JPS5853673B2 - Manufacturing method of powder coating for chemical plating - Google Patents

Manufacturing method of powder coating for chemical plating

Info

Publication number
JPS5853673B2
JPS5853673B2 JP3392479A JP3392479A JPS5853673B2 JP S5853673 B2 JPS5853673 B2 JP S5853673B2 JP 3392479 A JP3392479 A JP 3392479A JP 3392479 A JP3392479 A JP 3392479A JP S5853673 B2 JPS5853673 B2 JP S5853673B2
Authority
JP
Japan
Prior art keywords
rubber
powder coating
parts
epoxy resin
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3392479A
Other languages
Japanese (ja)
Other versions
JPS55137168A (en
Inventor
信夫 魚津
宏 高橋
宏一 津山
誠 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3392479A priority Critical patent/JPS5853673B2/en
Priority to US06/131,625 priority patent/US4315845A/en
Priority to DE3010982A priority patent/DE3010982C2/en
Publication of JPS55137168A publication Critical patent/JPS55137168A/en
Publication of JPS5853673B2 publication Critical patent/JPS5853673B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、金属芯入り印刷配線板の製造に好適に使用さ
れる、化学メッキ可能な粉体塗料の製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a chemically plateable powder coating, which is suitably used for producing printed wiring boards with a metal core.

近年電子機器の高能率化にともない、印刷配線板に対す
る性能要求が高度化し同時に経済効果も要求されるよう
になってきた。
In recent years, as electronic devices have become more efficient, performance requirements for printed wiring boards have become more sophisticated, and at the same time, economic effects have also been required.

例えば、そり、ねじれのない高度の寸法安定性を有する
こと、多数の重量部品搭載に耐える剛性をもつこと、搭
載部品から発生する熱を速やかに除去するための高度な
熱伝導性を有すること、およびしかも安価に供給しうろ
ことなどである。
For example, it must have a high degree of dimensional stability without warping or twisting, it must have the rigidity to withstand the mounting of a large number of heavy parts, it must have a high degree of thermal conductivity to quickly remove the heat generated from the mounted parts, and scales that can be supplied at low cost.

このような要求に対し、て従来の合成樹脂積層板では十
分に満足できないため、鉄、ステンレス、アルミニウム
、銅などの金属芯入り印刷配線板への志向がなされてい
る。
Since conventional synthetic resin laminates cannot fully meet these demands, there is a trend toward printed wiring boards with metal cores such as iron, stainless steel, aluminum, and copper.

金属芯入り印刷配線板では金属芯の絶縁化が必須であり
、この目的のために、均一厚みの絶絶樹脂層の形成が容
易である、耐熱性等必要とされる特性をもつ樹脂が広い
範囲で使用可能である、又、無溶剤であり、省資源、公
害発生が少ない等の長所を生かして粉体塗装法が着目さ
れている。
For printed wiring boards with metal cores, it is essential to insulate the metal core, and for this purpose, there are a wide range of resins that have the required properties such as heat resistance and the ability to easily form an insulating resin layer of uniform thickness. Powder coating methods are attracting attention because of their advantages such as being able to be used in a wide range of applications, being solvent-free, saving resources, and generating little pollution.

従来印刷配線板の製造に於て化学メッキにより印刷回路
を形成する際、熱硬化性粉体塗膜上に直接化学メッキを
行ったのでは十分な接着力が得られないために塗膜上に
さらに、接着性を向上させるためのゴム系組成物(接着
剤)層を設ける工程、即ち接着剤ワニスを塗布する工程
が必要不可欠であり、工程上の繁雑化、経済性の低下が
避けられない負担であった。
Conventionally, when forming printed circuits by chemical plating in the production of printed wiring boards, chemical plating directly on the thermosetting powder coating did not provide sufficient adhesion, so Furthermore, the process of providing a rubber composition (adhesive) layer to improve adhesion, that is, the process of applying adhesive varnish, is essential, which inevitably increases the complexity of the process and reduces economic efficiency. It was a burden.

本発明は、金属芯入り印刷配線板の製造に好適に使用さ
れる、粉体塗膜上に直接化学メッキによる印刷回路を形
成し得る粉体塗料の製造法を提供するものである。
The present invention provides a method for producing a powder coating, which is suitably used for producing a printed wiring board with a metal core, and is capable of forming a printed circuit directly on a powder coating by chemical plating.

