JP2000327812A - Preparation of prepreg and laminate - Google Patents

Preparation of prepreg and laminate

Info

Publication number
JP2000327812A
JP2000327812A JP11140634A JP14063499A JP2000327812A JP 2000327812 A JP2000327812 A JP 2000327812A JP 11140634 A JP11140634 A JP 11140634A JP 14063499 A JP14063499 A JP 14063499A JP 2000327812 A JP2000327812 A JP 2000327812A
Authority
JP
Japan
Prior art keywords
resin
prepreg
thermosetting resin
heating
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11140634A
Other languages
Japanese (ja)
Inventor
Yasushi Tominaga
康 富永
Takahiro Nakada
高弘 中田
Junichi Oba
淳一 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11140634A priority Critical patent/JP2000327812A/en
Publication of JP2000327812A publication Critical patent/JP2000327812A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a laminate at a low cost which does not cause air pollution and can save natural resources and has stable quality. SOLUTION: A preparation method of a prepreg comprises pre-mixing a thermosetting resin and a curing agent as essential components while being heated, providing mechanical energy to cause mechanochemical reaction to obtain a powdery thermosetting resin composition and rendering the resin composition present at least on the surface of a sheet-like fiber substrate. Preferably, the thermosetting resin and the curing agent are powdery and the heating temperature at which pre-mixing is conducted is equal to or below the fusion temperature of the thermosetting resin. A preparation method of a laminate comprises stacking one or more of the prepregs and compressing the same at elevated temperatures.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプリプレグ及び積層
板の製造方法、特に電気機器、電子機器、通信機器等に
使用される印刷回路板用として好適なプリプレグ及び積
層板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a prepreg and a laminate, and more particularly to a method for producing a prepreg and a laminate suitable for a printed circuit board used in electric equipment, electronic equipment, communication equipment and the like. .

【0002】[0002]

【従来の技術】プリント回路板については小型化、高機
能化の要求が強くなる反面、価格競争が激しく、特にプ
リント回路板に用いられる多層積層板やガラス布基材エ
ポキシ樹脂積層板、あるいはガラス不織布を中間層基材
としガラス織布を表面層基材とした積層板は、いずれも
価格の低減が大きな課題となっている。従来これらに用
いられるプリプレグや積層板の製造工程では、多量の溶
剤が用いられてきた。これは、樹脂ワニスの調製が容易
で、基材への樹脂の塗布・含浸が均一で容易なためであ
る。この溶剤は塗布後の乾燥工程で蒸発して製品中に存
在せず、多くは、燃焼装置等で処理され、あるいはその
まま大気中に放出されてきた。この為地球温暖化や大気
汚染の一因となることが指摘されるようになってきた。
一方では、溶剤使用量の削減が種々検討されているが、
基材への樹脂塗布・含浸などの製造上の問題からこの削
減は困難であった。
2. Description of the Related Art As for printed circuit boards, demands for miniaturization and high performance are increasing, but price competition is intense. In particular, multilayer laminated boards, glass cloth base epoxy resin laminated boards, or glass used for printed circuit boards are used. The cost reduction of any laminate using nonwoven fabric as the intermediate layer base material and glass woven fabric as the surface layer base material has been a major issue. Conventionally, a large amount of a solvent has been used in a process for producing a prepreg or a laminate used for these. This is because the preparation of the resin varnish is easy, and the application and impregnation of the resin on the base material is uniform and easy. This solvent evaporates in a drying step after coating and does not exist in the product, and most of the solvent is treated by a combustion device or the like or released to the atmosphere as it is. It has been pointed out that this contributes to global warming and air pollution.
On the other hand, various measures have been taken to reduce the amount of solvent used,
This reduction was difficult due to manufacturing problems such as application and impregnation of the resin to the base material.

