JPH11309808A - Metal foil with adhesive, prepreg with metal foil, and laminated plate - Google Patents

Metal foil with adhesive, prepreg with metal foil, and laminated plate

Info

Publication number
JPH11309808A
JPH11309808A JP11040997A JP4099799A JPH11309808A JP H11309808 A JPH11309808 A JP H11309808A JP 11040997 A JP11040997 A JP 11040997A JP 4099799 A JP4099799 A JP 4099799A JP H11309808 A JPH11309808 A JP H11309808A
Authority
JP
Japan
Prior art keywords
resin
metal foil
prepreg
copper foil
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11040997A
Other languages
Japanese (ja)
Inventor
Wataru Kosaka
弥 小坂
Takahiro Nakada
高弘 中田
Kazuyuki Najima
和行 名島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11040997A priority Critical patent/JPH11309808A/en
Publication of JPH11309808A publication Critical patent/JPH11309808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a laminated plate which does not cause air pollution, can save resources, and is good and stable in quality at low costs. SOLUTION: In a laminated plate, at least on one side of sheet-shaped copper foil, copper foil with a resin containing a powdered thermosetting resin composition in which a powdered thermosetting resin and a powdered curing agent are used as indispensable components, or a prepreg with copper foil obtained by laminating a sheet-shaped fiber backing is laminated on the copper foil with a resin is used. Preferably, as the powdered thermosetting resin composition, a substance in which mechanical energy is given to each powdered component, and the surfaces of powder particles are fused is used. In a multilayer laminated plate, the prepregs with copper foil are laid to overlap each other and heated/pressed. In the production method, the laminated plates and the multilayer laminated plates are produced continuously.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に電気機器、電
子機器、通信機器等に使用される印刷回路板用として好
適な積層板及び多層積層板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated board and a multilayer laminated board which are particularly suitable for printed circuit boards used for electric equipment, electronic equipment, communication equipment and the like.

【0002】[0002]

【従来の技術】プリント回路板については小型化、高機
能化の要求が強くなる反面、価格競争が激しく、特にプ
リント回路板に用いられる多層積層板やガラス布基材エ
ポキシ樹脂積層板、ガラス不織布を中間層基材とし、ガ
ラス織布を表面層基材とした構成で、エポキシ樹脂を含
浸させ加熱加圧成形したコンポジット積層板は、価格の
低減が大きな課題となっている。また、近年地球の温暖
化対策や環境汚染の減少が要求されてきた。従来これら
に用いられるプリプレグや積層板の製造工程では、基材
への樹脂含浸や樹脂の均一性から多量の溶剤が用いられ
てきた。一方この大量の溶剤は塗布乾燥工程で蒸発して
製品中に存在せずそのまま大気放出されるか、燃焼処理
装置で処理されて炭酸ガス等にして大気に放出されてき
た。この為大気汚染や地球温暖化の原因となる問題があ
った。一方では、基材への樹脂含浸などの製造上の問題
から溶剤の削減、及びこれによる低コスト化が困難であ
った。
2. Description of the Related Art As for printed circuit boards, demands for downsizing and high functionality are becoming stronger, but price competition is fierce. In particular, multilayer laminated boards, glass cloth base epoxy resin laminated boards, and glass nonwoven fabrics used for printed circuit boards are particularly important. The composite laminate having a structure in which is used as an intermediate layer base material and a glass woven fabric is used as a surface layer base material, and which is impregnated with an epoxy resin and molded by heating and pressurizing, has a major problem of cost reduction. In recent years, measures against global warming and reduction of environmental pollution have been required. Conventionally, a large amount of solvent has been used in a process of manufacturing a prepreg or a laminated board used for these in view of resin impregnation of the base material and uniformity of the resin. On the other hand, this large amount of solvent evaporates in the coating and drying step and is released to the atmosphere as it is without being present in the product, or it is treated by a combustion treatment device and released to the atmosphere as carbon dioxide gas or the like. Therefore, there is a problem that causes air pollution and global warming. On the other hand, it has been difficult to reduce the amount of solvent and thereby reduce the cost due to manufacturing problems such as resin impregnation of the base material.

【0003】無溶剤化の技術として、低融点の樹脂や液
状の樹脂を加熱混合して均一混合して塗布する研究はな
されてきたが、十分な均一混合が出来ない、連続生産時
加熱温度の低下による設備への固結や加熱時熱硬化性樹
脂のゲル化、これによる設備の掃除の困難性があり、連
続的な生産が困難であった。一方粉末状樹脂をそのまま
塗布する場合、均一な混合塗布が出来ず、部分的な硬化
の発生や基材への含浸が出来ない問題があった。
As a technique for eliminating the solvent, studies have been made to heat-mix a low-melting resin or a liquid resin to uniformly mix and apply the coating. However, the heating temperature during continuous production cannot be sufficiently uniform. Due to the decrease, solidification in the equipment and gelation of the thermosetting resin at the time of heating and difficulty in cleaning of the equipment due to this cause difficulty in continuous production. On the other hand, when the powdery resin is applied as it is, there is a problem that uniform mixing and application cannot be performed, and partial curing occurs and impregnation of the substrate cannot be performed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来製造が
困難であった無溶剤樹脂の使用による積層板、あるいは
多層積層板を得んとして研究した結果、粉末状樹脂及び
硬化剤を使用すること、及びその粉体組成物にメカノケ
ミカルな反応を施すことにより均一混合や基材への含浸
性が従来の溶剤を使用した樹脂と同等でなるとの知見を
得、更にこの知見に基づき種々研究を進めて本発明を完
成するに至ったものである。
SUMMARY OF THE INVENTION The present invention has been studied to obtain a laminate or a multilayer laminate using a solventless resin, which has been conventionally difficult to produce. And that the powder composition undergoes a mechanochemical reaction to achieve uniform mixing and the impregnation of the substrate to the same level as the resin using conventional solvents. To complete the present invention.