粉体塗装法は一般にエポキシ樹脂、フェノール樹脂、ア
クリル樹脂、ポリエステル樹脂などの熱硬化性樹脂に硬
化剤、充填材、触媒、顔料および流展剤等を適宜配合し
、架橋反応の殆んど進行しない低い温度で熔融混練し、
冷却后粉砕して300部程度以下の粒径に調整してつく
られた粉体塗料を、■粉体塗料中に加熱した被塗物を浸
漬して付着させる方法、■被塗物の一端をアースさせス
プレーノズルの先端に高電圧を印加しておいて粉体と空
気を同時に送り、帯電した粉体を飛走させて付着させる
静電スプレーによる方法、■底部が多孔板でつくられた
粉体塗料槽上に、一端をアースした被塗物を配置し多孔
板下より高電圧電源によりイオン化した空気を送りこみ
帯電した浮遊粉体(クラウド)を形成させ、被塗物をク
ラウド中に配置した粉体を付着させる静電流動浸漬法、
あるいは■直流負電極と交流電極間の粉体を接触帯電さ
せてクラウドを生成しアースした被塗物に静電付着させ
る静電振動法などの方法で、粉体を被塗物に付着させ焼
付硬化させるものであり、この焼付硬化の工程で粉体が
溶融流動し平滑な硬化塗膜を得るものである。
Powder coating methods generally involve appropriately blending thermosetting resins such as epoxy resins, phenolic resins, acrylic resins, and polyester resins with curing agents, fillers, catalysts, pigments, and spreading agents, so that most of the crosslinking reaction takes place. Melt and knead at a low temperature that does not
After cooling, the powder coating is pulverized and adjusted to a particle size of about 300 parts or less, and then the heated object to be coated is immersed in the powder coating to adhere it. ■ One end of the object to be coated is A method using electrostatic spraying, in which a high voltage is applied to the tip of a grounded spray nozzle and powder and air are sent simultaneously, causing the charged powder to fly and adhere.■ Powder made with a perforated plate at the bottom. The object to be coated with one end grounded is placed on top of the paint tank, and ionized air is sent from under the perforated plate by a high voltage power source to form charged floating powder (cloud), and the object to be coated is placed in the cloud. Electrostatic dynamic immersion method to attach the powder
Alternatively, the powder is attached to the object to be coated and baked using a method such as the electrostatic vibration method, in which the powder is charged by contact between the DC negative electrode and the AC electrode to generate a cloud, which is then electrostatically attached to the grounded object to be coated. In this baking hardening process, the powder melts and flows to form a smooth cured coating.

粉体塗料は、粉体塗料化するための粉砕性を有すること
、組成成分が均一分散していて粉体帯電が一様であり塗
装性が良いこと、および金属板に付着させたのち無圧下
での溶融流動性がよくレベリングのよい平滑塗膜が得ら
れることなどが必要条件である。
Powder coatings must have the ability to be crushed to form a powder coating, have uniformly dispersed composition, have uniform powder charge, and have good paintability, and must be coated under no pressure after being applied to a metal plate. The necessary conditions are that a smooth coating film with good melt flowability and good leveling can be obtained.

金属芯入り印刷配線板製造の場合にも前述のゴム系接着
剤をそのま\粉体塗料化することにより目的を達しうる
のではないかとみられるが、この試みはゴムが均一分散
が困難でありまた特殊な方法を採用しない限り微粉砕化
もむずかしい等問題がある。
In the case of manufacturing printed wiring boards with metal cores, it seems possible to achieve the goal by converting the aforementioned rubber-based adhesive directly into a powder coating, but this attempt was difficult because the rubber was difficult to disperse uniformly. There are other problems, such as the difficulty of pulverizing them unless special methods are used.

また粉体化が成された場合でも、ゴム粒子が均一微分散
されていないと、粉体粒子が均一帯電されないで分極構
造となり塗装性が低下するか、または粉体粒子同士が静
電凝集することがあり、塗装方式によってはほとんで静
電付着しない場合もある。
Furthermore, even if powderization is achieved, if the rubber particles are not uniformly and finely dispersed, the powder particles will not be uniformly charged and will have a polarized structure, resulting in poor paintability or electrostatic agglomeration of powder particles. Depending on the coating method, electrostatic adhesion may not occur.

しかもゴム粒子の分散が不充分な場合には、化学メッキ
による印刷回路のビール強さも不充分でかつ不安定なも
のとなる。
Moreover, if the rubber particles are insufficiently dispersed, the beer strength of the printed circuit produced by chemical plating will be insufficient and unstable.

したがって相対的にゴム含量を必要以上に多くする必要
があり、このことは、金属芯印刷配線板の電気特性など
を低下させるおそれがあり、しかも分散性はますます悪
くなる。
Therefore, it is necessary to increase the rubber content relatively more than necessary, which may deteriorate the electrical properties of the metal core printed wiring board, and furthermore, the dispersibility becomes worse.

さらに焼付硬化の工程で良好な溶融流動が行われないた
め、平滑な塗膜面が得られず回路の印刷精度を阻害する
などの欠点があった。
Furthermore, since good melt flow is not achieved during the bake hardening process, a smooth coating surface cannot be obtained, which impairs circuit printing accuracy.

本発明は、このような点に鑑み、直接化学メッキによる
印刷回路形成を可能とする塗膜を形成する粉体塗料を得
るための条件、すなわち均一分散混合、粉砕化、平滑塗
膜の形成等がなされうるための条件を検討した結果なさ
れたものである。
In view of these points, the present invention aims to improve the conditions for obtaining a powder coating that forms a coating film that enables printed circuit formation by direct chemical plating, such as uniform dispersion mixing, pulverization, and formation of a smooth coating film. This was done after considering the conditions under which this could be achieved.