【0003】溶剤を使用しないプリプレグ及び積層板の
製造のために、低融点の樹脂や液状の樹脂を加熱混合し
て均一化して基材へ塗布する研究が以前からなされてい
るが、均一混合が十分に出来ない、連続生産時加熱温度
の低下による設備への樹脂固結、加熱中の熱硬化性樹脂
のゲル化、これによる設備の掃除等の問題があり、連続
的な生産が困難であった。一方粉末状樹脂をそのまま塗
布する方法も提案されている(特開昭50−14387
0号公報)が、均一な混合及び塗布が困難であり、部分
的な硬化が生じたり、基材への含浸が不十分であるなど
の問題があり、実用化には至っていない。また、従来の
メカノケミカル反応による粉体処理では、樹脂と硬化剤
との表面改質が十分に行わず、塗布時などにおいて樹脂
と他の成分との分離が発生することがあっ。
[0003] For the production of prepregs and laminates that do not use a solvent, studies have been made to heat and mix a low-melting-point resin or a liquid resin so as to be uniform and apply it to a base material. It is not possible to achieve sufficient production, and there are problems such as resin consolidation in equipment due to a decrease in heating temperature during continuous production, gelling of thermosetting resin during heating, and cleaning of equipment due to this. Was. On the other hand, a method of directly applying a powdery resin has also been proposed (Japanese Patent Application Laid-Open No. 50-14387).
No. 0), however, have problems such as difficulty in uniform mixing and coating, partial curing, and insufficient impregnation of the substrate, and have not been put to practical use. Further, in the conventional powder treatment by the mechanochemical reaction, the surface modification between the resin and the curing agent is not sufficiently performed, and the resin and other components may be separated during application or the like.

【0004】[0004]

【発明が解決しようとする課題】本発明者は、従来製造
が困難であった溶剤を使用しない樹脂によるプリプレグ
及びこのプリプレグを使用した積層板を得んとして研究
した結果、熱硬化性樹脂及び硬化剤を含有する組成物を
加温しながらメカノケミカル反応を施すことにより得ら
れた均一な粉末状組成物が基材への含浸性において従来
の溶剤を使用した樹脂の場合と同等となり得るとの知見
を得た。更には、樹脂粉体においては、溶融時に表面積
が大きく空気の抜け道があるため、溶剤タイプに比べ空
気が内包されず、空気の抜けがよい。また同様に基材へ
の含浸性に優れている特徴がある。更には従来の溶剤を
使用したプリプレグは溶剤が完全には無くならないため
後のプレス工程で溶剤による気泡が発生してボイドにな
っていたが、本発明は樹脂粉体を使用するため溶剤によ
るボイドの発生がなく成形できるとの知見を得、更にこ
の知見に基づき種々研究を進めて本発明を完成するに至
ったものである。
SUMMARY OF THE INVENTION The present inventor has studied to obtain a prepreg made of a resin that does not use a solvent and a laminate using the prepreg, which has been conventionally difficult to produce. That the uniform powdery composition obtained by performing the mechanochemical reaction while heating the composition containing the agent can be equivalent to the case of the resin using the conventional solvent in the impregnation property to the substrate. Obtained knowledge. Further, since the resin powder has a large surface area during melting and has a passage for air, the resin powder contains no air compared to the solvent type, so that the air can escape well. In addition, there is also a feature that the impregnation property to the base material is excellent. Furthermore, in the prepreg using the conventional solvent, since the solvent does not completely disappear, bubbles are generated due to the solvent in the subsequent pressing step, resulting in voids. The present inventors obtained the knowledge that they can be formed without occurrence of cracks and further advanced various studies based on this knowledge to complete the present invention.

【0005】[0005]

【課題を解決するための手段】本発明は、熱硬化性樹脂
及び硬化剤を必須成分とし、これら成分を加温しながら
予備混合した後、機械的エネルギーを与えてメカノケミ
カル反応を起こさせて得られた粉末状熱硬化性樹脂組成
物を、シート状繊維基材の少なくとも表面に存在させる
ことを特徴とするプリプレグの製造方法に関するもので
あり、好ましくは熱硬化性樹脂及び硬化剤が粉末状であ
るプリプレグの製造方法に関するものであり、そして、
予備混合するときの加温温度が熱硬化性樹脂の溶融温度
以下であるプリプレグの製造方法に関するものである。
さらには、このようにして得られたプリプレグを1枚又
は複数枚重ね合わせ、加熱加圧することを特徴とする積
層板又は金属箔張積層板の製造方法に関するものであ
る。
SUMMARY OF THE INVENTION The present invention comprises a thermosetting resin and a curing agent as essential components, premixing these components while heating them, and then applying mechanical energy to cause a mechanochemical reaction. The present invention relates to a method for producing a prepreg, characterized in that the obtained powdery thermosetting resin composition is present at least on the surface of a sheet-like fiber base material, wherein the thermosetting resin and the curing agent are preferably in powder form. And a method for producing a prepreg, and
The present invention relates to a method for producing a prepreg in which a heating temperature at the time of premixing is equal to or lower than a melting temperature of a thermosetting resin.
Furthermore, the present invention relates to a method for producing a laminate or a metal foil-clad laminate, which comprises laminating one or more prepregs thus obtained and heating and pressing.

