) at 1000 times the magnification. 比較例2で得られた銀被覆銅粉から任意に選択した一部の粉末を、走査型電子顕微鏡(SEM)を用いて1000倍の倍率で観察した際のSEM写真である。It is a SEM photograph at the time of observing a part of powder arbitrarily selected from silver covering copper powder obtained in comparative example 2 using a scanning electron microscope (SEM) at 1000 times magnification.

以下、本発明の実施形態について詳述するが、本発明の範囲が以下の実施形態に限定されるものではない。   Hereinafter, although the embodiment of the present invention is described in detail, the scope of the present invention is not limited to the following embodiment.

本実施形態に係る銅粉は、芯材としての銅粉粒子の表面を銀で被覆してなる銀被覆銅粉粒子(「本銅粉粒子」と称する)からなる銀被覆銅粉(「本銀被覆銅粉」と称する)である。   The copper powder according to the present embodiment is a silver-coated copper powder (“genuine silver”) composed of silver-coated copper powder particles (referred to as “main copper powder particles”) obtained by coating the surface of copper powder particles as a core with silver. Referred to as “coated copper powder”.

(粒子表面における銅・銀比率)
本銅粉粒子は、銀被覆銅粉粒子の表面に存在する銀の量に対する、銀被覆銅粉粒子の表面に存在する銅の量の比率が0.05未満であることが重要である。粒子表面に存在する銅の量が、粒子表面に存在する銀の量に対して0.05未満であれば、粒子表面に酸化銅の被膜が形成されるのを抑えることができ、粉末が黒くなるのを防止できるばかりか、導電性をより一層高めることができる。
かかる観点から、粒子表面に存在する銅の量が、粒子表面に存在する銀の量に対して0.04未満であるのがより一層好ましく、0.03未満であるのがさらに好ましい。他方、下限は小さい程好ましいが、銅キレート化合物が可逆反応により、銅イオンが再度溶出し、銅が再吸着するという観点から現実的には0.005程度となると予想される。
なお、粒子表面に存在する銀の量に対する銅の量の比率は、X線電子分光で測定される分光強度比から求めることができる。
(Copper / silver ratio on particle surface)
In the present copper powder particles, it is important that the ratio of the amount of copper present on the surface of the silver-coated copper powder particles to the amount of silver present on the surface of the silver-coated copper powder particles is less than 0.05. If the amount of copper present on the particle surface is less than 0.05 with respect to the amount of silver present on the particle surface, the formation of a copper oxide film on the particle surface can be suppressed, and the powder becomes black. In addition to preventing this, the conductivity can be further increased.
From this point of view, the amount of copper present on the particle surface is more preferably less than 0.04, and even more preferably less than 0.03, relative to the amount of silver present on the particle surface. On the other hand, the smaller the lower limit, the better. However, it is expected that the copper chelate compound is practically about 0.005 from the viewpoint that the copper ions are eluted again by the reversible reaction and the copper is re-adsorbed.
In addition, the ratio of the amount of copper to the amount of silver present on the particle surface can be determined from the spectral intensity ratio measured by X-ray electron spectroscopy.

(粒子形状)
本銅粉粒子の粒子形状は、特に限定するものではないが、優れた伝導性を得る観点から、デンドライト状を呈するのが好ましい。より具体的には、電子顕微鏡観察(1000倍)による粒子形状が、デンドライト状を呈することが好ましい。
本銀被覆銅粉の粒子形状がデンドライト状を呈するものであれば、例えば導電性ペースト中の含有量が少なくとも導電性を得ることができる。
ここで、「デンドライト状」とは、主枝から枝部分が分岐して平面状或いは三次元的に成長してなる形状のものを包含する。
(Particle shape)
Although the particle shape of this copper powder particle | grain is not specifically limited, From a viewpoint of obtaining the outstanding electroconductivity, it is preferable to exhibit a dendrite shape. More specifically, it is preferable that the particle shape by electron microscope observation (1000 times) exhibits a dendrite shape.
If the silver-coated copper powder has a dendritic particle shape, for example, at least the content in the conductive paste can provide conductivity.
Here, the “dendritic shape” includes a shape in which a branch portion branches from the main branch and grows planarly or three-dimensionally.

中でも、デンドライト状であっても、幅広の葉が集まって松ぼっくり状を呈するものではなく、棒状の主枝から棒状の分岐が適宜間隔を置いて伸長してなる針枝状を呈するのが好ましい。
デンドライト状と呼ばれるものの中には、多数の針状部が放射状に伸長してなる形状のものもある。しかし、本銀被覆銅粉に主として含まれる粒子は、同じくデンドライト状を呈する粒子であっても、棒状の主枝から棒状の分岐が適宜間隔を置いて伸長してなる針枝状か、或いは前記分岐の内、一部の分岐が途中で折れた針枝状を呈するものであるのが好ましい。
Among them, even if it is dendritic, it does not have a pinecone shape because wide leaves gather, but it preferably has a needle branch shape in which a rod-like branch extends from the main rod-like branch at an appropriate interval.
Some of the so-called dendritic shapes have a shape in which a large number of needle-like portions are radially extended. However, the particles mainly contained in the present silver-coated copper powder may be needle-branched formed by extending a rod-shaped branch from the rod-shaped main branch at an appropriate interval, even if the particles also have a dendritic shape, or the above-mentioned Among the branches, it is preferable that some branches have a needle branch shape broken in the middle.

以上の中でも、本銅粉粒子を走査型電子顕微鏡(SEM)にて観察して測定されるデンドライト状粒子の長径に対する短径の比率(短径/長径)が0.1〜0.5であるものが好ましい。この比率が小さければ小さい程、デンドライトが発達していると言える。すなわち、短径/長径が0.1〜0.5であれば、デンドライトは発達しているため、デンドライトの枝が重なりあい、導通が取りやすい点で好ましい。かかる観点から、短径/長径は0.4以下であるのがさらに好ましく、中でも0.3以下であるのがより一層好ましい。   Among these, the ratio (minor axis / major axis) of the minor axis to the major axis of the dendrite-like particles measured by observing the copper powder particles with a scanning electron microscope (SEM) is 0.1 to 0.5. Those are preferred. It can be said that the smaller this ratio is, the more dendrite is developed. That is, if the minor axis / major axis is 0.1 to 0.5, the dendrite has been developed, and therefore, the dendrite branches are overlapped, which is preferable in terms of easy conduction. From this viewpoint, the minor axis / major axis is further preferably 0.4 or less, and more preferably 0.3 or less.