本発明はエポキシ樹脂100部(重量部、以下同じ)に
対して分子中に共役二重結合、並びに極性基を有するゴ
ム1〜30部を含み、加熱硬化段階の少なくとも一時期
において105センチポイズ以下の粘度をもつ熱硬化性
粉体塗料の製造法に関し融点が150℃以下のエポキシ
樹脂3〜50%(重量%、以下同じ)無機充填剤5〜6
0%、およびゴム80%以下でかつ最終粉体塗料中の2
倍以上を含む組成物を混練り工程の少なくとも一時期に
おいて前記融点が150℃以下のエポキシ樹脂の融点以
上の温度で混練りし、混練り組成物をゴム含有成分とし
てエポキシ樹脂と共に混練し、微粉砕することを特徴と
するものである。
The present invention contains 1 to 30 parts of rubber having a conjugated double bond and a polar group in the molecule based on 100 parts (parts by weight, the same applies hereinafter) of the epoxy resin, and has a viscosity of 105 centipoise or less during at least one period of the heat curing step. Regarding the manufacturing method of thermosetting powder coating with epoxy resin having a melting point of 150°C or less, 3 to 50% (wt%, same hereinafter), inorganic filler 5 to 6
0% and less than 80% rubber and 2 in the final powder coating.
The kneaded composition is kneaded at a temperature equal to or higher than the melting point of the epoxy resin having a melting point of 150° C. or lower during at least one period of the kneading process, and the kneaded composition is kneaded together with the epoxy resin as a rubber-containing component, and then finely pulverized. It is characterized by:

分子中に共役二重結合並びに極性基を有すゴムとしては
、アクリロニトリルブタジェン重合体、スチレンブタジ
ェン重合体、アクリロニトリルブタジェンスチレン樹脂
、ポリブタジェン樹脂の一種又はこの混合物が使用可能
で、極性基としては、ニトリル基、水酸基、カルボキシ
ル基、酸アミド基等がある。
As the rubber having a conjugated double bond and a polar group in the molecule, one type or a mixture thereof of acrylonitrile butadiene polymer, styrene butadiene polymer, acrylonitrile butadiene styrene resin, and polybutadiene resin can be used. Examples include nitrile groups, hydroxyl groups, carboxyl groups, and acid amide groups.

分子中に共役二重結合並びに極性基を有すゴムは、その
不飽和性に基づいて、プロトン供与反応を受けやすく酸
化性酸によって攻撃をうけ粗化溶出を促進し、親水性基
を生成し、化学メッキによる印刷回路の接着性を向上さ
せる。
Rubbers that have conjugated double bonds and polar groups in their molecules are susceptible to proton-donating reactions due to their unsaturated nature, and are attacked by oxidizing acids, which promotes roughening and elution and generates hydrophilic groups. , improve the adhesion of printed circuits by chemical plating.

共役二重結合を有するゴムとしてはその構成するモノマ
ー当り二重結合を30%以上有するものが化学粗化後の
回路接着性向上の点からは好ましい。
The rubber having conjugated double bonds is preferably one having 30% or more double bonds per constituent monomer from the viewpoint of improving circuit adhesion after chemical roughening.

本発明の特徴は、本来最終粉体塗料中の主成分であるエ
ポキシ樹脂の一部を、比較的多量の高分子量ゴムと無機
充填剤との強制混練り工程において含有させ、混練り工
程の少なくとも一時期、系全体をエポキシ樹脂の融点以
上に加熱してこれを溶融液状化させることにより高分子
量ゴム、充填剤、およびエポキシ樹脂、三者が容易に相
互分散し、ゴム高濃度分散体を得るところにある。
A feature of the present invention is that a part of the epoxy resin, which is originally the main component in the final powder coating, is contained in the forced kneading process of a relatively large amount of high molecular weight rubber and an inorganic filler, and at least For a period of time, the entire system is heated above the melting point of the epoxy resin to melt and liquefy it, whereby the high molecular weight rubber, filler, and epoxy resin are easily mutually dispersed to obtain a highly concentrated rubber dispersion. It is in.

溶融したエポキシ樹脂は、高分子量ゴムと充填剤との剪
断力にもとすく分散効果の剪断力を適度に軽減させる潤
滑成分として作用するのみならず顕微鏡的にはあたかも
溶媒作用であるが如き一様な微分散体をもたらすもので
ある。
The molten epoxy resin not only acts as a lubricating component that moderately reduces the shear force of the dispersion effect between the high molecular weight rubber and the filler, but also acts as a lubricating component that moderately reduces the shear force of the dispersion effect. This results in a variety of finely dispersed particles.

この場合、エポキシ樹脂含量が系の50%以上ではつま
り、多量のエポキシ樹脂系では、高分子量ゴムが溶融樹
脂相で容易に流動して剪断力をうけなくなるため分散効
果が低下し、一方、3%以下では潤滑作用が充分ではな
い。
In this case, if the epoxy resin content exceeds 50% of the system, that is, if the epoxy resin system has a large amount, the high molecular weight rubber will easily flow in the molten resin phase and will not be subjected to shearing force, resulting in a decrease in the dispersion effect; % or less, the lubricating effect is not sufficient.

エポキシ樹脂の融点は、150℃以上であれば、混線時
にゴムの熱劣化がおこり、又混練操作に種々の困難が伴
い更には、得られた粉体塗料の粘度が高くなり、加熱硬
化の少なくとも1段階で105センチポイズ以下の粘度
を示さなくなるため、融点150℃以下のものが使用さ
れる。
If the melting point of the epoxy resin is 150°C or higher, thermal deterioration of the rubber will occur when the wires are crossed, various difficulties will arise in the kneading operation, and furthermore, the viscosity of the obtained powder coating will increase, and the heat curing process will be delayed. Since it does not exhibit a viscosity of 105 centipoise or less in one step, one with a melting point of 150° C. or less is used.