【0006】本発明において、用いられる熱硬化性樹脂
は通常粉末状であるが、エポキシ樹脂が望ましく、この
ほか、ポリイミド樹脂、ポリエステル樹脂、フェノール
樹脂などを用いることができる。熱硬化性樹脂がエポキ
シ樹脂の場合、硬化剤としては、耐熱性や電気特性の点
から、アミン系、特にジシアンジアミドと芳香族アミ
ン、及びノボラック樹脂等が望ましいが、酸無水物、イ
ミダゾール化合物等も用いることができる。硬化剤は粉
末状であることが好ましいが、配合量が少ない場合(例
えば、樹脂に対して20重量%以下)は液状でもよく、
樹脂との混合物に機械的エネルギーを与えた後に粉末化
できれば使用可能である。また、好ましくは、硬化促進
剤を使用する。硬化促進剤も粉末状のものが好ましい
が、上記と同様に液状のものも使用可能である。かかる
硬化促進剤としては、イミダゾール化合物、第3級アミ
ン等を用いることができる。これらの各成分は上記のも
のに限定されるものではない。
In the present invention, the thermosetting resin used is usually in a powder form, but is preferably an epoxy resin. In addition, a polyimide resin, a polyester resin, a phenol resin and the like can be used. When the thermosetting resin is an epoxy resin, the curing agent is preferably an amine, particularly dicyandiamide and an aromatic amine, and a novolak resin, from the viewpoint of heat resistance and electric characteristics, but acid anhydrides and imidazole compounds are also preferable. Can be used. The curing agent is preferably in the form of a powder, but when the amount is small (for example, 20% by weight or less based on the resin), the curing agent may be in the form of a liquid.
It can be used if it can be pulverized after applying mechanical energy to the mixture with the resin. Preferably, a curing accelerator is used. The curing accelerator is preferably in the form of a powder, but a liquid accelerator can also be used as described above. As such a curing accelerator, an imidazole compound, a tertiary amine, or the like can be used. These components are not limited to those described above.

【0007】これらの粉体の粒径としては、通常100
0μm以下であり、好ましくは0.1〜500μmであ
り、更に好ましくは0.1〜200μmである。これ
は、1000μmを越えると粒子重量に対しての表面積
が小さくなり、熱硬化性樹脂、硬化剤や硬化促進剤等各
成分の互いの接点が少なくなり、均一分散が困難となる
ため、反応の目標比率とは異なった比率で反応したり、
均一な反応が行われないおそれがある。メカノケミカル
反応のためには、硬化剤及び又は硬化促進剤が粉末状の
場合、熱硬化性樹脂の粒径は、硬化剤及び又は硬化促進
剤の粒径に対して5〜15倍が好ましい。これは、この
範囲では熱硬化性樹脂に硬化剤及び又は硬化促進剤が融
合しやすいためである。
The particle size of these powders is usually 100
0 μm or less, preferably 0.1 to 500 μm, more preferably 0.1 to 200 μm. This is because if the particle size exceeds 1000 μm, the surface area with respect to the particle weight becomes small, the number of contact points of each component such as a thermosetting resin, a curing agent and a curing accelerator decreases, and uniform dispersion becomes difficult. It may react at a different ratio than the target ratio,
There is a possibility that a uniform reaction is not performed. For the mechanochemical reaction, when the curing agent and / or the curing accelerator is in a powder form, the particle size of the thermosetting resin is preferably 5 to 15 times the particle size of the curing agent and / or the curing accelerator. This is because the curing agent and / or the curing accelerator are easily fused to the thermosetting resin in this range.