但し、電子顕微鏡で観察した際(1000倍)、非デンドライト状の粒子が混じっていても、多くがデンドライト状であれば、同様の効果を得ることができる。かかる観点から、本銀被覆銅粉は、電子顕微鏡で観察した際(1000倍)、デンドライト状の粒子が80%以上、好ましくは90%以上を占めていれば、非デンドライト状の粒子が含まれていてもよい。   However, when observed with an electron microscope (1000 times), even if non-dendritic particles are mixed, the same effect can be obtained if many of them are dendritic. From this point of view, the present silver-coated copper powder contains non-dendritic particles if the dendritic particles account for 80% or more, preferably 90% or more when observed with an electron microscope (1000 times). It may be.

(銀の量)
本銀被覆銅粉において、銀の含有量は、本銀被覆銅粉全体に対して3.0〜35.0質量%であるのが好ましい。銀の含有量が、銅の含有量の3.0質量%以上であれば、銅粒子の表面を均一に被覆するのに十分な量であるため、銅の露出が少なくなり、十分な導電性を得ることができる。その一方、35.0質量%以下であれば、導電性を得ることは十分であり、しかも、必要以上に銀を被覆することなく経済的である。言い換えれば、35.0質量%以下であれば、製造の方法にもよるが、銀粒子と比較して経済的により優位となるから好ましい。このような観点から、銀の含有量は、粉末全体に対して3.0〜35.0質量%であるのが好ましく、中でも5.0質量%以上或いは25.0質量%以下、その中でも8.0質量%以上或いは20.0質量%以下であるのがさらに好ましい。
(Amount of silver)
In the present silver-coated copper powder, the silver content is preferably 3.0 to 35.0 mass% with respect to the entire present silver-coated copper powder. If the silver content is 3.0% by mass or more of the copper content, the copper content is sufficient to uniformly coat the surface of the copper particles, so that the copper exposure is reduced and sufficient conductivity is obtained. Can be obtained. On the other hand, if it is 35.0 mass% or less, it will be sufficient to obtain electroconductivity, and it is economical, without covering silver more than necessary. In other words, if it is 35.0% by mass or less, although it depends on the production method, it is preferable because it is economically superior to silver particles. From such a viewpoint, the silver content is preferably 3.0 to 35.0% by mass with respect to the whole powder, and more preferably 5.0% by mass or more or 25.0% by mass or less, of which 8 More preferably, it is 0.0 mass% or more or 20.0 mass% or less.

(中心粒径(D50))
本銀被覆銅粉の中心粒径(D50)、すなわちレーザー回折散乱式粒度分布測定装置によって測定される体積累積粒径D50は、3.0μm〜30.0μmであるのが好ましい。導電粒子として大きな粒子であると、ペースト中の導電粒子のネットワークが少なくなるため、導電性能が低下するおそれがある。その一方、粒子径が小さ過ぎると、銀の被覆にムラをなくすためには、銀の含有量を多くする必要があり、経済的に無駄である。
よって、本銀被覆銅粉の中心粒径(D50)は3.0μm〜30.0μmであるのが好ましく、中でも4.0μm以上或いは25.0μm以下、その中でも特に20.0μm以下であるのがさらに好ましい。
(Center particle size (D50))
The central particle size (D50) of the present silver-coated copper powder, that is, the volume cumulative particle size D50 measured by a laser diffraction / scattering particle size distribution analyzer is preferably 3.0 μm to 30.0 μm. If the particles are large as the conductive particles, the conductive particle network in the paste is reduced, which may reduce the conductive performance. On the other hand, if the particle diameter is too small, it is necessary to increase the silver content in order to eliminate unevenness in the silver coating, which is economically wasteful.
Therefore, the center particle diameter (D50) of the present silver-coated copper powder is preferably 3.0 μm to 30.0 μm, more preferably 4.0 μm or more and 25.0 μm or less, and particularly preferably 20.0 μm or less. Further preferred.

(比表面積)
本銀被覆銅粉のBET一点法で測定される比表面積は、0.30〜1.50m2/gであるのが好ましい。0.30m2/g以上であれば、デンドライト形状が十分に発達していることを示し、導電性に優れるから好ましい。1.50m2/g以下であれば、銀の被覆層の厚みが十分に得られ、その結果導電性に優れる粒子となり好ましい。
よって、本銀被覆銅粉のBET一点法で測定される比表面積は0.30〜1.50m2/gであるのが好しく、中でも0.40m2/g以上或いは1.40m2/g以下、その中でも特に1.00m2/g以下であるのがさらに好ましい。
(Specific surface area)
The specific surface area of the present silver-coated copper powder measured by the BET single point method is preferably 0.30 to 1.50 m 2 / g. If it is 0.30 m < 2 > / g or more, it shows that the dendrite shape has fully developed and is preferable from being excellent in electroconductivity. If it is 1.50 m < 2 > / g or less, the thickness of the silver coating layer is sufficiently obtained, and as a result, particles having excellent conductivity are obtained.
Therefore, the specific surface area as measured by single point method BET of the silver-coated copper powder 0.30~1.50m 2 / g at and even good properly, inter alia 0.40 m 2 / g or more or 1.40 m 2 / g Hereinafter, among these, it is more preferable that it is 1.00 m < 2 > / g or less especially.

(用途)
本銀被覆銅粉は導電特性に優れているため、本銀被覆銅粉を用いて導電性ペーストや導電性接着剤などの導電性樹脂組成物、さらには導電性塗料など、各種導電性材料の主要構成材料として好適に用いることができる。
(Use)
Since the silver-coated copper powder has excellent conductive properties, the silver-coated copper powder can be used for various conductive materials such as conductive resin compositions such as conductive pastes and conductive adhesives, and conductive paints. It can be suitably used as a main constituent material.