又、無機充填剤60%以上であればエポキシ樹脂の潤滑
作用、溶媒作用を阻害し5%以下ではゴムとの剪断力作
用が不充分となるため好ましくない。
Further, if the inorganic filler content is 60% or more, the lubricating effect and solvent effect of the epoxy resin will be inhibited, and if it is less than 5%, the shearing force effect with the rubber will be insufficient, which is not preferable.

またゴム含量を80%以下に制限した理由は相対的に充
填剤、およびエポキシ樹脂含量を低下させることになり
、前述の分散効果を低下させるためである。
Further, the reason why the rubber content is limited to 80% or less is that the filler and epoxy resin contents are relatively reduced, which reduces the above-mentioned dispersion effect.

一方最終粉体塗料中の2倍以下程度ではゴム分散の能率
がよくないためである。
On the other hand, if the amount is less than twice the amount in the final powder coating, the efficiency of rubber dispersion is not good.

これらゴム高濃度分散体はミキシングロール、ニーダ−
または加圧式ニーダ−などを使用して混練り出来る。
These high-concentration rubber dispersions are used in mixing rolls and kneaders.
Alternatively, it can be kneaded using a pressure kneader or the like.

なおこの工程で架橋剤等を添加しておく必要はない。Note that there is no need to add a crosslinking agent or the like in this step.

か\るゴム高濃度分散体を最終粉体塗料のゴム含有成分
として用いることにより粉体塗料中のゴム粒子を容易に
均一かつ微細分散させうるものである。
By using such a highly concentrated rubber dispersion as a rubber-containing component of the final powder coating, it is possible to easily uniformly and finely disperse the rubber particles in the powder coating.

最終粉体塗料中のゴム含量は、主成分であるエポキシ樹
脂100重量部に対して1〜30部の範囲となるように
混合される。
The rubber content in the final powder coating is mixed in a range of 1 to 30 parts per 100 parts by weight of the epoxy resin as the main component.

あらかじめゴム粒子が一様均一分散しているため、ゴム
含量の下限は1部程度まで回路の接着性は充分に得られ
るがこれ以下では不充分となる。
Since the rubber particles are uniformly dispersed in advance, sufficient circuit adhesion can be obtained up to a lower limit of the rubber content of about 1 part, but below this it is insufficient.

30部以上では印刷回路用の塗膜として必要とされる耐
熱性などが低下してくるため好ましくない。
If it exceeds 30 parts, it is not preferable because the heat resistance required for a coating film for printed circuits decreases.

作用される配線板にもよるが、一般にゴムは2〜10部
混合するのが好ましい。
Although it depends on the wiring board to be used, it is generally preferable to mix 2 to 10 parts of rubber.

充填材としては、ケイ酸ジルコニウム、炭酸カルシウム
、酸化ケイ素、亜鉛華、酸化マグネシウム、酸化チタン
などが使用出来、酸:アルカリに対して溶解性を異にす
る2種以上を併用することも効果的である。
As fillers, zirconium silicate, calcium carbonate, silicon oxide, zinc white, magnesium oxide, titanium oxide, etc. can be used, and it is also effective to use two or more types with different solubility in acids and alkalis. It is.

これらは化学粗化の工程で粗化形状をつくる補助的な作
用をもたらすのに重要であり、最終粉体塗料中、樹脂1
00部に対し200部以下好ましくは100部以下で使
用することが出来る。
These are important in providing an auxiliary effect to create a roughened shape in the chemical roughening process, and the resin 1 in the final powder coating.
It can be used in an amount of 200 parts or less, preferably 100 parts or less.

これらの充填剤はゴム高濃度分散体に含有させた他に最
終粉体塗料化に際してさらに追加添加させることも゛で
きる。
In addition to being included in the high-concentration rubber dispersion, these fillers can also be added to the final powder coating.

金属板表面に粉体塗装により平滑な塗膜を形成させるこ
とは、印刷配線板として必要とされる緒特性を向上させ
るためきわめて重要なことである。
Forming a smooth coating film on the surface of a metal plate by powder coating is extremely important in order to improve the mechanical properties required for a printed wiring board.

このためには、金属板表面に塗着された熱硬化性粉体塗
料を加熱して硬化塗膜とする加熱段階の少なくとも一時
期に於て、粉体の粘度が105センチポイズ以下、好ま
しくは103センチポイズ以下であることが必要である
For this purpose, the viscosity of the powder must be 105 centipoise or less, preferably 103 centipoise or less, during at least one period of the heating step in which the thermosetting powder coating applied to the surface of the metal plate is heated to form a cured coating film. It is necessary that the following is true.

この加熱硬化段階に於る粘度は粉体の分子量、硬化速度
により必要な値に調整することが出来る。
The viscosity in this heat curing step can be adjusted to a required value depending on the molecular weight of the powder and the curing speed.

溶融粘度の測定は、HAAKE社製ROTOVISKO
Measurement of melt viscosity is carried out using ROTOVISKO manufactured by HAAKE.
.

R’Y−2装置を使用し、昇温速度45℃/分、ロータ
ーPK−IIにセットして回転数0.1〜10rpHの
範囲で流動トルクを測定することにより行う。
This is carried out by using an R'Y-2 device, setting the temperature increasing rate at 45° C./min to the rotor PK-II, and measuring the flow torque in the rotational speed range of 0.1 to 10 rpm.