【0005】[0005]

【課題を解決するための手段】本発明は、金属箔の表面
に、粉末状の樹脂又は樹脂組成物を存在させてなること
を特徴とする樹脂付き金属箔に関し、好ましくは、この
粉末状樹脂組成物は、各成分が粉末であり、これらを機
械的エネルギーを与えてメカノケミカルな反応により粉
末粒子間に表面融合をさせたもの、あるいは、熱硬化性
樹脂及び硬化剤を加熱混練ないし溶融混合し、微粉砕し
たものであり、そして、かかる樹脂付き金属箔の樹脂側
にシート状繊維基材を重ね合わせ、加熱することを特徴
とする金属箔付きプリプレグ、及び、上記の金属箔付き
プリプレグを1枚又は2枚使用するか、又はこれに金属
箔及び又は樹脂をシート状繊維基材に含浸したプリプレ
グを組み合わせ、金属箔が最外層となるようにして、加
熱加圧してなることを特徴とする積層板、に関するもの
である。
SUMMARY OF THE INVENTION The present invention relates to a resin-attached metal foil characterized in that a powdery resin or a resin composition is present on the surface of the metal foil. The composition is a powder in which each component is a powder, and these are subjected to mechanical energy to cause surface fusion between powder particles by a mechanochemical reaction, or a heat-curable resin and a curing agent are kneaded or melt-mixed. Then, a prepreg with a metal foil, which is finely pulverized, and a sheet-like fiber substrate is superimposed on the resin side of the metal foil with a resin, and heated, and the prepreg with a metal foil described above. Use one or two sheets, or combine them with a prepreg in which a metal fiber and / or resin is impregnated in a sheet-like fiber base material, and press and heat so that the metal foil is the outermost layer. Laminate according to claim relates.

【0006】更には、金属箔の表面に、粉末状の樹脂又
は樹脂組成物を存在させて樹脂付き金属箔を得、この樹
脂付き金属箔の樹脂側にシート状繊維基材を重ね合わ
せ、加熱して金属箔付きプリプレグを得、次いで、この
金属箔付きプリプレグの1枚又は2枚、あるいはこの金
属箔付きプリプレグに、金属箔及び又は樹脂をシート状
繊維基材に含浸したプリプレグを組み合わせ、金属箔が
最外層となるようにして、加熱加圧することを特徴とす
る積層板の製造方法、及びこれらの各工程を連続的に行
うことを特徴とする請求項6記載の積層板の製造方法、
に関するものである。
Furthermore, a powdery resin or a resin composition is present on the surface of the metal foil to obtain a resin-coated metal foil, and a sheet-like fiber base material is superposed on the resin side of the resin-coated metal foil, and heated. To obtain a prepreg with a metal foil, and then combine one or two of the prepreg with a metal foil, or the prepreg with the metal foil, a prepreg in which a metal fiber and / or a resin is impregnated into a sheet-like fiber base material, The method for producing a laminate according to claim 6, wherein the foil is the outermost layer, and a method for producing a laminate, wherein the laminate is heated and pressed, and the steps are performed continuously.
It is about.

【0007】本発明において、用いられる樹脂として
は、一般的には、熱硬化性樹脂であり、エポキシ樹脂、
ポリイミド樹脂、ポリエステル樹脂、フェノール樹脂、
メラミン樹脂およびこれらの変性樹脂が好ましく使用さ
れるが、その他、熱可塑性樹脂、天然樹脂等の樹脂も使
用され、それらに限定されるものではない。熱硬化性樹
脂では、エポキシ樹脂が望ましいが、このほか、ポリイ
ミド樹脂、ポリエステル樹脂、フェノール樹脂などを用
いることができる。熱硬化性樹脂がエポキシ樹脂の場
合、粉末状の硬化剤としては、芳香族アミン系やノボラ
ック樹脂系が望ましいが、酸無水物系なども用いること
ができる。更には、粉末状の硬化促進剤を使用すること
が好ましい。かかる硬化促進剤としては、イミダゾール
系、第3級アミン系、ホスフィン系等を用いることがで
きる。これらの各成分は上記のものに限定されるもので
はない。
In the present invention, the resin used is generally a thermosetting resin, such as an epoxy resin,
Polyimide resin, polyester resin, phenol resin,
Melamine resins and their modified resins are preferably used, but other resins such as thermoplastic resins and natural resins are also used, and are not limited thereto. As the thermosetting resin, an epoxy resin is desirable, but in addition, a polyimide resin, a polyester resin, a phenol resin, or the like can be used. When the thermosetting resin is an epoxy resin, the curing agent in the form of powder is preferably an aromatic amine-based resin or a novolak resin-based resin, but may be an acid anhydride-based resin. Further, it is preferable to use a powdery curing accelerator. As such a curing accelerator, an imidazole type, a tertiary amine type, a phosphine type or the like can be used. These components are not limited to those described above.

【0008】粉末状熱硬化性樹脂組成物が、粉末状熱硬
化性樹脂及び硬化剤の混合物に機械的エネルギーを与え
てメカノケミカル反応を起こさせて得られた粉末状物で
ある場合、硬化剤は粉末状であることが好ましいが、配
合量が少ない場合(例えば、樹脂に対して20重量%以
下)は液状でもよく、樹脂との混合物に機械的エネルギ
ーを与えた後に粉末化できれば使用可能である。また、
好ましくは、硬化促進剤を使用する。硬化促進剤も粉末
状のものが好ましいが、上記と同様に液状のものも使用
可能である。
In the case where the powdery thermosetting resin composition is a powdery material obtained by applying a mechanical energy to a mixture of the powdery thermosetting resin and the curing agent to cause a mechanochemical reaction, Is preferably in the form of a powder, but when the blending amount is small (for example, 20% by weight or less based on the resin), the mixture may be in a liquid state, and can be used as long as the mixture with the resin can be powdered after applying mechanical energy. is there. Also,
Preferably, a curing accelerator is used. The curing accelerator is preferably in the form of a powder, but a liquid accelerator can also be used as described above.

【0009】これらの粉体の粒径としては、通常100
0μm以下であり、好ましくは0.1〜500μmであ
り、更に好ましくは0.1〜200μmである。これ
は、1000μmを越えると粒子重量に対しての表面積
が小さくなり、熱硬化性樹脂、硬化剤や硬化促進剤等各
成分の互いの接点が少なくなり、均一分散が困難となる
ため、反応の目標比率とは異なった比率で反応したり、
均一な反応が行われないおそれがある。メカノケミカル
反応のためには、硬化剤及び又は硬化促進剤が粉末状の
場合、熱硬化性樹脂の粒径は、硬化剤及び又は硬化促進
剤の粒径に対して5〜15倍が好ましい。これは、この
範囲では熱硬化性樹脂に硬化剤及び又は硬化促進剤が融
合しやすいためである。更に必要により無機充填材等の
添加剤を配合することができる。
The particle size of these powders is usually 100
0 μm or less, preferably 0.1 to 500 μm, more preferably 0.1 to 200 μm. This is because if the particle size exceeds 1000 μm, the surface area with respect to the particle weight becomes small, the number of contact points of each component such as a thermosetting resin, a curing agent and a curing accelerator decreases, and uniform dispersion becomes difficult. It may react at a different ratio than the target ratio,
There is a possibility that a uniform reaction is not performed. For the mechanochemical reaction, when the curing agent and / or the curing accelerator is in a powder form, the particle size of the thermosetting resin is preferably 5 to 15 times the particle size of the curing agent and / or the curing accelerator. This is because the curing agent and / or the curing accelerator are easily fused to the thermosetting resin in this range. Further, an additive such as an inorganic filler can be blended if necessary.