【0008】メカノケミカル反応による改質とは、「固
体による固体の改質で、粉砕、磨砕、摩擦、接触による
粒子の表面活性、表面家電を利用するものである。活性
そのものが、結晶形の転移や歪みエネルギーの増大によ
る溶解、熱分解速度の改質、あるいは機械的強度、磁気
特性になる場合と、表面活性を他の物質との反応、付着
に用いる場合とがある。工学的には機械的衝撃エネルギ
ーが利用され、摩擦、接触による電荷、あるいは磁気に
よる付着、核物質への改質剤の埋め込み、溶融による皮
膜の形成等、物理的改質のみならず化学的改質も行われ
る。」(「実用表面改質技術総覧」材料技術研究協会
編、産業技術サービスセンター、1993.3.25発行、p786)
ものである。本発明は、メカノケミカル反応による化学
的改質を利用したものであるが、固体と液体が機械的エ
ネルギーにより化学的に改質される場合をも含むもので
ある。
[0008] The modification by mechanochemical reaction is "a modification of a solid by a solid, which utilizes the surface activity of particles by grinding, grinding, friction, and contact, and surface appliances. The activity itself is a crystalline form. In some cases, the dissolution or thermal decomposition rate is modified by increasing the transition energy or strain energy, or mechanical strength or magnetic properties are obtained. In other cases, surface activity is used for reaction or adhesion with other substances. Uses mechanical impact energy to perform not only physical modification but also chemical modification such as adhesion by electric charge or magnetism by friction, contact, embedding of modifier in nuclear material, formation of film by melting, etc. ("Overview of Practical Surface Modification Technologies" edited by the Material Technology Research Association, Industrial Technology Service Center, published March 25, 1993, p786)
Things. The present invention utilizes chemical modification by a mechanochemical reaction, but also includes a case where a solid and a liquid are chemically modified by mechanical energy.

【0009】メカノケミカル反応のために機械的エネル
ギーを与える粉体処理方法としては、ライカイ機、ヘン
シェルミキサー、プラネタリーミキサー、ボールミル、
媒体攪拌ミル、ジェットミル、オングミル、多段石臼型
混練押出機等による混合乃至混練がある。この中でオン
グミル(ホソカワミクロン(株)製 メカノフュージョン
方式等)、多段石臼型混練押出機((株)KCK製:メカ
ノケミカルディスパーョン方式等)、ジェットミル
((株)奈良機械製作所製:ハイブリタイザー方式等)、
媒体攪拌ミル(三井鉱山(株)乾式連続微粉砕機ダイナ
ミックミル)による混合乃至混練が好ましく、特に、メ
カノケミカル反応を効率よく行うためには、多段石臼型
混練押出機((株)KCK製:メカノケミカルディスパー
ジョン方式)が好ましい。
[0009] Powder processing methods for applying mechanical energy for the mechanochemical reaction include Raikai machines, Henschel mixers, planetary mixers, ball mills,
Mixing or kneading by a medium stirring mill, a jet mill, an ong mill, a multi-stage mill-type kneading extruder, or the like is available. Among them, Ongmill (Mechanofusion method manufactured by Hosokawa Micron Corporation), multi-stage mill-type kneading extruder (Made by KCK: Mechanochemical dispersion method, etc.), Jet mill (Nara Machinery Co., Ltd .: Hybrid) Tizer method, etc.),
Mixing or kneading with a medium agitating mill (Mitsui Mining Co., Ltd. dry continuous fine pulverizer dynamic mill) is preferable. In particular, in order to efficiently carry out the mechanochemical reaction, a multi-stage mill-type kneading extruder (manufactured by KCK Corporation: Mechanochemical dispersion method) is preferable.

【0010】メカノケミカル反応を行うためには、熱硬
化性樹脂の軟化点は、好ましくは50℃以上、より好ま
しくは70℃以上、さらに好ましくは80℃以上であ
る。これは、上記処理時に粉体間あるいは粉体と処理装
置との間で摩擦、粉砕、融合により20〜50℃程度の
熱が発生するため、この影響を最小限にとどめるためで
ある。一方、軟化点が高すぎても有効なメカノケミカル
反応が行われにくく、かつ、後の工程である樹脂組成物
の基材への含浸が困難となるので、150℃以下、特に
130℃以下の軟化点が好ましい。
[0010] In order to carry out the mechanochemical reaction, the softening point of the thermosetting resin is preferably 50 ° C or higher, more preferably 70 ° C or higher, and further preferably 80 ° C or higher. This is because heat of about 20 to 50 ° C. is generated due to friction, pulverization, and fusion between the powders or between the powder and the processing apparatus during the above-mentioned processing, so that this influence is minimized. On the other hand, even if the softening point is too high, an effective mechanochemical reaction is difficult to be performed, and it is difficult to impregnate the base material of the resin composition in a later step, so that the temperature is 150 ° C or less, particularly 130 ° C or less. Softening points are preferred.