この組成物を粉体化するためには、ミキシングロールあ
るいは押出式混線機で混合して混練物をえて、朋来式粉
砕機、細用マイクロパンタムミルなどの粉砕機で粗粉砕
、微粉砕する。
In order to powderize this composition, it is mixed with a mixing roll or an extrusion mixer to obtain a kneaded material, and then coarsely or finely ground with a grinder such as a conventional grinder or a fine micro pantum mill. .

粉砕は通常の方法で、300μ以下の粒子がほぼ全量得
られる程度行うことが好ましい。
It is preferable that the pulverization be carried out by a conventional method to the extent that substantially all particles of 300 μm or less are obtained.

化学メッキによる印刷回路の形成は例えば次表により行
う。
Formation of printed circuits by chemical plating is performed, for example, according to the following table.

金属板表面に粉体塗装により形成された塗膜は化学粗化
工程において、均一な表面粗化形状が容易に形成される
ため、センシタイジング、アクチベイテイング工程にお
けるSn廿 、Pd”などの触媒種の吸着が促進され、
さらに表面の幾何形状および表面樹脂性状にもとすく析
出金属との良好な接着が行われる。
A coating film formed on the surface of a metal plate by powder coating can easily form a uniform surface roughening shape in the chemical roughening process, so it is difficult to remove Sn, Pd, etc. in the sensitizing and activating process. Adsorption of catalytic species is promoted,
Furthermore, the geometry of the surface and the properties of the surface resin ensure good adhesion with the deposited metal.

また化学粗化に先だって、有機溶媒中へ前浸漬を行い、
塗膜表面を膨潤させると、架橋化樹脂に囲まれた不飽和
重合体の粗化を容易に行わせることが出来る。
In addition, prior to chemical roughening, pre-soaking in an organic solvent is performed.
When the coating surface is swollen, the unsaturated polymer surrounded by the crosslinked resin can be easily roughened.

これらの有機溶剤の例としてアルコール類とメチルエチ
ルケトン、ピリジン、ジメチルホルムアミド、トリクロ
ルエチレンなどとの混合溶媒がある。
Examples of these organic solvents include mixed solvents of alcohols and methyl ethyl ketone, pyridine, dimethylformamide, trichloroethylene, and the like.

本発明に於ては、金属板表面に、化学粗化、親水性化が
容易に行われ、化学メッキによる印刷回路の回路接着性
が向上した硬化塗膜を粉体塗装法により、優れた平滑度
をもって形成させることが出来る。
In the present invention, the surface of the metal plate is easily chemically roughened and made hydrophilic, and a cured coating film with improved circuit adhesion for printed circuits by chemical plating is applied to the surface of the metal plate using a powder coating method to create an excellent smooth surface. It can be formed with precision.

以上、主に金属芯入り印刷配線板の製造につき本発明を
説明したが、本発明の粉体塗料は、絶縁基板表面に直接
化学メッキ可能な塗膜を形成させる場合にも使用し得る
ものである。
The present invention has been explained above mainly in connection with the production of printed wiring boards with metal cores, but the powder coating of the present invention can also be used to form a coating film that can be directly chemically plated on the surface of an insulating substrate. be.

実施例 1 アクリロニトリルフ゛タジエンコ゛ム(日本セ゛オン社
製商品名二ポール1032、ニトリル含量33%、ムー
ニー粘度51)25部(62,5%)エポキシ樹脂(シ
ェル社製商品名エピコート1004融点96〜104℃
)5部(12,5%)および充填剤として炭酸カルシウ
ム10部(25,0%)を100〜105℃に加温した
加圧式ニーグーに投入して10分間混練りし、引き続き
加温を止めて15分間混練りを行った。
Example 1 25 parts (62.5%) of acrylonitrile phytadiene copolymer (product name Nipol 1032, manufactured by Nippon Seon Co., Ltd., nitrile content 33%, Mooney viscosity 51), epoxy resin (trade name Epicote 1004, manufactured by Shell Co., Ltd., melting point 96-104°C)
) 5 parts (12.5%) and 10 parts (25.0%) of calcium carbonate as a filler were put into a pressurized Ni-Goo heated to 100-105°C and kneaded for 10 minutes, then the heating was stopped. The mixture was kneaded for 15 minutes.

取り出した混練り組成物は、ゴム62.5%を含む分散
体であった。
The kneaded composition taken out was a dispersion containing 62.5% rubber.

このもの5分散状態を観察するために160℃の熱プレ
スで5分間熱圧、約1關厚さの平板を作成し、次いでク
ロム硫酸混液に40’C,15分間浸漬処理した表面を
顕微鏡で観察したところ各成分が一様に均一分散してい
ることが確認された。
In order to observe the dispersion state of this product, a flat plate about 1 inch thick was created by heat pressing at 160°C for 5 minutes, and then immersed in a chromium sulfuric acid mixture at 40°C for 15 minutes.The surface was then examined under a microscope. Upon observation, it was confirmed that each component was uniformly dispersed.