【0010】メカノケミカル反応による改質とは、「固
体による固体の改質で、粉砕、磨砕、摩擦、接触による
粒子の表面活性、表面家電を利用するものである。活性
そのものが、結晶形の転移や歪みエネルギーの増大によ
る溶解、熱分解速度の改質、あるいは機械的強度、磁気
特性になる場合と、表面活性を他の物質との反応、付着
に用いる場合とがある。工学的には機械的衝撃エネルギ
ーが利用され、摩擦、接触による電荷、あるいは磁気に
よる付着、核物質への改質剤の埋め込み、溶融による皮
膜の形成等、物理的改質のみならず化学的改質も行われ
る。」(「実用表面改質技術総覧」材料技術研究協会
編、産業技術サービスセンター、1993.3.25発行、p786)
ものである。本発明は、メカノケミカル反応による化学
的改質を利用したものであるが、固体と液体が機械的エ
ネルギーにより化学的に改質される場合をも含むもので
ある。
[0010] The modification by mechanochemical reaction is "a modification of a solid by a solid, which utilizes the surface activity of particles by grinding, grinding, friction, and contact, and surface appliances. The activity itself is a crystal form. In some cases, the dissolution or thermal decomposition rate is modified by increasing the transition energy or strain energy, or mechanical strength or magnetic properties are obtained. In other cases, surface activity is used for reaction or adhesion with other substances. Uses mechanical impact energy to perform not only physical modification but also chemical modification such as adhesion by electric charge or magnetism by friction, contact, embedding of modifier in nuclear material, formation of film by melting, etc. ("Overview of Practical Surface Modification Technologies" edited by the Material Technology Research Association, Industrial Technology Service Center, published March 25, 1993, p786)
Things. The present invention utilizes chemical modification by a mechanochemical reaction, but also includes a case where a solid and a liquid are chemically modified by mechanical energy.

【0011】メカノケミカル反応のために機械的エネル
ギーを与える粉体処理方法としては、ライカイ機、ヘン
シェルミキサー、プラネタリーミキサー、ボールミル、
ジェットミル、オングミル、多段石臼型混練押し出し機
等による混合乃至混練がある。この中でオングミル(ホ
ソカワミクロン(株)製 メカノフュージョン方式等)、
多段石臼型混練押し出し機((株)KCK製:メカノケミ
カルディスパージョン方式等)、ジェットミル((株)奈
良機械製作所製:ハイブリタイザー方式等)による混合
乃至混練が好ましく、特に、メカノケミカル反応を効率
よく行うためには、多段石臼型混練押し出し機((株)K
CK製:メカノケミカルディスパージョン方式)が好ま
しい。
[0011] Powder processing methods for applying mechanical energy for the mechanochemical reaction include Raikai machines, Henschel mixers, planetary mixers, ball mills,
There is mixing or kneading by a jet mill, an ong mill, a multi-stage mill-type kneading extruder or the like. Among these, Ongmill (Mechanofusion method manufactured by Hosokawa Micron Corporation),
Mixing or kneading with a multi-stage mill-type kneading extruder (manufactured by KCK Corporation: mechanochemical dispersion method, etc.) or a jet mill (manufactured by Nara Machinery Works, Ltd .: hybridizer method, etc.) is preferred. In order to perform it efficiently, a multi-stage mill-type kneading extruder (K
CK: Mechanochemical dispersion method).

【0012】メカノケミカル反応を行うためには、熱硬
化性樹脂の軟化点は、好ましくは50℃以上、より好ま
しくは70℃以上、さらに好ましくは80℃以上であ
る。これは、上記処理時に粉体間あるいは粉体と処理装
置との間で摩擦、粉砕、融合により20〜50℃程度の
熱が発生するため、この影響を最小限にとどめるためで
ある。一方、軟化点が高すぎても有効なメカノケミカル
反応が行われにくく、かつ、後の工程である樹脂組成物
の基材への含浸が困難となるので、150℃以下の軟化
点が好ましい。粉末状熱硬化性樹脂及び硬化剤等の各成
分は、メカノケミカル反応のための粉体処理の前に、予
め、上記粒径まで粉砕した後ヘンシェルミキサー等にて
できるだけ均一に混合することが好ましい。
In order to carry out the mechanochemical reaction, the softening point of the thermosetting resin is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, and further preferably 80 ° C. or higher. This is because heat of about 20 to 50 ° C. is generated due to friction, pulverization, and fusion between the powders or between the powder and the processing apparatus during the above-mentioned processing, so that this influence is minimized. On the other hand, if the softening point is too high, an effective mechanochemical reaction is unlikely to be performed, and it is difficult to impregnate the base material with the resin composition in a later step. Each component such as a powdery thermosetting resin and a curing agent is preferably mixed as uniformly as possible with a Henschel mixer or the like after pulverizing to the above particle size in advance before powder treatment for mechanochemical reaction. .

【0013】メカノケミカル反応された粉末状熱硬化性
樹脂組成物の粒径は、通常1000μm以下であり、好
ましくは0.1〜500μmであり、更に好ましくは
0.1〜200μmである。かかる粒径は、粉末組成物
の散布ないし塗布時の流動性、及び加熱溶融時の流れや
表面の滑らかさを改良すること、基材への樹脂の含浸性
を改良すること、基材中での樹脂組成物の分布を安定化
させること等のために適している。
The particle size of the powdery thermosetting resin composition subjected to the mechanochemical reaction is usually 1000 μm or less, preferably 0.1 to 500 μm, and more preferably 0.1 to 200 μm. Such a particle size is to improve the fluidity of the powder composition at the time of spraying or application, and to improve the flow and surface smoothness at the time of heating and melting, to improve the resin impregnation property of the base material, It is suitable for stabilizing the distribution of the resin composition.

【0014】粉末状熱硬化性樹脂組成物が、熱硬化性樹
脂及び硬化剤を加熱混練ないし溶融混合され、微粉砕さ
れた粉末状物である場合、熱硬化性樹脂及び硬化剤、そ
の他必要により添加される無機充填材等の添加剤ととも
に、加熱ロール等により加熱混練ないし溶融混合され、
次いで、粉砕機により微粉砕される。熱硬化性樹脂及び
硬化剤は、通常、固形のものが使用されるが、熱硬化性
樹脂、無機充填材以外の成分(例えば、硬化剤、硬化促
進剤)は液状のものも使用可能である。
In the case where the powdery thermosetting resin composition is a finely pulverized powder obtained by heat-kneading or melt-mixing a thermosetting resin and a curing agent, the thermosetting resin and the curing agent, if necessary, Along with additives such as inorganic fillers to be added, heat kneading or melt mixing by a heating roll or the like,
Next, it is finely pulverized by a pulverizer. As the thermosetting resin and the curing agent, solid materials are usually used, but components other than the thermosetting resin and the inorganic filler (for example, the curing agent and the curing accelerator) may be liquid. .