【0011】また、本発明においては、効率よくメカノ
ケミカル反応をさせるためには、加温しながら行うこと
が好ましい。これは、樹脂等の融合を起こさせる場合、
粉体表面のみが溶融している状態がもっとも効率よく改
質が出来、後工程での粉体の分離等が発生しないためで
ある。加温温度としては、樹脂の溶融温度により異なる
が樹脂溶融温度より20℃以上、好ましくは50℃以上
低い温度で加温することが好ましい。通常はこの加温温
度は常温(20℃)より高い温度で、好ましくは30℃
以上、より好ましくは35℃以上であり、また、130
以下であり、好ましくは100℃以下である。
In the present invention, it is preferable to carry out the reaction while heating in order to carry out the mechanochemical reaction efficiently. This is to cause fusion of resin etc.
This is because reforming can be performed most efficiently when only the powder surface is molten, and powder separation or the like does not occur in a later step. Although the heating temperature varies depending on the melting temperature of the resin, it is preferable that the heating is performed at a temperature lower than the resin melting temperature by 20 ° C. or more, preferably by 50 ° C. or more. Usually, this heating temperature is higher than normal temperature (20 ° C.), preferably 30 ° C.
Or more, more preferably 35 ° C. or more;
Or less, preferably 100 ° C. or less.

【0012】本発明において、熱硬化性樹脂及び硬化剤
等の各成分を十分に分散混合するためには、メカノケミ
カル反応の粉体処理の前に、予め、上記粒径まで粉砕し
た後加温しながら予備混合して、できるだけ均一に混合
することが好ましい。予備混合時の加温温度は好ましく
は熱硬化性樹脂の溶融温度以下である。樹脂の融点以上
に加温すると、各成分の粉体としての混合が困難とな
る。また、予備混合する方法としてはタンブラー、ヘン
シェルミキサー、ライカイ機、プラネタリーミキサーが
ある。予備混合により、静電気力等による粒子間力で主
剤と硬化剤を付着させ均一な硬化が出来るが、この粒子
間力のみでは衝撃等により分離する可能性があり均一な
硬化が得られない場合がある。そこで加熱しながら予備
混合することにより、粒子間力で付着した主剤と硬化剤
の表面を溶かし接着性を高めより均一な硬化が可能とな
った。また、予備混合時加温しながらエポキシシラン、
アミノシラン等のカップリング処理剤を添加することに
より、樹脂間あるいは樹脂と無機充填材間の密着性や塗
布時の粉体の流動性を上げることが出来る。
In the present invention, in order to sufficiently disperse and mix the respective components such as the thermosetting resin and the curing agent, the powder is pulverized to the above-mentioned particle size before the powder treatment of the mechanochemical reaction, and then heated. It is preferable to perform pre-mixing while mixing as uniformly as possible. The heating temperature during the premixing is preferably equal to or lower than the melting temperature of the thermosetting resin. Heating above the melting point of the resin makes it difficult to mix each component as a powder. As a method of premixing, there are a tumbler, a Henschel mixer, a Raikai machine, and a planetary mixer. By pre-mixing, the main agent and the curing agent can be adhered to each other by the inter-particle force due to electrostatic force or the like, and uniform curing can be achieved.However, even with this inter-particle force alone, there is a possibility of separation due to impact etc. is there. Therefore, by performing pre-mixing while heating, the surfaces of the main agent and the curing agent adhered by the interparticle force were melted to enhance the adhesiveness, thereby enabling more uniform curing. Also, while heating during pre-mixing, epoxy silane,
By adding a coupling agent such as aminosilane, the adhesion between the resins or between the resin and the inorganic filler and the fluidity of the powder during application can be increased.

【0013】本発明に用いられる熱硬化性樹脂組成物に
は必要により無機充填材を添加することができる。無機
充填材を加えると耐トラッキング性、耐熱性、熱膨張率
の低下等の特性を付与することが出来る。かかる無機充
填材としては、水酸化アルミニウム、水酸化マグネシウ
ム、炭酸カルシウム、タルク、ウォラストナイト、アル
ミナ、シリカ、未焼成クレー、焼成クレー、硫酸バリウ
ム等がある。これらの粒径も前記と同様である。
The thermosetting resin composition used in the present invention may optionally contain an inorganic filler. When an inorganic filler is added, characteristics such as tracking resistance, heat resistance, and a decrease in coefficient of thermal expansion can be imparted. Such inorganic fillers include aluminum hydroxide, magnesium hydroxide, calcium carbonate, talc, wollastonite, alumina, silica, unfired clay, fired clay, barium sulfate and the like. These particle sizes are the same as above.