例えば導電性ペーストを作製するには、本銀被覆銅粉をバインダ及び溶剤、さらに必要に応じて硬化剤やカップリング剤、腐食抑制剤などと混合して導電性ペーストを作製することができる。
この際、バインダとしては、液状のエポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂等を挙げることができるが、これらに限定するものではない。
溶剤としては、テルピネオール、エチルカルビトール、カルビトールアセテート、ブチルセロソルブ等が挙げることができる。
硬化剤としては、2エチル4メチルイミダゾールなどを挙げることができる。
腐食抑制剤としては、ベンゾチアゾール、ベンゾイミダゾール等を挙げることができる。
For example, in order to produce a conductive paste, the present silver-coated copper powder can be mixed with a binder and a solvent, and further, if necessary, a curing agent, a coupling agent, a corrosion inhibitor, etc. to produce a conductive paste.
In this case, examples of the binder include liquid epoxy resins, phenol resins, unsaturated polyester resins, and the like, but are not limited thereto.
Examples of the solvent include terpineol, ethyl carbitol, carbitol acetate, butyl cellosolve and the like.
Examples of the curing agent include 2-ethyl 4-methylimidazole.
Examples of the corrosion inhibitor include benzothiazole and benzimidazole.

導電性ペーストは、これを用いて基板上に回路パターンを形成して各種電気回路を形成することができる。例えば焼成済み基板或いは未焼成基板に塗布又は印刷し、加熱し、必要に応じて加圧して焼き付けることでプリント配線板や各種電子部品の電気回路や外部電極などを形成することができる。   The conductive paste can be used to form a circuit pattern on a substrate to form various electric circuits. For example, it is possible to form a printed wiring board, an electric circuit of various electronic components, external electrodes, and the like by applying or printing on a fired substrate or an unfired substrate, heating, pressurizing and baking as necessary.

(製造方法)
本銀被覆銅粉は、芯材としての銅粉を水に分散させ、キレート剤を添加した後、水に可溶な銀塩を加えて置換反応させて銅粉粒子の表面層を銀に置換させた後、得られた銀被覆銅粉を溶液から取り出してキレート剤を用いて洗浄し、乾燥させることで得ることができる。但し、この製造方法に限定されるものではない。
(Production method)
This silver-coated copper powder disperses copper powder as a core material in water, adds a chelating agent, and then adds a water-soluble silver salt to perform a substitution reaction to replace the surface layer of the copper powder particles with silver. Then, the obtained silver-coated copper powder is taken out of the solution, washed with a chelating agent, and dried. However, it is not limited to this manufacturing method.

置換メッキ被覆法は、還元メッキ被覆法に比べて、芯材(銅粉粒子)表面に銀をより均一に被覆することができるばかりか、被覆後の粒子の凝集を抑えることができ、さらには、より安価に製造できるという特徴を有しているため、置換メッキ被覆法を採用するのが好ましい。   Compared to the reduction plating coating method, the displacement plating coating method can not only uniformly coat the surface of the core material (copper powder particles) with silver, but also can suppress the aggregation of particles after coating. Therefore, it is preferable to employ the displacement plating coating method because it has a feature that it can be manufactured at a lower cost.

従来の置換メッキ被覆法においては、反応溶液から銀被覆銅粉を取り出す時に、水などで濾過・洗浄していたが、水で洗浄しただけでは、銅イオンの一部が銀被覆銅粉に吸着されるため、粒子表面に銅イオンが残留することになり、この状態で乾燥させると、銅イオンが酸化銅を形成し、粒子表面に酸化銅の被膜を出来ることになってしまった。
これに対し、キレート剤を用いて洗浄することで、置換反応後に銅の再吸着を防止することができるため、粒子表面に残留する銅イオンを抑制することができ、その結果、粒子表面に酸化銅の被膜が出来ることを抑制して、導電性を高めることができる。
キレート剤を用いて洗浄した場合、キレート剤が残留する可能性があるため、純水などを用いて洗浄するのが好ましい。
In the conventional displacement plating coating method, when silver-coated copper powder is taken out from the reaction solution, it is filtered and washed with water or the like, but only by washing with water, some of the copper ions are adsorbed on the silver-coated copper powder. Therefore, copper ions remain on the particle surface, and when dried in this state, the copper ions form copper oxide, and a copper oxide film can be formed on the particle surface.
In contrast, by washing with a chelating agent, copper re-adsorption after the substitution reaction can be prevented, so that copper ions remaining on the particle surface can be suppressed. Conductivity can be improved by suppressing the formation of a copper film.
In the case of washing with a chelating agent, the chelating agent may remain, so that it is preferable to wash with pure water or the like.

芯材として用いる銅粉は、粒子形状がデンドライト状を呈する電解銅粉を用いるのが好ましい。デンドライト状の銅粉を用いることにより、本銀被覆銅粉の粒子形状をデンドライト状とすることができる。   The copper powder used as the core material is preferably an electrolytic copper powder having a dendritic particle shape. By using the dendritic copper powder, the particle shape of the silver-coated copper powder can be made dendritic.

芯材は、必要に応じて、置換反応前に表面酸化物(酸化皮膜)を除去する処理を行なうのがよい。例えば、芯材を水に投入して攪拌混合した後、ヒドラジン等の還元剤を加えて攪拌混合して反応させればよい。この際、加えた還元剤を十分に洗浄して芯材から除去するのが好ましい。   If necessary, the core material may be subjected to a treatment for removing the surface oxide (oxide film) before the substitution reaction. For example, after the core material is put into water and stirred and mixed, a reducing agent such as hydrazine is added and stirred and mixed to react. At this time, it is preferable that the added reducing agent is sufficiently washed and removed from the core material.

キレート剤としては、例えばエチレンジアミン四酢酸塩(以下「EDTA」という)、ジエチレントリアミン五酢酸、イミノ二酢酸などのアミノカルボン酸系キレート剤のほか、ヒドロキシエチルエチレンジアミン三酢酸、ジヒドロキシエチルエチレンジアミン二酢酸)、1,3-プロパンジアミン四酢酸から選ばれた1種又は2種以上のものを挙げることができるが、中でもEDTAを用いるのが好ましい。   Examples of the chelating agent include ethylenediaminetetraacetic acid salt (hereinafter referred to as “EDTA”), aminocarboxylic acid-based chelating agents such as diethylenetriaminepentaacetic acid and iminodiacetic acid, hydroxyethylethylenediaminetriacetic acid, dihydroxyethylethylenediaminediacetic acid), 1 , 3-propanediaminetetraacetic acid, one or two or more selected from propanediaminetetraacetic acid can be mentioned, and among these, EDTA is preferably used.