【0015】加熱混練ないし溶融混合するために装置
は、加熱ロール、1軸又は2軸押出機、コニーダー等の
加熱混練機、あるいはヘンシェルミキサー等の加熱装置
の付いた攪拌容器、反応装置等があり、実用上は加熱ロ
ール、1軸又は2軸押出機、ヘンシェルミキサーが好ま
しい。また、粉砕機は、加熱混練ないし溶融混合された
樹脂組成物を微粉砕可能なものであればいかなるもので
もよく、例えば、ハンマーミル、アトマイザー、ジェッ
トミル等がある。
Apparatuses for heating kneading or melt mixing include a heating roll, a single-screw or twin-screw extruder, a heating kneader such as a co-kneader, a stirring vessel equipped with a heating device such as a Henschel mixer, a reactor, and the like. Practically, a heating roll, a single screw or twin screw extruder, and a Henschel mixer are preferable. The pulverizer may be any pulverizer that can finely pulverize the resin composition that has been heated and kneaded or melt-mixed, and examples thereof include a hammer mill, an atomizer, and a jet mill.

【0016】微粉砕された粉末状熱硬化性樹脂組成物の
粒径は、通常1000μm以下であり、好ましくは0.
1〜500μmであり、更に好ましくは0.1〜200
μmである。かかる粒径は、粉末組成物の散布ないし塗
布時の流動性、及び加熱溶融時の流れや表面の滑らかさ
を改良すること、基材への樹脂の含浸性を改良するこ
と、基材中での樹脂組成物の分布を安定化させること等
のために適している。
The particle size of the finely pulverized thermosetting resin composition is usually 1000 μm or less, preferably 0.1 μm or less.
1 to 500 μm, and more preferably 0.1 to 200 μm.
μm. Such a particle size is to improve the fluidity of the powder composition at the time of spraying or application, and to improve the flow and surface smoothness at the time of heating and melting, to improve the resin impregnation property of the base material, It is suitable for stabilizing the distribution of the resin composition.

【0017】本発明に用いられる熱硬化性樹脂組成物に
は、上述のように、必要により、メカノケミカル反応を
起こさる前に、あるいは加熱混練ないし溶融混合する前
に、予め無機充填材を添加することができる。無機充填
材を加えると耐トラッキング性、耐熱性、熱膨張率の低
下等の特性を付与することが出来る。かかる無機充填材
としては、水酸化アルミニウム、水酸化マグネシウム、
炭酸カルシウム、タルク、ウォラストナイト、アルミ
ナ、シリカ、未焼成クレー、焼成クレー、硫酸バリウム
等がある。これらの粒径も前記と同様である。この他、
カップリング剤等の添加剤を配合してもよい。
As described above, an inorganic filler is added to the thermosetting resin composition used in the present invention in advance before a mechanochemical reaction occurs, or before heat kneading or melt mixing, as described above. can do. When an inorganic filler is added, characteristics such as tracking resistance, heat resistance, and a decrease in coefficient of thermal expansion can be imparted. Such inorganic fillers include aluminum hydroxide, magnesium hydroxide,
Examples include calcium carbonate, talc, wollastonite, alumina, silica, unfired clay, fired clay, and barium sulfate. These particle sizes are the same as above. In addition,
An additive such as a coupling agent may be blended.

【0018】本発明において、金属箔は、銅箔、アルミ
箔、ステンレス箔、スチール箔、チタン箔、金箔、銀箔
などがあるが、導電性、コスト等から一般的には銅箔が
用いられる。金属箔の表面に樹脂粉体を存在させる方法
は、金属箔上側から振りかける方法、静電塗装法、流動
浸漬法、スプレーによる吹き付け法、各種コーターによ
る塗布法等、特に限定されない。金属箔表面に樹脂粉末
を存在させるとき、付着方法によっては、金属箔は水平
であっても垂直あるいは斜め方向であってもよい。金属
箔は、予め、60〜170℃程度に加熱しておけば、樹
脂粉体は、金属箔に存在させたときによく付着し、その
後のシート状繊維基材を重ね合わせ加熱したときにこの
基材の内部によく浸透し、含浸性の良好な良好な金属箔
付きプリプレグが得られる。金属箔に存在させる樹脂粉
体の量は、重ね合わされるシート状繊維基材の繊維材
質、性状、重量(単位面積当たり)により異なるが、通
常、シート状繊維基材の重量の40〜60%程度であ
る。
In the present invention, the metal foil includes a copper foil, an aluminum foil, a stainless steel foil, a steel foil, a titanium foil, a gold foil, a silver foil, and the like. Generally, a copper foil is used from the viewpoint of conductivity, cost, and the like. The method for causing the resin powder to be present on the surface of the metal foil is not particularly limited, such as a method of sprinkling from the upper side of the metal foil, an electrostatic coating method, a fluid immersion method, a spraying method with a spray, and a coating method using various coaters. When the resin powder is present on the surface of the metal foil, the metal foil may be horizontal, vertical or oblique depending on the method of attachment. If the metal foil is heated to about 60 to 170 ° C. in advance, the resin powder adheres well when it is present on the metal foil, and when the subsequent sheet-like fiber base material is overlaid and heated, A good prepreg with a metal foil that penetrates well into the base material and has good impregnation properties can be obtained. The amount of the resin powder to be present in the metal foil varies depending on the fiber material, properties, and weight (per unit area) of the sheet-like fiber base material to be superposed, but is usually 40 to 60% of the weight of the sheet-like fiber base material. It is about.

【0019】このようにして得られた樹脂付き金属箔か
らは、その樹脂側にシート状繊維基材を重ね合わせ、加
熱することにより金属箔付きプリプレグが得られる。シ
ート状繊維基材としては、ガラス織布、ガラス不繊布、
ガラスペーパー等のガラス繊維基材の他、紙、合成繊維
等からなる織布や不織布、金属繊維、カーボン繊維、鉱
物繊維等からなる織布、不織布、マット類等が挙げら
れ、これらの基材の原料は単独又は混合して使用しても
よい。この中で、ガラス織布が最も一般的である。加熱
温度は、樹脂粉体が溶融し、前記基材に含浸する温度で
あればよく、通常80〜180℃である。加熱時間は、
樹脂粉体が溶融するが、硬化が実質的に進まない程度で
あり、加熱温度によるが、1〜30分程度である。この
金属箔付きプリプレグを作製する工程までは、通常連続
的に行うことができる。
From the resin-coated metal foil thus obtained, a prepreg with a metal foil is obtained by laminating a sheet-like fiber substrate on the resin side and heating. As a sheet-like fiber substrate, glass woven fabric, glass non-woven fabric,
In addition to glass fiber base materials such as glass paper, woven fabrics and nonwoven fabrics made of paper, synthetic fibers, and the like, woven fabrics, nonwoven fabrics, mats, and the like made of metal fibers, carbon fibers, mineral fibers, and the like. May be used alone or as a mixture. Of these, glass woven fabrics are the most common. The heating temperature may be a temperature at which the resin powder melts and impregnates the base material, and is usually 80 to 180 ° C. The heating time is
The resin powder melts, but hardening does not proceed substantially, and it takes about 1 to 30 minutes depending on the heating temperature. Up to the step of producing the prepreg with a metal foil, it can be usually continuously performed.