前記ゴム分散体21部、炭酸カルシウム14部およびエ
ポキシ樹脂(シェル社製商品名エピコート1004)1
30部をミキシングロールで混練し、冷却固化後粉砕し
て得た配合物160部にジシアンジアミド6.5部、微
粉末シリカ1部、流れ調整剤(モンサント社製商品名モ
ダブロー)1部を加えこの組成群をヘンシュルミキサで
乾式混合したのち、ブス社製コニータPR−46にて溶
融混練した。
21 parts of the rubber dispersion, 14 parts of calcium carbonate, and 1 part of epoxy resin (trade name Epicoat 1004, manufactured by Shell)
30 parts were kneaded with a mixing roll, cooled and solidified, and then pulverized. To 160 parts of the resulting mixture, 6.5 parts of dicyandiamide, 1 part of finely powdered silica, and 1 part of a flow control agent (trade name: Modablo, manufactured by Monsanto) were added. The compositions were dry mixed using a Henschel mixer and then melt-kneaded using Konita PR-46 manufactured by Buss.

冷却固化後粉砕して60メツシユの篩(目開き250μ
)を通して粉体を作成した。
After cooling and solidifying, crush and pass through a 60-mesh sieve (openings 250μ).
) to create a powder.

粉体効率も良好で収率96%以上であった。The powder efficiency was also good, with a yield of 96% or more.

次いで、静電流動塗装装置を使用してスルホールを有す
1.2mm厚さの鉄板に前記粉体を塗装付着(080K
V 10秒間)させ、180℃、60分間焼付硬化して
150μ厚さの硬化塗膜を形成した。
Next, the powder was applied to a 1.2 mm thick iron plate with through holes using an electrostatic dynamic coating device (080K).
V for 10 seconds) and then baked and cured at 180° C. for 60 minutes to form a cured coating film with a thickness of 150 μm.

塗装時には、均一な帯電リラウドが継続して生成し、鉄
板の平面部および穴部にも平均した厚みの塗装が行われ
また硬化塗膜は肌あれがなく平滑であり印刷回路のフォ
ト印刷あるいはシルクスクリーン印刷性も良好であった
During painting, a uniform charge reroud is generated continuously, and the coating is applied to the flat surfaces and holes of the iron plate with an average thickness. Screen printability was also good.

この試料を、イソプロピルアルコールおよびベンジルア
ルコール(容量比50150 )からなる有機溶媒に常
温で2分間浸漬したのち水洗し、Na2Cr20720
g、濃H2SO410gを48%HBF4に溶解し全
体を11とした粗化液に浸漬し表面粗化を行った。
This sample was immersed in an organic solvent consisting of isopropyl alcohol and benzyl alcohol (volume ratio 50150) for 2 minutes at room temperature, washed with water, and dissolved in Na2Cr20720.
The surface was roughened by immersing it in a roughening solution in which 10 g of concentrated H2SO4 was dissolved in 48% HBF4 and the total amount was adjusted to 11.

浸漬条件は40部1℃で10分間行い、取りだして中和
、水洗を2回くりかえして行った。
The immersion conditions were as follows: 40 parts were soaked at 1° C. for 10 minutes, and then taken out, neutralized, and washed with water twice.

粗化後、前述の表に示すセンシタイジング、アクチベイ
テイング、化学メッキの工程を経て印刷回路を形成し、
更に電気メッキにより35μ厚さの導電回路を形成させ
た。
After roughening, a printed circuit is formed through the sensitizing, activating, and chemical plating steps shown in the table above.
Furthermore, a conductive circuit with a thickness of 35 μm was formed by electroplating.

この試料を160℃で60分間ポストキュア乾燥を行っ
たのち回路部分の引き剥し強さを測定したところ1.7
0〜1.80kg/amの値を有していた。
After post-curing and drying this sample at 160°C for 60 minutes, the peel strength of the circuit portion was measured and was 1.7.
It had a value of 0 to 1.80 kg/am.

化学粗化表面を走査型電子顕微鏡で観察した結果、全表
面にわたって平均した複雑突起形状を呈していた。
When the chemically roughened surface was observed using a scanning electron microscope, it was found that the entire surface had a complex protrusion shape averaged over the entire surface.

また回路引き剥し後の金属面を観察したところ引き剥し
た金属面に樹脂の一部が引きちぎれて付着しており良好
な接着が行われていたことを示す。
Further, when the metal surface after the circuit was peeled off, a portion of the resin was torn off and adhered to the peeled metal surface, indicating that good adhesion was achieved.

実施例 2 アクリロニトリルフ゛タジエンコ゛ム(日本ゼ゛オン社
製商品名二ポール1001)10部、スチレンブタジェ
ン重合体(フィリップス社製商品名ツルプレン406)
20部、エポキシ樹脂(シェル社製商品名エピコート1
001、融点64〜74℃)6部および充填剤として炭
酸カルシウム60部を90℃に加温した加圧式ニーダー
に投入して混練りし、ゴム濃度31.3%の分散体を作
成した。
Example 2 10 parts of acrylonitrile phytadiene copolymer (trade name: Nipol 1001, manufactured by Nippon Zeon Co., Ltd.), styrene-butadiene polymer (trade name: Turprene 406, manufactured by Philips Corporation)
20 parts, epoxy resin (trade name Epicote 1 manufactured by Shell Co., Ltd.
001 (melting point 64-74°C) and 60 parts of calcium carbonate as a filler were put into a pressure kneader heated to 90°C and kneaded to prepare a dispersion with a rubber concentration of 31.3%.