銀塩を加える際、溶液のpH、すなわち置換反応させる際の溶液のpHは3〜4に調整するのが好ましい。
銀塩としては、水に可溶な銀塩、すなわちAgイオン供給源としては、硝酸銀、過塩素酸銀、酢酸銀、シュウ酸銀、塩素酸銀、6フッ化リン酸銀、4フッ化ホウ酸銀、6フッ化ヒ酸銀、硫酸銀から選ばれた1種又は2種以上を挙げることができる。
When adding a silver salt, it is preferable to adjust the pH of the solution, that is, the pH of the solution at the time of the substitution reaction to 3 to 4.
Silver salts soluble in water, that is, Ag ion sources include silver nitrate, silver perchlorate, silver acetate, silver oxalate, silver chlorate, silver hexafluorophosphate, and boron tetrafluoride. One or more selected from acid silver, silver hexafluoroarsenate, and silver sulfate can be mentioned.

銀塩の添加量は、理論当量以上、例えば銅を芯材として用いる場合、銅1モルに対して銀2モル以上、特に2.1モル以上となるように添加するのが好ましい。2モルより少ないと、置換が不十分となり銀粉粒子中に銅が多く残留することになる。但し、2.5モル以上入れても不経済である。   The addition amount of the silver salt is preferably equal to or greater than the theoretical equivalent, for example, when copper is used as the core material, the silver salt is added in an amount of 2 mol or more, particularly 2.1 mol or more with respect to 1 mol of copper. When the amount is less than 2 mol, the substitution is insufficient and a large amount of copper remains in the silver powder particles. However, it is not economical to add 2.5 mol or more.

銀粉粒子における銀の含有率は、銀塩の添加量、反応時間、反応速度、キレート剤の添加量などによって調整することができる。
置換反応終了後は、銀粉粒子を十分に洗浄し、乾燥させるのが好ましい。
The silver content in the silver powder particles can be adjusted by the amount of silver salt added, the reaction time, the reaction rate, the amount of chelating agent added, and the like.
After completion of the substitution reaction, the silver powder particles are preferably thoroughly washed and dried.

(語句の説明)
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)と表現する場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と表現する場合、特にことわらない限り「好ましくYより小さい」の意を包含する。
(Explanation of words)
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” or “preferably more than Y” with the meaning of “X to Y” unless otherwise specified. The meaning of “small” is also included.
In addition, when expressed as “X or more” (X is an arbitrary number), it means “preferably larger than X” unless otherwise specified, and expressed as “Y or less” (Y is an arbitrary number). In the case, unless otherwise specified, the meaning of “preferably smaller than Y” is included.

以下、本発明の実施例について説明するが、本発明が以下の実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(SEM径比)
銀被覆銅粉(サンプル)を走査型電子顕微鏡(SEM)にて1,000倍率で観察し、100個の視野においてそれぞれ5個、合計500個の粒子を抽出した。各粒子の長径と短径を測定して、長径に対する短径の比率の平均値をSEM径比(短径/長径)とした。
(SEM diameter ratio)
The silver-coated copper powder (sample) was observed with a scanning electron microscope (SEM) at 1,000 magnifications, and five particles were extracted in a total of 100 fields and a total of 500 particles were extracted. The major axis and minor axis of each particle were measured, and the average value of the ratio of the minor axis to the major axis was taken as the SEM diameter ratio (minor axis / major axis).

(粒子表面に存在する銀量と銅量の比率測定)
銀被覆銅粉(サンプル)のX線電子分光の測定を行い、それぞれの分光強度の比から粒子表面に存在する銀量(atomic%)と銅量(atomic%)の比率を求めた。X線電子分光測定の条件を次に示す。
装置:島津製作所 ESCA-K1
X線源:Mg−Kα
出力:電圧10kV、電流20mA
分析面積:0.85mmφ
Ar+エッチング:なし

(Measurement of the ratio of silver and copper present on the particle surface)
The silver-coated copper powder (sample) was measured by X-ray electron spectroscopy, and the ratio of the amount of silver (atomic%) and the amount of copper (atomic%) present on the particle surface was determined from the ratio of the respective spectral intensities. The conditions for X-ray electron spectroscopy measurement are as follows.
Equipment: Shimadzu ESCA-K1
X-ray source: Mg-Kα
Output: Voltage 10kV, current 20mA
Analysis area: 0.85mmφ
Ar + etching: None

(粒度測定)
銀被覆銅粉(サンプル)を少量ビーカーに取り、3%トリトンX溶液(関東化学製)を2、3滴添加し、粉末になじませてから、0.1%SNディスパーサント41溶液(サンノプコ製)50mLを添加し、その後、超音波分散器TIPφ20(日本精機製作所製、OUTPUT:8、TUNING:5)を用いて2分間分散処理して測定用サンプルを調製した。
この測定用サンプルを、レーザー回折散乱式粒度分布測定装置MT3300(日機装製)を用いて体積累積粒径D50を測定した。
(Particle size measurement)
Take a small amount of silver-coated copper powder (sample) in a small beaker, add a few drops of 3% Triton X solution (Kanto Chemical), and let it blend into the powder. Then 0.1% SN Dispersant 41 solution (San Nopco) 50 mL was added, and then a measurement sample was prepared by dispersing for 2 minutes using an ultrasonic disperser TIPφ20 (manufactured by Nippon Seiki Seisakusho, OUTPUT: 8, TUNING: 5).
The volume cumulative particle diameter D50 of this measurement sample was measured using a laser diffraction / scattering particle size distribution analyzer MT3300 (manufactured by Nikkiso).

(比表面積の測定)
比表面積は、ユアサアイオニクス社製モノソーブにて、BET一点法で測定した。
(Measurement of specific surface area)
The specific surface area was measured by the BET single point method using a monosorb manufactured by Yuasa Ionics.