【0020】次いで、金属箔付きプリプレグは、以下に
示すような構成にして、加熱加圧し、金属箔張り積層板
に成形される。いずれの場合も金属箔は最も外側になる
ように構成される。 (1)金属箔付きプリプレグ1枚のみ (2)金属箔付きプリプレグ1枚と金属箔 (3)金属箔付きプリプレグ2枚 (4)金属箔付きプリプレグ1枚と1枚ないし複数枚の
プリプレグ (5)金属箔付きプリプレグ2枚と1枚ないし複数枚の
プリプレグ (6)金属箔付きプリプレグ1枚と金属箔1枚ないし複
数枚のプリプレグ ここで、プリプレグは、従来の樹脂ワニスをシート状繊
維基材に含浸乾燥したプリプレグでもよいが、本発明に
用いられる樹脂粉体をシート状繊維基材に含浸したもの
が好ましい。金属箔付きプリプレグを含む上記のような
構成体を、通常の方法で加熱加圧するが、簡単な構成の
場合、例えば、上記(1)、(2)又は(3)のような
場合、樹脂付き金属箔の作製から積層板の成形まで連続
的に行うことができる。
Next, the prepreg with a metal foil is formed into a metal foil-clad laminate by applying heat and pressure in the following configuration. In each case, the metal foil is configured to be the outermost. (1) Only one prepreg with metal foil (2) One prepreg with metal foil and metal foil (3) Two prepregs with metal foil (4) One prepreg with metal foil and one or more prepregs (5 ) Two prepregs with metal foil and one or more prepregs (6) One prepreg with metal foil and one or more prepregs with prepreg, where the conventional resin varnish is a sheet-like fiber base material A prepreg impregnated and dried may be used, but a prepreg impregnated into a sheet-like fiber substrate with the resin powder used in the present invention is preferable. The above-mentioned structure including the prepreg with a metal foil is heated and pressurized by an ordinary method. In the case of a simple structure, for example, in the case of the above (1), (2) or (3), a resin is attached. The process from the production of the metal foil to the formation of the laminate can be continuously performed.

【0021】以上のようにして、積層板の性能を維持向
上しつつ、無溶剤による省資源化及び大気汚染の低減化
が図られ、低コスト化をも達成することができる。本発
明の考え方は、粉末状成分(樹脂、硬化剤等)の使用と
各粉末状成分のメカノケミカル反応を応用し、かつ金属
箔上の樹脂をシート状繊維基材に一方向から含浸させる
ことによりボイドのない良好な含浸を行うことができた
ものである。このような技術により、樹脂粉体の均一な
結合・分散、シート状繊維基材への均一な含浸が可能と
なったものである。
As described above, while maintaining and improving the performance of the laminated board, it is possible to save resources and reduce air pollution by using no solvent, and to achieve cost reduction. The idea of the present invention is to apply the use of powdery components (resin, curing agent, etc.) and the mechanochemical reaction of each powdery component, and impregnate the resin on the metal foil into the sheet-like fiber substrate from one direction. Thus, good impregnation without voids could be performed. Such a technique makes it possible to uniformly bond and disperse the resin powder and to uniformly impregnate the sheet fiber substrate.

【0022】[0022]

【実施例】次に、本発明の実施例を比較例とともに具体
的に説明する。
Next, examples of the present invention will be specifically described together with comparative examples.

【0023】〔実施例1〕(ホソカワミクロン、散布) 平均粒径150μmの粉末状のエポキシ樹脂(油化シェ
ルエポキシ(株)製臭素化エポキシ樹脂Ep5048,エ
ポキシ当量675)100重量部、平均粒子径15μm
の粉末状の硬化剤(ジシアンジアミド)5重量部、及び
平均粒径15μmの粉末状の硬化促進剤(2−エチル−
4−メチルイミダゾール)1重量部の比率で予備混合
し、次いで、メカノフュージョン機(ホソカワミクロン
製AM−15F)を用い、回転数2000rpmにて5
分間処理しし、平均粒径150μmの粉末組成物を得
た。この粉末組成物を厚さ18μmの銅箔の片面上に6
0メッシュ篩いで樹脂重量が100g/m2になるよう
に均一に振りまいた。この樹脂付き銅箔に100g/m
2のガラス織布を重ね合わせた後、170℃の乾燥機で
銅箔側から3分間乾燥して銅箔付きプリプレグを得た。
この銅箔付きプリプレグのプリプレグ側にさらに厚さ1
8μmの銅箔を重ね合わせ、温度165℃、圧力60k
g/cm2で90分間加熱加圧成形して、厚さ0.22
mmの銅張積層板を作製した。
Example 1 (Hosokawa micron, sprayed) 100 parts by weight of a powdery epoxy resin having an average particle diameter of 150 μm (brominated epoxy resin Ep5048, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent: 675), average particle diameter 15 μm
5 parts by weight of a powdery curing agent (dicyandiamide) and a powdery curing accelerator (2-ethyl-
4-methylimidazole) was pre-mixed at a ratio of 1 part by weight, and then mixed with a mechanofusion machine (AM-15F manufactured by Hosokawa Micron) at a rotation speed of 2,000 rpm.
After that, a powder composition having an average particle size of 150 μm was obtained. This powder composition was coated on one side of a copper foil having a thickness of 18 μm by 6 μm.
The mixture was evenly distributed with a 0-mesh sieve so that the resin weight became 100 g / m 2 . 100g / m
After overlapping the glass woven fabrics of No. 2 with each other, drying was performed from the copper foil side for 3 minutes with a dryer at 170 ° C. to obtain a prepreg with a copper foil.
On the prepreg side of this prepreg with copper foil,
8μm copper foil is superimposed, temperature 165 ℃, pressure 60k
g / cm 2 for 90 minutes under heat and pressure.
mm copper-clad laminate was prepared.