次いで、この分散体30部、とエポキシ樹脂(シェル社
製商品名エピコート1004)170部とを加圧式ニー
ダ−で混練りし冷却固化後粗粉砕して得た配合物にジシ
アンジアミド9部、微粉末シリカ1.5部流水調整剤1
部を加え、実施例1と同様にして粉体塗料を得、その粉
体塗料を使用して実施例1と同様にして印刷配線板を作
成した。
Next, 30 parts of this dispersion and 170 parts of an epoxy resin (trade name Epicote 1004, manufactured by Shell) were kneaded in a pressure kneader, cooled and solidified, and coarsely pulverized. To the resulting mixture, 9 parts of dicyandiamide and a fine powder were added. 1.5 parts silica 1 part water conditioner
A powder coating was obtained in the same manner as in Example 1, and a printed wiring board was prepared in the same manner as in Example 1 using the powder coating.

得られた印刷配線板は実施例1のものと同様に良好であ
り、回路部分の引き剥し強さは1.65〜1.75kg
/C111であった。
The obtained printed wiring board was as good as that of Example 1, and the peel strength of the circuit portion was 1.65 to 1.75 kg.
/C111.

比較例 実施例2における最終粉体組成とはゾ同−組成すなわち
エポキシ樹脂(シェル社製商品名エピコート1004)
170部、アクリロニトリルブタジェンゴム(日本ゼオ
ン社製商品名二ボール1001)2.9部、スチレンブ
タジェン重合体(フィリップス社製商品名ツルプレン)
6.3部、エポキシ樹脂(シェル社製商品名工ピコ−1
−1001)1.9部および炭酸カルシウム18.8部
とを90’Cに加温した加圧式ニーダ−で混練りした。
Comparative Example The final powder composition in Example 2 is the same composition as the epoxy resin (trade name Epicoat 1004 manufactured by Shell Co., Ltd.).
170 parts, acrylonitrile butadiene rubber (trade name: Ni-Ball 1001, manufactured by Nippon Zeon Co., Ltd.) 2.9 parts, styrene-butadiene polymer (trade name: Turprene, manufactured by Philips Corporation)
6.3 parts, epoxy resin (Meiko Pico-1 manufactured by Shell Co., Ltd.
-1001) and 18.8 parts of calcium carbonate were kneaded in a pressure kneader heated to 90'C.

エポキシ樹脂が溶融した後はニーダーのトルクメーター
への負荷がほとんどみられず剪断力がか\つていないこ
とがわかる。
After the epoxy resin is melted, there is almost no load on the torque meter of the kneader, indicating that no shearing force is applied.

30分混練り後の組成物を取り出して分散状態を調べて
みると、小塊状のゴム物質が認められた。
When the composition was taken out after kneading for 30 minutes and the dispersion state was examined, small lump-like rubber substances were observed.

この組成物を、そのま\粗粉砕したのち実施例2と同様
に粉体塗料化、静電粉体塗装次いで印刷配線板を作成し
た。
This composition was coarsely pulverized as it was, then made into a powder coating, electrostatically powder coated, and then a printed wiring board was prepared in the same manner as in Example 2.

粉体塗装化の工程では、粉砕効率が悪くフルイ残塗料を
くりかえし粉砕したが、収率は89%以下にとゾまった
In the powder coating process, the paint remaining in the sieve was repeatedly crushed due to poor crushing efficiency, but the yield dropped to less than 89%.

また静電流動浸漬法では粉体粒子が分極帯電するためか
クラウドの生成が充分でなく均一な塗装が困難であった
In addition, in the electrostatic dynamic dipping method, it was difficult to form a uniform coating because cloud formation was insufficient, probably because the powder particles were polarized and charged.

この例では静電ガンを使用して鉄板平板に塗装したが、
塗膜のレベリングが充分でなく、ユズ版状となるため得
られた印刷配線板の印刷精度はよくなかった。
In this example, an electrostatic gun was used to paint a flat iron plate.
The printing accuracy of the obtained printed wiring board was poor because the leveling of the coating film was not sufficient and it became citron-like.

回路の引き剥し強さは若干バラツキが大きいが、1.1
0〜1.45 ky/傭程度の値が得られた。
The peel strength of the circuit varies slightly, but it is 1.1
Values of about 0 to 1.45 ky/m were obtained.

以上説明したように本発明に於てはあらかじめ、比較的
多量の高分子量ゴムと無機充填剤とを混練り工程の少な
くとも一時期にエポキシ樹脂の融点以上に加熱し、カバ
る溶融樹脂の存在下で混練りして得られるゴム高濃度分
散体を用いて粉体塗料化することにより、ゴム粒子が一
様微細分散化した粉体塗料が得られる。
As explained above, in the present invention, a relatively large amount of high molecular weight rubber and an inorganic filler are heated in advance to a temperature higher than the melting point of the epoxy resin during at least one period of the kneading process, and in the presence of a covering molten resin. By forming a powder coating using the high-concentration rubber dispersion obtained by kneading, a powder coating in which rubber particles are uniformly and finely dispersed can be obtained.

このようにゴムが一様微細分散化されることにより (イ)粉体塗料の粉砕化が容易になる。By uniformly finely dispersing the rubber in this way, (a) It becomes easier to pulverize powder coatings.

(ロ)分極帯電が減少し、均一帯電による静電塗装性が
大巾に向上する。
(b) Polarization electrification is reduced, and electrostatic coating properties are greatly improved due to uniform electrification.