(導電性ペーストの導電性(比抵抗)評価)
シリコーンシーラント(スリーボンド社製、型番5211)に対し、銀被覆銅粉(サンプル)を70質量%の比率で配合し、更に銀被覆銅粉(サンプル)と同じ質量のトルエンを添加し、シンキー社製あわ取り練太郎(型番AR−100)を用いて十分に混合した後、ガラス板状にスクリーン印刷により1cm×10cmの帯状のパターンを印刷した。そのペーストを大気中にて70℃で60分間乾燥させ後、デジタルボルトメーター(YOKOGAWA ELECTRIC WORKS製)にて電気抵抗を測定した。
また、マイクロメーターにて膜厚を測定し、比抵抗(Ω・cm)=幅(cm)×膜厚(μm)×電気抵抗(Ω)/(長さ(cm)×104)という式にて、導電性ペーストの導電性(比抵抗)を算出した。
(Evaluation of conductivity (specific resistance) of conductive paste)
To the silicone sealant (manufactured by ThreeBond Co., Ltd., model number 5211), silver-coated copper powder (sample) is blended at a ratio of 70% by mass, and toluene having the same mass as the silver-coated copper powder (sample) is added. After thoroughly mixing using Awatori Netaro (model number AR-100), a 1 cm × 10 cm band-like pattern was printed on a glass plate by screen printing. The paste was dried in the atmosphere at 70 ° C. for 60 minutes, and then the electrical resistance was measured with a digital voltmeter (manufactured by Yokogawa Electronics Works).
The film thickness is measured with a micrometer, and the specific resistance (Ω · cm) = width (cm) × film thickness (μm) × electric resistance (Ω) / (length (cm) × 10 4 ) Thus, the conductivity (specific resistance) of the conductive paste was calculated.

(実施例1)
デンドライト状電解銅粉(純度99%以上、D50:15μm、短径/長径=0.2)25kgを、50℃に保温した純水50L中に投入してよく攪拌させた。これとは別に、純水5Lに硝酸銀4.5kg投入して硝酸銀溶液を作製した。先ほど銅粉を溶解した溶液に硝酸銀溶液を一括添加した。この状態で2時間攪拌を行い、銀被覆銅粉スラリーを得た。
次に、真空ろ過にて銀被覆銅粉スラリーのろ過を行い、ろ過が終わった後、EDTA(エチレンジアミン四酢酸)600gを純水6Lに溶解させた溶液を用いて洗浄し、続いて3Lの純水で残留EDTAを洗浄した。その後、120℃で3時間乾燥させてデンドライト状銀被覆銅粉(サンプル)を得た。
Example 1
25 kg of dendritic electrolytic copper powder (purity 99% or more, D50: 15 μm, minor axis / major axis = 0.2) was put into 50 L of pure water kept at 50 ° C. and stirred well. Separately, 4.5 kg of silver nitrate was put into 5 L of pure water to prepare a silver nitrate solution. The silver nitrate solution was added all at once to the solution in which the copper powder was dissolved. In this state, stirring was performed for 2 hours to obtain a silver-coated copper powder slurry.
Next, the silver-coated copper powder slurry is filtered by vacuum filtration. After the filtration is completed, the slurry is washed with a solution obtained by dissolving 600 g of EDTA (ethylenediaminetetraacetic acid) in 6 L of pure water, followed by 3 L of pure water. Residual EDTA was washed with water. Then, it was made to dry at 120 degreeC for 3 hours, and dendritic silver covering copper powder (sample) was obtained.

得られたデンドライト状銀被覆銅粉(サンプル)のSEM径比(短径/長径)は0.2であった。
デンドライト状銀被覆銅粉(サンプル)のX線電子分光の測定を行い、粒子表面に存在する銀量と銅量の比率を測定した結果、表1に示すように、銀被覆銅粉の表面についている銅はほとんどないことが明らかとなった。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
The SEM diameter ratio (minor axis / major axis) of the obtained dendritic silver-coated copper powder (sample) was 0.2.
As a result of measuring the X-ray electron spectroscopy of the dendritic silver-coated copper powder (sample) and measuring the ratio of the amount of silver and the amount of copper present on the particle surface, as shown in Table 1, the surface of the silver-coated copper powder It became clear that there was almost no copper.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

(実施例2)
電解銅粉(実施例1と同様)25kgを純水50L中に投入しよく攪拌させた。
これとは別に純水10Lに硝酸銀9.0kg投入して硝酸銀溶液を作製した。先ほど銅粉を溶解した溶液に硝酸銀溶液を一括添加した。この状態で2時間攪拌を行い、銀被覆銅粉スラリーを得た。次に真空ろ過にてろ過を行い、ろ過が終わった後、EDTA(エチレンジアミン四酢酸)1200gを純水6Lに溶解させた溶液を用いて洗浄し、続いて3Lの純水で残留EDTAを洗浄した。その後、120℃で3時間乾燥させてデンドライト状銀被覆銅粉(サンプル)を得た。
(Example 2)
25 kg of electrolytic copper powder (similar to Example 1) was put into 50 L of pure water and stirred well.
Separately, 9.0 kg of silver nitrate was added to 10 L of pure water to prepare a silver nitrate solution. The silver nitrate solution was added all at once to the solution in which the copper powder was dissolved. In this state, stirring was performed for 2 hours to obtain a silver-coated copper powder slurry. Next, filtration was performed by vacuum filtration. After the filtration was completed, washing was performed using a solution in which 1200 g of EDTA (ethylenediaminetetraacetic acid) was dissolved in 6 L of pure water, and then residual EDTA was washed with 3 L of pure water. . Then, it was made to dry at 120 degreeC for 3 hours, and dendritic silver covering copper powder (sample) was obtained.