【0014】粉体処理によりメカノケミカル反応された
粉末組成物の粒径は、通常1000μm以下であり、好
ましくは0.1〜500μmであり、更に好ましくは
0.1〜200μmである。かかる粒径は、粉末組成物
の散布ないし塗布時の流動性、及び加熱溶融時の流れや
表面の滑らかさを改良すること、基材への樹脂の含浸性
を改良すること、基材中での樹脂組成物の分布を安定化
させること等のために適している。
The particle size of the powder composition subjected to the mechanochemical reaction by the powder treatment is usually 1000 μm or less, preferably 0.1 to 500 μm, more preferably 0.1 to 200 μm. Such a particle size is to improve the fluidity of the powder composition at the time of spraying or application, and to improve the flow and surface smoothness at the time of heating and melting, to improve the resin impregnation property of the base material, It is suitable for stabilizing the distribution of the resin composition.

【0015】粉末状熱硬化性樹脂組成物は、その後、そ
のままあるいは平均粒径0.01〜1μmの微粉末添加
剤を配合し均一混合して、シート状繊維基材の少なくと
も表面に存在させることによりプリプレグを得る。
The powdery thermosetting resin composition is then allowed to exist on at least the surface of the sheet-like fiber base material as it is or by mixing a fine powder additive having an average particle size of 0.01 to 1 μm and mixing uniformly. To obtain a prepreg.

【0016】本発明において、粉末状熱硬化性樹脂組成
物に微粉末添加剤を配合することにより、粉末状組成物
の均一分散性、及び流動特性を大きく向上させことがで
きる。このような技術により、粉末状組成物をシート状
基材へ塗布・含浸する際の均一な分布、粉体塗布面の平
滑性を得ることにより均一な含浸が可能となる。微粉末
添加剤としては、無機系微粉末が望ましいが有機系微粉
末も用いることができる。また、粒径は平均粒径で0.
01〜1μmのものを用いるが、好ましくは0.01〜
0.1μm(比表面積:50〜500m2 /g程度)の
ものを使用する。かかる微粉末添加剤としては、シリカ
微粉末,酸化チタン微粉末等がある。平均粒径が1μm
を越えると比表面積が小さくなり単位重量当たりの粒子
数が減少すること、及び、主成分である粉末状樹脂及び
粉末状硬化剤との粒径差が小さくなることにより、流動
性向上のためのベアリング効果が十分に得られないおそ
れがある。粉体中のベアリング効果とは、比較的粒径の
大きな粒子同士の接触点に微粒子を存在させることによ
り、粒径の大きな粒子の移動をより自由にし、粉末状組
成物全体としての流動性を向上させるものである。ま
た、微粉末添加剤の場合、2次凝集して粒径が2〜10
μmになる場合があるが<このようなものでも1次粒子
経が平均粒径0.01〜1μmのものであれば十分効果
がある。
In the present invention, by adding a fine powder additive to the powdery thermosetting resin composition, the uniform dispersibility and flow characteristics of the powdery composition can be greatly improved. By such a technique, uniform distribution can be achieved when the powdery composition is applied to and impregnated on the sheet-like substrate, and uniform impregnation can be achieved by obtaining smoothness of the powder application surface. As the fine powder additive, an inorganic fine powder is desirable, but an organic fine powder can also be used. The average particle size is 0.1.
The thickness is from 0.01 to 1 μm, preferably from 0.01 to 1 μm.
One having a thickness of 0.1 μm (specific surface area: about 50 to 500 m 2 / g) is used. Such fine powder additives include silica fine powder and titanium oxide fine powder. Average particle size is 1μm
Exceeding the specific surface area is reduced and the number of particles per unit weight is reduced, and the difference in particle diameter between the powdered resin and the powdered curing agent, which are the main components, is reduced to improve the fluidity. There is a possibility that the bearing effect cannot be sufficiently obtained. The bearing effect in powder means that fine particles are present at the contact points between particles having relatively large particle diameters, so that the movement of particles having large particle diameters becomes more free and the fluidity of the powdery composition as a whole is improved. It is to improve. Further, in the case of the fine powder additive, the particle size is 2 to 10 due to secondary aggregation.
However, there is a sufficient effect if the primary particles have an average particle diameter of 0.01 to 1 μm.