(ハ)焼付硬化の段階で良好な溶融流動が行われ塗膜レ
ベリングがよくなるため印刷性が向上する。
(c) Printability is improved because good melt flow occurs during the baking hardening stage and coating film leveling is improved.

に)ゴムの一様分散により回路の引き剥し強さが向上す
る。
2) Uniform dispersion of rubber improves the peel strength of the circuit.

等の効果が達成され、このような本発明の効果は従来技
術の問題点を大巾に解決するものである。
These effects of the present invention largely solve the problems of the prior art.

Claims (1)

【特許請求の範囲】[Claims] 1 エポキシ樹脂100重量部に対して、分子中に共役
二重結合並びに極性基を有するゴム1〜30重量部を含
み、加熱硬化段階の少なくとも一時期において105セ
ンチボイズ以下の粘度をもつ熱硬化性粉体塗料の製造法
に於て、融点が150℃以下の熱硬化性樹脂3〜50重
量%、無機充填剤5〜60重量%、ゴム80重量%以下
でかつ最終粉体塗料中の2倍以上を含む組成物を、混練
り工程の少なくとも一時期において前記融点が150℃
以下のエポキシ樹脂の融点以上の温度であらかじめ混練
りし、この混練り組成物をエポキシ樹脂と共に更に混練
り、微粉砕することを特徴とする化学メッキ用粉体塗料
の製造法。
1 Thermosetting powder containing 1 to 30 parts by weight of rubber having a conjugated double bond and a polar group in the molecule, based on 100 parts by weight of epoxy resin, and having a viscosity of 105 centivoise or less during at least part of the heat curing step. In the coating manufacturing method, 3 to 50% by weight of a thermosetting resin with a melting point of 150°C or less, 5 to 60% by weight of an inorganic filler, and 80% by weight or less of rubber, and at least twice as much as in the final powder coating. The melting point of the composition is 150° C. during at least one period of the kneading process.
A method for producing a powder coating for chemical plating, which comprises pre-kneading the following epoxy resin at a temperature equal to or higher than its melting point, further kneading the kneaded composition together with the epoxy resin, and pulverizing it.
JP3392479A 1979-03-22 1979-03-22 Manufacturing method of powder coating for chemical plating Expired JPS5853673B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3392479A JPS5853673B2 (en) 1979-03-22 1979-03-22 Manufacturing method of powder coating for chemical plating
US06/131,625 US4315845A (en) 1979-03-22 1980-03-19 Process for preparing chemically platable thermosetting powder coating
DE3010982A DE3010982C2 (en) 1979-03-22 1980-03-21 Powder coating compositions and their use for producing hardened coating layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3392479A JPS5853673B2 (en) 1979-03-22 1979-03-22 Manufacturing method of powder coating for chemical plating

Publications (2)

Publication Number Publication Date
JPS55137168A JPS55137168A (en) 1980-10-25
JPS5853673B2 true JPS5853673B2 (en) 1983-11-30

Family

ID=12400059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3392479A Expired JPS5853673B2 (en) 1979-03-22 1979-03-22 Manufacturing method of powder coating for chemical plating

Country Status (1)

Country Link
JP (1) JPS5853673B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660294B2 (en) * 1986-06-05 1994-08-10 ソマ−ル株式会社 Epoxy resin powder coating composition
JPH07103343B2 (en) * 1987-03-20 1995-11-08 ソマール株式会社 Epoxy resin powder coating suitable for slot insulation
TWI392713B (en) * 2003-03-26 2013-04-11 Atotech Deutschland Gmbh Powder coating and process for the preparation of thin layers in the manufacture of printed circuit boards

Also Published As

Publication number Publication date
JPS55137168A (en) 1980-10-25

Similar Documents

Publication Publication Date Title
JP4677900B2 (en) Mixed conductive powder and its use
CN1303175C (en) Conductive adhesive and circuit comprising same
TWI284328B (en) Conductive paste
WO1996024938A1 (en) Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
US4315845A (en) Process for preparing chemically platable thermosetting powder coating
TW384299B (en) Production of prepreg and laminate
JPS5853673B2 (en) Manufacturing method of powder coating for chemical plating
JPS5831111B2 (en) Powder coating that can be chemically plated and its manufacturing method
CN116367997A (en) Resin composition, resin-equipped metal foil, cured product, metal base substrate, and electronic component
JP3373164B2 (en) Method for producing prepreg and laminate
JP7416503B1 (en) Epoxy resin composition and method for producing the same, and motor rotor, motor slot, motor stator, motor coil, or electrode terminal coated with the epoxy resin composition
JPS6350389B2 (en)
JP4301044B2 (en) Prepreg and laminate manufacturing method
JP3100931B2 (en) Epoxy powder coating
JPH04307232A (en) Preparation of composite damping metal plate
JP2000273220A (en) Production of prepreg and laminate
JPH0358198B2 (en)
JPH11350359A (en) Production of prepreg and laminate
JPH03166933A (en) Preparation of composite damping copper plate excellent in spot weldability
JPH1166955A (en) Conductive paste
JP3983578B2 (en) Thermosetting resin slurry, method for producing prepreg and laminate
JPH11250736A (en) Conductive paste
JPH04756B2 (en)
JPH11309808A (en) Metal foil with adhesive, prepreg with metal foil, and laminated plate
JPS5896647A (en) Pasty composition