得られたデンドライト状銀被覆銅粉(サンプル)のSEM径比(短径/長径)は0.2であった。
デンドライト状銀被覆銅粉(サンプル)のX線電子分光の測定を行い、粒子表面に存在する銀量と銅量の比率を測定した結果、表1に示すように、銀被覆銅粉の表面についている銅はほとんどないことが明らかとなった。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
The SEM diameter ratio (minor axis / major axis) of the obtained dendritic silver-coated copper powder (sample) was 0.2.
As a result of measuring the X-ray electron spectroscopy of the dendritic silver-coated copper powder (sample) and measuring the ratio of the amount of silver and the amount of copper present on the particle surface, as shown in Table 1, the surface of the silver-coated copper powder It became clear that there was almost no copper.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

(実施例3)
電解銅粉(純度99%以上、D50:18μm、短径/長径=0.1)25kgを純水50L中に投入しよく攪拌させた。
これとは別に純水15Lに硝酸銀13.5kg投入して硝酸銀溶液を作製した。先ほど銅粉を溶解した溶液に硝酸銀溶液を一括添加した。この状態で2時間攪拌を行い、銀被覆銅粉スラリーを得た。次に真空ろ過にてろ過を行い、ろ過が終わった後、EDTA(エチレンジアミン四酢酸)1800gを純水6Lに溶解させた溶液を用いて洗浄し、続いて3Lの純水で残留EDTAを洗浄した。その後、120℃で3時間乾燥させてデンドライト状銀被覆銅粉(サンプル)を得た。
(Example 3)
25 kg of electrolytic copper powder (purity 99% or more, D50: 18 μm, minor axis / major axis = 0.1) was put into 50 L of pure water and stirred well.
Separately, 13.5 kg of silver nitrate was added to 15 L of pure water to prepare a silver nitrate solution. The silver nitrate solution was added all at once to the solution in which the copper powder was dissolved. In this state, stirring was performed for 2 hours to obtain a silver-coated copper powder slurry. Next, filtration was performed by vacuum filtration. After the filtration was completed, washing was performed using a solution in which 1800 g of EDTA (ethylenediaminetetraacetic acid) was dissolved in 6 L of pure water, and then residual EDTA was washed with 3 L of pure water. . Then, it was made to dry at 120 degreeC for 3 hours, and dendritic silver covering copper powder (sample) was obtained.

得られたデンドライト状銀被覆銅粉(サンプル)のSEM径比(短径/長径)は0.1であった。
デンドライト状銀被覆銅粉(サンプル)のX線電子分光の測定を行い、粒子表面に存在する銀量と銅量の比率を測定した結果、表1に示すように、銀被覆銅粉の表面についている銅はほとんどないことが明らかとなった。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
The SEM diameter ratio (minor axis / major axis) of the obtained dendritic silver-coated copper powder (sample) was 0.1.
As a result of measuring the X-ray electron spectroscopy of the dendritic silver-coated copper powder (sample) and measuring the ratio of the amount of silver and the amount of copper present on the particle surface, as shown in Table 1, the surface of the silver-coated copper powder It became clear that there was almost no copper.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

(実施例4)
電解銅粉(純度99%以上、D50:12μm、短径/長径=0.3)25kgを純水50L中に投入しよく攪拌させた。
これとは別に純水2.5Lに硝酸銀2.25kg投入して硝酸銀溶液を作製した。先ほど銅粉を溶解した溶液に硝酸銀溶液を一括添加した。この状態で2時間攪拌を行い、銀被覆銅粉スラリーを得た。次に真空ろ過にてろ過を行い、ろ過が終わった後、EDTA(エチレンジアミン四酢酸)300gを純水6Lに溶解させた溶液を用いて洗浄し、続いて3Lの純水で残留EDTAを洗浄した。その後、120℃で3時間乾燥させてデンドライト状銀被覆銅粉(サンプル)を得た。
Example 4
25 kg of electrolytic copper powder (purity 99% or more, D50: 12 μm, minor axis / major axis = 0.3) was put into 50 L of pure water and stirred well.
Separately, 2.25 kg of silver nitrate was added to 2.5 L of pure water to prepare a silver nitrate solution. The silver nitrate solution was added all at once to the solution in which the copper powder was dissolved. In this state, stirring was performed for 2 hours to obtain a silver-coated copper powder slurry. Next, filtration was performed by vacuum filtration, and after the filtration was completed, the resultant was washed with a solution in which 300 g of EDTA (ethylenediaminetetraacetic acid) was dissolved in 6 L of pure water, and then residual EDTA was washed with 3 L of pure water. . Then, it was made to dry at 120 degreeC for 3 hours, and dendritic silver covering copper powder (sample) was obtained.

得られたデンドライト状銀被覆銅粉(サンプル)のSEM径比(短径/長径)は0.3であった。
デンドライト状銀被覆銅粉(サンプル)のX線電子分光の測定を行い、粒子表面に存在する銀量と銅量の比率を測定した結果、表1に示すように、銀被覆銅粉の表面についている銅はほとんどないことが明らかとなった。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
The SEM diameter ratio (minor axis / major axis) of the obtained dendritic silver-coated copper powder (sample) was 0.3.
As a result of measuring the X-ray electron spectroscopy of the dendritic silver-coated copper powder (sample) and measuring the ratio of the amount of silver and the amount of copper present on the particle surface, as shown in Table 1, the surface of the silver-coated copper powder It became clear that there was almost no copper.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

(実施例5)
電解銅粉(純度99%以上、D50:10μm、短径/長径=0.4)25kgを純水50L中に投入しよく攪拌させた。
これとは別に純水7.5Lに硝酸銀6.75kg投入して硝酸銀溶液を作製した。先ほど銅粉を溶解した溶液に硝酸銀溶液を一括添加した。この状態で2時間攪拌を行い、銀被覆銅粉スラリーを得た。次に真空ろ過にてろ過を行い、ろ過が終わった後、EDTA(エチレンジアミン四酢酸)900gを純水6Lに溶解させた溶液を用いて洗浄し、続いて3Lの純水で残留EDTAを洗浄した。その後、120℃で3時間乾燥させてデンドライト状銀被覆銅粉(サンプル)を得た。
(Example 5)
25 kg of electrolytic copper powder (purity 99% or more, D50: 10 μm, minor axis / major axis = 0.4) was put into 50 L of pure water and stirred well.
Separately, 6.75 kg of silver nitrate was added to 7.5 L of pure water to prepare a silver nitrate solution. The silver nitrate solution was added all at once to the solution in which the copper powder was dissolved. In this state, stirring was performed for 2 hours to obtain a silver-coated copper powder slurry. Next, filtration was performed by vacuum filtration. After filtration, 900 g of EDTA (ethylenediaminetetraacetic acid) was washed with 6 L of pure water, and then residual EDTA was washed with 3 L of pure water. . Then, it was made to dry at 120 degreeC for 3 hours, and dendritic silver covering copper powder (sample) was obtained.