【0017】粉末状組成物全体としての流動性を向上さ
せるための処理方法としては、微粉末添加剤を均一に分
散混合できる方法であればいずれの方法でも良く、この
ような処理方法としては、例えばヘンシェルミキサー,
ライカイ機,プラネタリーミキサー,ボールミル等によ
る混合が挙げられる。特に2次凝集した微粉末について
は剪断力のあるボールミル、ヘンシェルミキサーが好ま
しい。
As a treatment method for improving the flowability of the whole powdery composition, any method may be used as long as it can uniformly disperse and mix the fine powder additive. For example, Henschel mixer,
Mixing using a raikai machine, a planetary mixer, a ball mill, or the like is included. In particular, a ball mill or a Henschel mixer having a shearing force is preferably used for the secondary aggregated fine powder.

【0018】以上のようにして得られた粉末組成物は、
散布ないし塗布等により基材の少なくとも表面に存在さ
せる。この粉末組成物の量は、基材の繊維材質、性状、
重量(単位面積当たり)により異なるが、通常、基材の
重量の40〜60%程度である。粉末組成物を基材に存
在させる方法は、基材の上面から振りかける方法、静電
塗装法、流動浸漬法、スプレーによる吹き付け法、ナイ
フコーター、コンマコーター等の各種コーターによる塗
布法等があり、特に限定されない。基材としては、ガラ
スクロス、ガラス不繊布等のガラス繊維基材の他、紙、
合成繊維等からなる織布や不織布、金属繊維、カーボン
繊維、鉱物繊維等からなる織布、不織布、マット類等が
挙げられ、これらの基材の原料繊維は単独又は混合して
使用してもよい。
The powder composition obtained as described above is
It is made to exist on at least the surface of the substrate by spraying or coating. The amount of this powder composition depends on the fiber material of the base material, properties,
Although it depends on the weight (per unit area), it is usually about 40 to 60% of the weight of the substrate. The method of causing the powder composition to be present on the substrate includes a method of sprinkling from the upper surface of the substrate, an electrostatic coating method, a fluid immersion method, a spraying method with a spray, a knife coater, a coating method using various coaters such as a comma coater, and the like. There is no particular limitation. As the substrate, other than glass cloth, glass fiber substrate such as glass non-woven cloth, paper,
Woven fabrics and nonwoven fabrics made of synthetic fibers and the like, metal fibers, carbon fibers, woven fabrics made of mineral fibers and the like, nonwoven fabrics, mats and the like, and the raw material fibers of these substrates may be used alone or in combination. Good.

【0019】前記基材に粉末組成物を基材の片面に粉末
組成物を存在せしめてもよいが、好ましくは、反り等の
面から表裏のバランスをとるために前記基材の両面に粉
末組成物を存在せしめるのが好ましい。この操作は、通
常、基材の片面ずつ行う。即ち、一方の面に存在させた
後加温して粉末組成物を基材に付着させ、次いで、他方
の面にも同様の操作を行う。基材の加温については、粉
末組成物を基材の片面(上面)に存在させた場合、基材
の反対面(下面)からのみ加温するかあるいは両面から
加温する場合、反対面(下面)の方をより高い温度にす
ることが好ましい。この場合、基材中に存在する空気が
容易に反対面から除去され、溶融した樹脂が容易に基材
に含浸することとなる。この基材の加温温度は、粉末組
成物の軟化点にもよるが、前記の理由により、粉末組成
物が付着した面の反対面(下面)では、通常、90〜1
70℃であり、好ましくは110〜150℃である。ま
た、付着面では、通常、常温、又は加熱する場合60〜
150℃であり、好ましくは常温、又は60〜140℃
である。
Although the powder composition may be present on the base material on one side of the base material, the powder composition is preferably provided on both sides of the base material in order to balance the front and back from the aspect of warpage or the like. It is preferred that the substance be present. This operation is usually performed on each side of the substrate. That is, after being made to exist on one surface, the powder composition is heated and adhered to the substrate, and then the same operation is performed on the other surface. With respect to the heating of the substrate, when the powder composition is present on one side (upper surface) of the substrate, when the powder composition is heated only from the opposite surface (lower surface) or when heating from both surfaces, the opposite surface ( It is preferable to set the lower side) to a higher temperature. In this case, air existing in the base material is easily removed from the opposite surface, and the molten resin easily impregnates the base material. The heating temperature of the substrate depends on the softening point of the powder composition, but for the above-described reason, the surface (lower surface) opposite to the surface to which the powder composition has adhered usually has a temperature of 90 to 1.
70 ° C, preferably 110-150 ° C. In addition, on the adhesion surface, usually, at room temperature or when heated, 60 to
150 ° C., preferably at room temperature, or 60 to 140 ° C.
It is.