【0024】〔実施例2〕(ヘンシェルミキサー、散
布) 平均粒径150μmの粉末状のエポキシ樹脂(前記Ep
5048)100重量部、平均粒子径15μmの粉末状
の硬化剤(ジシアンジアミド)5重量部、及び平均粒径
15μmの粉末状の硬化促進剤(2−エチル−4−メチ
ルイミダゾール)1重量部の予備比率で混合し、次い
で、ヘンシェルミキサーで回転数500rpm、5分間
処理しし、平均粒径150μmの粉末組成物を得た。以
下、この粉末組成物を使用し、実施例1と同様にして厚
さ0.22mmの銅張積層板を作製した。
Example 2 (Henschel mixer, spraying) A powdery epoxy resin having an average particle size of 150 μm (Ep
5048) 100 parts by weight, 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle diameter of 15 μm, and 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) having an average particle diameter of 15 μm The mixture was mixed at the same ratio, and then treated with a Henschel mixer at a rotation speed of 500 rpm for 5 minutes to obtain a powder composition having an average particle size of 150 μm. Hereinafter, using this powder composition, a copper-clad laminate having a thickness of 0.22 mm was produced in the same manner as in Example 1.

【0025】〔実施例3〕(KCK、ナイフコーター) 平均粒径150μmの粉末状のエポキシ樹脂(前記Ep
5048)100重量部、平均粒子径15μmの粉末状
の硬化剤(ジシアンジアミド)5重量部、及び平均粒径
15μmの粉末状の硬化促進剤(2−エチル−4−メチ
ルイミダゾール)1重量部を予備混合し、次いで、多段
石臼型混練押し出し機((株)KCK製メカノケミカルデ
ィスパージョンシステム KCK−80X2−V
(6))を用い、回転数200rpmにて1分間処理
し、平均粒径150μmの粉末組成物を得た。この粉末
組成物を厚さ18μmの銅箔の片面上にナイフコーター
で樹脂重量が100g/m2になるように均一に塗布し
た。この樹脂付き銅箔に100g/m2のガラス織布を
重ね合わせた後、170℃の乾燥機で銅箔側から3分間
乾燥して銅箔付きプリプレグを得た。この銅箔付きプリ
プレグを銅箔を外側にして2枚重ね合わせた後、温度1
65℃、圧力60kg/cm2で90分間加熱加圧成形
して、厚さ0.42mmの銅張積層板を作製した。
Example 3 (KCK, knife coater) A powdery epoxy resin having an average particle size of 150 μm (Ep
5048) 100 parts by weight, 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle diameter of 15 μm, and 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) having an average particle diameter of 15 μm Mixing, and then multi-stage mill-type kneading extruder (Mechanochemical dispersion system KCK-80X2-V manufactured by KCK Co., Ltd.)
Using (6)), the powder was treated at 200 rpm for 1 minute to obtain a powder composition having an average particle diameter of 150 μm. This powder composition was uniformly applied on one surface of a copper foil having a thickness of 18 μm using a knife coater so that the resin weight became 100 g / m 2 . A 100 g / m 2 glass woven fabric was overlaid on the resin-coated copper foil, and dried with a dryer at 170 ° C. for 3 minutes from the copper foil side to obtain a prepreg with the copper foil. After two sheets of this prepreg with copper foil were laminated with the copper foil on the outside,
It was heated and pressed at 65 ° C. under a pressure of 60 kg / cm 2 for 90 minutes to produce a copper-clad laminate having a thickness of 0.42 mm.

【0026】〔実施例4〕(KCK、アエロジル、ナイ
フコーター) 実施例3で得た平均粒径150μmの粉末組成物100
重量部に、平均一次粒子径0.05μmの微粉末シリカ
(日本アエロジル製アエロジル#200)1重量部を添
加し、ヘンシェルミキサーで回転数500rpm、5分
間混合処理した。以下、この粉末組成物を使用し、実施
例3と同様にして厚さ0.42mmの銅張積層板を作製
した。
Example 4 (KCK, Aerosil, knife coater) Powder composition 100 having an average particle size of 150 μm obtained in Example 3
1 part by weight of fine powdered silica (Aerosil # 200 manufactured by Nippon Aerosil) having an average primary particle diameter of 0.05 μm was added to the parts by weight, and the mixture was mixed with a Henschel mixer at 500 rpm for 5 minutes. Hereinafter, using this powder composition, a copper-clad laminate having a thickness of 0.42 mm was produced in the same manner as in Example 3.

【0027】〔実施例5〕(ノボラック、ロール、ナイ
フコーター) 平均粒径150μmの粉末状のエポキシ樹脂(前記Ep
5048,エポキシ当量675)100重量部、平均粒
子径30μmの粉末状のフェノールノボラック樹脂(住
友デュレズ製PR−51470、水酸基当量105)1
6重量部、平均粒子径10μmの粉末状のトリフェニル
ホスフィン1重量部の割合で予備混合し、次いで、直径
12インチの2本ロールを用い、高速側回転数20rp
m、高速側ロール温度60℃、低速側ロール温度30
℃、回転比1.5:1にて30回処理した後、シート状
で取りだし冷風にて冷却後、微粉砕機にて粉砕して平均
粒径200μmの粉末組成物を得た。以下、この粉末組
成物を使用し、実施例3と同様にして厚さ0.42mm
の銅張積層板を作製した。
Example 5 (Novolak, Roll, Knife Coater) A powdery epoxy resin having an average particle size of 150 μm (Ep
5048, epoxy equivalent 675) 100 parts by weight, powdered phenol novolak resin having an average particle diameter of 30 μm (PR-51470 manufactured by Sumitomo Durez, hydroxyl equivalent 105) 1
6 parts by weight and 1 part by weight of powdery triphenylphosphine having an average particle diameter of 10 μm are preliminarily mixed, and then, using two rolls having a diameter of 12 inches, a high-speed rotation speed of 20 rpm
m, high-speed roll temperature 60 ° C, low-speed roll temperature 30
After treatment at 30 ° C. and a rotation ratio of 1.5: 1 for 30 times, the mixture was taken out in a sheet form, cooled with cold air, and then pulverized with a fine pulverizer to obtain a powder composition having an average particle diameter of 200 μm. Hereinafter, using this powder composition, a thickness of 0.42 mm was obtained in the same manner as in Example 3.
Was produced.

【0028】〔実施例6〕(ノボラック、ロール、アエ
ロジル、ナイフコーター) 実施例5で得た平均粒径150μmの粉末組成物100
重量部に、平均一次粒子径0.05μmの微粉末シリカ
(日本アエロジル製アエロジル#200)1重量部を添
加し、ヘンシェルミキサーで回転数500rpm、5分
間混合処理した。以下、この粉末組成物を使用し、実施
例3と同様にして厚さ0.42mmの銅張積層板を作製
した。
Example 6 (Novolak, roll, Aerosil, knife coater) Powder composition 100 having an average particle size of 150 μm obtained in Example 5
1 part by weight of fine powdered silica (Aerosil # 200 manufactured by Nippon Aerosil) having an average primary particle diameter of 0.05 μm was added to the parts by weight, and the mixture was mixed with a Henschel mixer at 500 rpm for 5 minutes. Hereinafter, using this powder composition, a copper-clad laminate having a thickness of 0.42 mm was produced in the same manner as in Example 3.