得られたデンドライト状銀被覆銅粉(サンプル)のSEM径比(短径/長径)は0.4であった。
デンドライト状銀被覆銅粉(サンプル)のX線電子分光の測定を行い、粒子表面に存在する銀量と銅量の比率を測定した結果、表1に示すように、銀被覆銅粉の表面についている銅はほとんどないことが明らかとなった。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、良好な値を示した。
The SEM diameter ratio (minor axis / major axis) of the obtained dendritic silver-coated copper powder (sample) was 0.4.
As a result of measuring the X-ray electron spectroscopy of the dendritic silver-coated copper powder (sample) and measuring the ratio of the amount of silver and the amount of copper present on the particle surface, as shown in Table 1, the surface of the silver-coated copper powder It became clear that there was almost no copper.
Moreover, when the electroconductivity of this silver covering copper powder was measured as shown in Table 1, the favorable value was shown.

(比較例1)
電解銅粉(実施例1と同様)25kgを純水50L中に投入しよく攪拌させた。これとは別に純水5Lに硝酸銀4.5kg投入して硝酸銀溶液を作製した。先ほど銅粉を溶解した溶液に硝酸銀溶液を一括添加した。この状態で2時間攪拌を行い、銀被覆銅粉スラリーを得た。次に真空ろ過にてろ過を行い、ろ過が終わった後、洗浄を行った。洗浄水は純水6Lを用いた。ろ過後、120℃、3時間乾燥を行ってデンドライト状銀被覆銅粉(サンプル)を得た。
(Comparative Example 1)
25 kg of electrolytic copper powder (similar to Example 1) was put into 50 L of pure water and stirred well. Separately, 4.5 kg of silver nitrate was put into 5 L of pure water to prepare a silver nitrate solution. The silver nitrate solution was added all at once to the solution in which the copper powder was dissolved. In this state, stirring was performed for 2 hours to obtain a silver-coated copper powder slurry. Next, it filtered by vacuum filtration and wash | cleaned after filtration was completed. As the washing water, 6 L of pure water was used. After filtration, drying was performed at 120 ° C. for 3 hours to obtain a dendritic silver-coated copper powder (sample).

得られたデンドライト状銀被覆銅粉(サンプル)のSEM径比(短径/長径)は0.2であった。
デンドライト状銀被覆銅粉(サンプル)のX線電子分光の測定を行い、粒子表面に存在する銀量と銅量の比率を測定した結果、表1に示すように、銀被覆銅粉の表面に銅が比較的多くついていることが明らかとなった。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、抵抗が悪いことが分かった。
The SEM diameter ratio (minor axis / major axis) of the obtained dendritic silver-coated copper powder (sample) was 0.2.
As a result of measuring the X-ray electron spectroscopy of the dendritic silver-coated copper powder (sample) and measuring the ratio of the amount of silver and the amount of copper existing on the particle surface, as shown in Table 1, the surface of the silver-coated copper powder It became clear that there was relatively much copper.
Moreover, as shown in Table 1, when the conductivity of this silver-coated copper powder was measured, it was found that the resistance was poor.

(比較例2)
電解銅粉(実施例1と同様)25kgを純水50L中に投入しよく攪拌させた。
これとは別に純水10Lに硝酸銀9.0kg投入し硝酸銀溶液を作製した。先ほど銅粉を溶解した溶液に硝酸銀溶液を一括添加した。この状態で2時間攪拌を行い、銀被覆銅粉スラリーを得た。次に真空ろ過にてろ過を行い、ろ過が終わった後、洗浄を行った。洗浄水は純水6Lに溶解させた溶液を用いた。ろ過後、120℃、3時間乾燥を行いデンドライト状銀被覆銅粉(サンプル)を得た。
(Comparative Example 2)
25 kg of electrolytic copper powder (similar to Example 1) was put into 50 L of pure water and stirred well.
Separately, 9.0 kg of silver nitrate was added to 10 L of pure water to prepare a silver nitrate solution. The silver nitrate solution was added all at once to the solution in which the copper powder was dissolved. In this state, stirring was performed for 2 hours to obtain a silver-coated copper powder slurry. Next, it filtered by vacuum filtration and wash | cleaned after filtration was completed. As the washing water, a solution dissolved in 6 L of pure water was used. After filtration, drying was performed at 120 ° C. for 3 hours to obtain a dendritic silver-coated copper powder (sample).

得られたデンドライト状銀被覆銅粉(サンプル)のSEM径比(短径/長径)は0.2であった。
デンドライト状銀被覆銅粉(サンプル)のX線電子分光の測定を行い、粒子表面に存在する銀量と銅量の比率を測定した結果、表1に示すように、銀被覆銅粉の表面に銅が比較的多くついていることが明らかとなった。
また、表1に示すように、この銀被覆銅粉の導電性を測定したところ、抵抗が悪いことが分かった。
The SEM diameter ratio (minor axis / major axis) of the obtained dendritic silver-coated copper powder (sample) was 0.2.
As a result of measuring the X-ray electron spectroscopy of the dendritic silver-coated copper powder (sample) and measuring the ratio of the amount of silver and the amount of copper existing on the particle surface, as shown in Table 1, the surface of the silver-coated copper powder It became clear that there was relatively much copper.
Moreover, as shown in Table 1, when the conductivity of this silver-coated copper powder was measured, it was found that the resistance was poor.