【0029】〔比較例1〕平均粒径150μmの粉末状
のエポキシ樹脂(油化シェル製臭素化エポキシEp50
48)100重量部、平均粒子径15μmの粉末状の硬
化剤(ジシアンジアミド)5重量部、平均粒径15μm
の粉末状の硬化促進剤(2−エチル−4−メチルイミダ
ゾール)1重量部の比率で混合したものを手で5分間混
ぜ合わせたのち、この粉体を100℃で加温して溶かし
た後、樹脂固形分で100g/m2になるように厚さ1
8μmの銅箔に塗布し、さらに100g/m2のガラス
織布を重ね合わせて170℃の乾燥機で2分間乾燥して
銅箔付きプリプレグを得た。この銅箔付きプリプレグの
銅箔とプリプレグ側にさらに厚さ18μmの銅箔を重ね
合わせ、温度165℃、圧力60kg/cm2で90分
間加熱加圧成形して、厚さ0.22mmの銅張積層板を
作製した。
Comparative Example 1 A powdery epoxy resin having an average particle size of 150 μm (brominated epoxy Ep50 manufactured by Yuka Shell Co., Ltd.)
48) 100 parts by weight, 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle diameter of 15 μm, and an average particle diameter of 15 μm
A mixture of 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) was mixed by hand for 5 minutes, and then heated at 100 ° C. to dissolve the powder. And a thickness of 1 so that the resin solid content is 100 g / m 2.
A prepreg with a copper foil was obtained by applying the composition to an 8 μm copper foil, further laminating a 100 g / m 2 glass woven fabric, and drying with a dryer at 170 ° C. for 2 minutes. A copper foil having a thickness of 18 μm is further laminated on the copper foil of the prepreg with the copper foil and the prepreg side, and heated and pressed at a temperature of 165 ° C. and a pressure of 60 kg / cm 2 for 90 minutes to form a copper clad having a thickness of 0.22 mm. A laminate was prepared.

【0030】〔比較例2〕平均粒径150μmの粉末状
のエポキシ樹脂(油化シェル製臭素化エポキシEp50
48)100重量部、平均粒子径15μmの粉末状の硬
化剤(ジシアンジアミド)5重量部、平均粒径15μm
の粉末状の硬化促進剤(2−エチル−4−メチルイミダ
ゾール)1重量部の比率で混合したものをメチルセルソ
ルブ100重量部に溶かした。このワニスを樹脂固形分
で100g/m2になるように厚さ18μmの銅箔に塗
布し、さらに100g/m2のガラス織布を重ね合わせ
て170℃の乾燥機で2分間乾燥して銅箔付きプリプレ
グを得た。この銅箔付きプリプレグのプリプレグ側にさ
らに厚さ18μmの銅箔を重ね合わせ、温度165℃、
圧力60kg/cm2で90分間加熱加圧成形して、厚
さ0.22mmの銅張積層板を作製した。
Comparative Example 2 A powdery epoxy resin having an average particle size of 150 μm (brominated epoxy Ep50 manufactured by Yuka Shell Co., Ltd.)
48) 100 parts by weight, 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle diameter of 15 μm, and an average particle diameter of 15 μm
Was mixed with 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) in 100 parts by weight of methylcellosolve. Copper The varnish was coated on a copper foil having a thickness of 18μm such that the 100 g / m 2 of resin solids, was further dried for 2 minutes at 170 ° C. dryer by superimposing glass fabric of 100 g / m 2 A prepreg with a foil was obtained. A copper foil having a thickness of 18 μm is further laminated on the prepreg side of the prepreg with the copper foil.
It was heated and pressed at a pressure of 60 kg / cm 2 for 90 minutes to produce a copper-clad laminate having a thickness of 0.22 mm.

【0031】以上実施例及び比較例において、プリプレ
グについては、ガラスクロスへの樹脂の含浸性を測定
し、銅張積層板については、成形性、引張り強さ、銅箔
引剥し強さ、半田耐熱性及び絶縁抵抗を測定した。その
結果を表1に示す。
In the above Examples and Comparative Examples, for the prepreg, the impregnating property of the glass cloth with the resin was measured, and for the copper-clad laminate, the moldability, tensile strength, copper foil peeling strength, and solder heat resistance were measured. Properties and insulation resistance were measured. Table 1 shows the results.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】(測定方法) 1.含浸性:ガラス繊維間のボイドの有無を、プリプレ
グを実体顕微鏡にて確認した。 2.成形性:銅張積層板の銅箔をエッチングして、目視
により硬化剤等の析出の有無を観察し、分散性の評価を
する。 3.引張り強さ:銅張積層板の銅箔をエッチングして、
10X100mmに切断後テンシロンにて引張り強度を
測定した。 4.銅箔引剥し強さ:JIS C 6481 5.半田耐熱性:50x50mm角の積層板を、260
℃の半田浴に3分間フロートさせ、ふくれの有無を測定
した。 6.絶縁抵抗:JIS C6481により測定した。
(Measurement method) Impregnating property: The presence or absence of voids between glass fibers was confirmed with a prepreg under a stereoscopic microscope. 2. Formability: The copper foil of the copper-clad laminate is etched, and the presence or absence of precipitation of a curing agent or the like is visually observed to evaluate the dispersibility. 3. Tensile strength: Etching copper foil of copper clad laminate,
After cutting to 10 × 100 mm, the tensile strength was measured with Tensilon. 4. 4. Copper foil peel strength: JIS C 6481 Solder heat resistance: A laminate of 50 x 50 mm square was converted to 260
The sample was floated in a solder bath at a temperature of 3 ° C. for 3 minutes, and the presence or absence of blister was measured. 6. Insulation resistance: Measured according to JIS C6481.

【0035】なお、製造コストについては、実施例の方
法は溶剤を使用しないので、得られた積層板は比較例2
で得られたものに比べ30〜40%程度低コスト化する
ことができた。また、比較例1については、100℃で
樹脂を溶かす工程で樹脂の硬化特性の経時変化が著し
く、また、設備への樹脂付着物が硬化して清掃が困難と
なった。
Regarding the manufacturing cost, the method of the embodiment does not use a solvent, and thus the obtained laminate is the same as that of the comparative example 2.
The cost could be reduced by about 30 to 40% as compared with the one obtained in the above. In Comparative Example 1, the curing characteristics of the resin significantly changed with time in the step of melting the resin at 100 ° C., and the resin adhered to the equipment hardened, making cleaning difficult.

【0036】[0036]

【発明の効果】本発明の方法は、有機溶剤を使用しない
ので、大気汚染が無く、省資源化することができる。特
に、金属箔上の樹脂をシート状繊維基材に一方向から含
浸させることによりボイドのない良好な含浸を行うこと
ができることにより、品質上も安定で良好な積層板を得
ることができる。そして、低コスト化の点で優れてお
り、工業的な積層板の製造方法として好適である。
According to the method of the present invention, since no organic solvent is used, there is no air pollution and resources can be saved. In particular, good impregnation without voids can be performed by impregnating the resin on the metal foil into the sheet-like fiber base material from one direction, so that a good laminated board with stable quality can be obtained. It is excellent in terms of cost reduction, and is suitable as an industrial method for manufacturing a laminate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B29K 105:08 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI B29K 105: 08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属箔の表面に、粉末状の樹脂又は樹脂
組成物を存在させてなることを特徴とする樹脂付き金属
箔。
1. A metal foil with a resin, wherein a powdery resin or a resin composition is present on the surface of the metal foil.
【請求項2】 粉末状樹脂組成物は、各成分に機械的エ
ネルギーを与えてメカノケミカルな反応により粉末粒子
を表面融合させたものである請求項1記載の樹脂付き金
属箔。
2. The resin-coated metal foil according to claim 1, wherein the powdery resin composition is obtained by applying mechanical energy to each component to cause the surface of the powder particles to be fused by a mechanochemical reaction.
【請求項3】 粉末状樹脂組成物は、熱硬化性樹脂及び
硬化剤を加熱混練ないし溶融混合し、微粉砕したもので
ある請求項1記載の樹脂付き金属箔。
3. The metal foil with resin according to claim 1, wherein the powdery resin composition is obtained by kneading or melt-mixing a thermosetting resin and a curing agent and then pulverizing the mixture.
【請求項4】 請求項1、2又は3記載の樹脂付き金属
箔の樹脂側にシート状繊維基材を重ね合わせ、加熱する
ことを特徴とする金属箔付きプリプレグ。
4. A prepreg with a metal foil, wherein a sheet-like fiber base material is superposed on the resin side of the metal foil with a resin according to claim 1, and heated.
【請求項5】 請求項4記載の金属箔付きプリプレグを
1枚又は2枚使用するか、又はこれに金属箔及び又は樹
脂をシート状繊維基材に含浸したプリプレグを組み合わ
せ、金属箔が最外層となるようにして、加熱加圧してな
ることを特徴とする積層板。
5. The prepreg according to claim 4, wherein one or two prepregs are used, or a prepreg obtained by impregnating a metal fiber and / or a resin into a sheet fiber base material is combined with the prepreg. Characterized in that the laminate is heated and pressed.
【請求項6】 金属箔の表面に、粉末状の樹脂又は樹脂
組成物を存在させて樹脂付き金属箔を得、この樹脂付き
金属箔の樹脂側にシート状繊維基材を重ね合わせ、加熱
して金属箔付きプリプレグを得、次いで、この金属箔付
きプリプレグの1枚又は2枚、あるいはこの金属箔付き
プリプレグに、金属箔及び又は樹脂をシート状繊維基材
に含浸したプリプレグを組み合わせ、金属箔が最外層と
なるようにして、加熱加圧することを特徴とする積層板
の製造方法。
6. A powdered resin or a resin composition is present on the surface of a metal foil to obtain a metal foil with a resin, and a sheet-like fiber base material is superimposed on the resin side of the metal foil with a resin and heated. To obtain a prepreg with a metal foil, and then combine one or two of the prepregs with a metal foil, or the prepreg with a metal foil, with a prepreg obtained by impregnating a metal fiber and / or a resin into a sheet fiber base material, And heating and pressurizing the laminate so as to be the outermost layer.
【請求項7】 前記各工程を連続的に行うことを特徴と
する請求項6記載の積層板の製造方法。
7. The method according to claim 6, wherein each of the steps is performed continuously.
JP11040997A 1998-02-19 1999-02-19 Metal foil with adhesive, prepreg with metal foil, and laminated plate Pending JPH11309808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11040997A JPH11309808A (en) 1998-02-19 1999-02-19 Metal foil with adhesive, prepreg with metal foil, and laminated plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-37247 1998-02-19
JP3724798 1998-02-19
JP11040997A JPH11309808A (en) 1998-02-19 1999-02-19 Metal foil with adhesive, prepreg with metal foil, and laminated plate

Publications (1)

Publication Number Publication Date
JPH11309808A true JPH11309808A (en) 1999-11-09

Family

ID=26376376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11040997A Pending JPH11309808A (en) 1998-02-19 1999-02-19 Metal foil with adhesive, prepreg with metal foil, and laminated plate

Country Status (1)

Country Link
JP (1) JPH11309808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137389A (en) * 2007-12-27 2008-06-19 Sumitomo Bakelite Co Ltd Continuous manufacturing process and apparatus of laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137389A (en) * 2007-12-27 2008-06-19 Sumitomo Bakelite Co Ltd Continuous manufacturing process and apparatus of laminate

Similar Documents

Publication Publication Date Title
WO1999027002A1 (en) Processes for the production of prepregs and laminated sheets
JP3373164B2 (en) Method for producing prepreg and laminate
JP2000344917A (en) Flame-retardant prepreg and laminate
JPH11309808A (en) Metal foil with adhesive, prepreg with metal foil, and laminated plate
JP2000345006A (en) Flame retarded prepreg and laminate
JP2000273222A (en) Flame-retardant prepreg and laminate
JPH11302411A (en) Preparation of prepreg and laminate
JP2000344916A (en) Flame-retardant prepreg and laminate
JP2000336190A (en) Production of both prepreg and laminate
JP3582770B2 (en) Manufacturing method of laminated board
JPH11246687A (en) Production of prepreg and laminate
JP2000273219A (en) Prepreg and laminate
JP2000280242A (en) Production of prepreg and laminated sheet
JP2000273218A (en) Production of prepreg and laminate
JPH11350359A (en) Production of prepreg and laminate
JP2000327812A (en) Preparation of prepreg and laminate
JPH11240967A (en) Production of prepreg and laminate
JP2000280241A (en) Production of prepreg and laminated sheet
JP2000273217A (en) Production of prepreg and laminate
JP3565737B2 (en) Manufacturing method of laminated board
JP3323122B2 (en) Method for producing prepreg and laminate
JP2000273220A (en) Production of prepreg and laminate
JP2000273238A (en) Flame retardant prepreg and laminate
JP2000271930A (en) Manufacture of prepreg and laminated sheet
JP2000286551A (en) Manufacture of multilayer printed wiring board