(考察)
これらの結果とこれまで行った試験結果を総合すると、キレート剤で洗浄することにより、銀被覆銅粉粒子表面の銅量を効果的に少なくすることができ、抵抗値を下げることができることが確かめられた。この際、キレート剤は銅イオンをキレート化する効果があることから、洗浄に用いるキレート剤、特にEDTAの濃度は溶解する銅イオンに応じて濃度を変えることが好ましいと考えられ、キレート剤の添加量は溶解する銅イオンに対して5wt%〜50wt%、特に10wt%〜50wt%とするのが好ましいと考えられる。
また、粒子表面に存在する銅の量が、粒子表面に存在する銀の量に対して0.05未満であれば、粒子表面に酸化銅の被膜が形成されるのを抑えることができ、粉末が黒くなるのを防止できるばかりか、導電性をより一層高めることができると考えられる。
(Discussion)
Combining these results with the results of the tests conducted so far, it was confirmed that the amount of copper on the surface of the silver-coated copper powder particles can be effectively reduced and the resistance value can be lowered by washing with a chelating agent. It was. At this time, since the chelating agent has an effect of chelating copper ions, it is considered preferable to change the concentration of the chelating agent used for washing, particularly EDTA, depending on the dissolved copper ion. It is considered that the amount is preferably 5 wt% to 50 wt%, particularly 10 wt% to 50 wt% with respect to the dissolved copper ions.
In addition, if the amount of copper present on the particle surface is less than 0.05 with respect to the amount of silver present on the particle surface, it is possible to suppress the formation of a copper oxide film on the particle surface. It is considered that not only can blackening be prevented, but also the conductivity can be further increased.

Claims (3)

芯材としての銅粉を水に分散させ、キレート剤を添加した後、水に可溶な銀塩を加えて置換反応させて銅粉粒子の表面層を銀に置換させた後、得られた銀被覆銅粉を溶液から取り出してキレート剤を用いて洗浄することを特徴とする、銀被覆銅粉の製造方法。   It was obtained after dispersing copper powder as a core material in water and adding a chelating agent, then adding a water-soluble silver salt to cause a substitution reaction to replace the surface layer of the copper powder particles with silver. A method for producing a silver-coated copper powder, wherein the silver-coated copper powder is taken out of the solution and washed with a chelating agent. 芯材としての銅粉粒子がデンドライト状を呈することを特徴とする請求項に記載の銀被覆銅粉の製造方法。 The method for producing a silver-coated copper powder according to claim 1 , wherein the copper powder particles as a core material have a dendrite shape. 洗浄時に用いるキレート剤として、アミノカルボン酸系キレート剤を用いることを特徴とする請求項1又は2に記載の銀被覆銅粉の製造方法。 The method for producing a silver-coated copper powder according to claim 1 or 2 , wherein an aminocarboxylic acid chelating agent is used as the chelating agent used at the time of washing.
JP2011131545A 2011-06-13 2011-06-13 Silver-coated copper powder and method for producing the same Active JP5701695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011131545A JP5701695B2 (en) 2011-06-13 2011-06-13 Silver-coated copper powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011131545A JP5701695B2 (en) 2011-06-13 2011-06-13 Silver-coated copper powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013001917A JP2013001917A (en) 2013-01-07
JP5701695B2 true JP5701695B2 (en) 2015-04-15

Family

ID=47670804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011131545A Active JP5701695B2 (en) 2011-06-13 2011-06-13 Silver-coated copper powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP5701695B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5711435B2 (en) * 2013-01-24 2015-04-30 三井金属鉱業株式会社 Copper powder
WO2015060258A1 (en) * 2013-10-24 2015-04-30 三井金属鉱業株式会社 Silver-coated copper powder
JP6271231B2 (en) * 2013-11-29 2018-01-31 Dowaエレクトロニクス株式会社 Silver-coated copper powder and conductive paste
KR20170031210A (en) * 2014-08-26 2017-03-20 스미토모 긴조쿠 고잔 가부시키가이샤 Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
CN106604794A (en) * 2014-09-12 2017-04-26 住友金属矿山株式会社 Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP6747816B2 (en) * 2015-02-06 2020-08-26 積水化学工業株式会社 Conductive particles, conductive material and connection structure
JP5854248B1 (en) * 2015-05-27 2016-02-09 東洋インキScホールディングス株式会社 Conductive adhesive, and conductive adhesive sheet and electromagnetic wave shielding sheet using the same
JP6541764B2 (en) * 2017-12-27 2019-07-10 Dowaエレクトロニクス株式会社 Silver-coated copper powder and conductive paste, and method for producing them
JP7170464B2 (en) * 2018-08-30 2022-11-14 Dowaエレクトロニクス株式会社 Method for cleaning silver-coated metal powder, method for producing silver-coated metal powder, silver-coated copper powder, silver-coated copper alloy powder, method for producing conductive paste and conductive film, electronic component, and electric device
CN115090872B (en) * 2022-06-17 2024-02-20 安徽大学 Silver micro-nano structure and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2832247B2 (en) * 1990-07-24 1998-12-09 三井金属鉱業株式会社 Method for producing silver-coated copper powder
JP2008122030A (en) * 2006-11-15 2008-05-29 Mitsui Mining & Smelting Co Ltd Raw material for constituting heat pipe

Also Published As

Publication number Publication date
JP2013001917A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP5701695B2 (en) Silver-coated copper powder and method for producing the same
JP5631910B2 (en) Silver coated copper powder
JP6166012B2 (en) Conductive powder and conductive paste
JP5631841B2 (en) Silver coated copper powder
JP5065607B2 (en) Fine silver particle production method and fine silver particle obtained by the production method
WO2014021037A1 (en) Electroconductive film
WO2016038914A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP6165399B1 (en) Silver coated copper powder
WO2016031286A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
WO2016151859A1 (en) Silver-coated copper powder and conductive paste, conductive material, and conductive sheet using same
WO2016185628A1 (en) Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder
JP2010053436A (en) Silver-coated aluminum powder and method for producing the same
JP6278969B2 (en) Silver coated copper powder
JP6982688B2 (en) Surface-treated silver powder and its manufacturing method
JP6567921B2 (en) Silver-coated copper powder and method for producing the same
JP2014159646A (en) Silver-coated copper powder
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP5790900B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP5711435B2 (en) Copper powder
JP2015183291A (en) Silver-coated copper powder and conductive paste using the same
JP5858202B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP2014208908A (en) Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste
JP6056901B2 (en) Method for producing dendritic silver-coated copper powder, and copper paste, conductive paint, and conductive sheet using the dendritic silver-coated copper powder
JP2020020000A (en) Metal-coated particle, resin composition containing the same and applied object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140121

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150218

R150 Certificate of patent or registration of utility model

Ref document number: 5701695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250