【0020】樹脂組成物を更に十分に含浸させ、必要に
より樹脂を半硬化の状態にするために、樹脂含浸基材を
加熱してもよい。この加熱温度は、通常、100〜20
0℃であり、好ましくは120〜190℃であるが、樹
脂組成物の流動性や硬化性より異なる場合がある。但
し、基材の厚みが100μm以下(ガラス基材では10
0g/m2 以下)と薄い場合、あるいは粉末組成物が容
易に均一に溶融する場合、片面にのみに粉末組成物を存
在せしめる方法でもよい。この場合も、通常、その後に
加温及び又は加熱する工程を設ける。
The resin-impregnated base material may be heated so that the resin composition is more sufficiently impregnated and, if necessary, the resin is in a semi-cured state. This heating temperature is usually 100 to 20
The temperature is 0 ° C., preferably 120 to 190 ° C., but may be different depending on the fluidity and curability of the resin composition. However, the thickness of the substrate is 100 μm or less (10 μm for a glass substrate).
(0 g / m 2 or less), or when the powder composition is easily and uniformly melted, a method in which the powder composition is present only on one side may be used. Also in this case, a step of heating and / or heating is usually provided thereafter.

【0021】以上のようにして得られたプリプレグは、
この1枚又は複数枚を、必要により銅箔等の金属箔を重
ね合わせ、通常の方法により加熱加圧して積層板又は金
属箔張積層板に成形される。本発明によるプリプレグ及
び積層板の製造方法は、得られたプリプレグあるいは積
層板の性能を、従来のものと実質的に変えることなく、
粉末組成物の使用による製造が容易となり、無溶剤によ
る省資源化、省エネルギー化及び大気汚染の低減化が図
られ、さらに低コスト化をも達成することができる。
The prepreg obtained as described above is
One or more of the sheets are laminated with a metal foil such as a copper foil as necessary, and heated and pressed by a usual method to form a laminate or a metal foil-clad laminate. The method for producing a prepreg and a laminate according to the present invention, the performance of the obtained prepreg or laminate, without substantially changing the conventional one,
The production by using the powder composition is facilitated, resource saving by solvent-free, energy saving and reduction of air pollution are achieved, and further cost reduction can be achieved.

【0022】本発明は、メカノケミカル反応の応用と、
得られた樹脂、硬化剤等からなる粉末組成物を使用した
ものであり、かかる技術により、各成分を均一に分散し
結合させ、得られた粉末組成物を基材に存在させ含浸す
る際に、均一な分布、塗布面の平滑性を得ることがで
き、これにより基材への均一な含浸を達成することがで
きたものである。なお、基材が水平方向に移動する方法
では、使用される装置全体は横型であるが、基材を上下
方向に移動して、粉末組成物を静電スプレー法や予熱さ
れたシート上基材に吹き付ける方法等を採用することも
可能である。この場合、縦型装置が採用される。
The present invention provides an application of mechanochemical reaction,
The obtained resin, using a powder composition consisting of a curing agent, etc., by such technology, each component is uniformly dispersed and bonded, when the obtained powder composition is present in the substrate and impregnated In this case, uniform distribution and smoothness of the coated surface can be obtained, whereby uniform impregnation of the substrate can be achieved. In the method in which the substrate moves in the horizontal direction, the entire apparatus used is a horizontal type. However, the substrate is moved in the vertical direction, and the powder composition is electrostatically sprayed or preheated on a sheet. It is also possible to adopt a method of spraying the air. In this case, a vertical device is employed.

【0023】[0023]

【実施例】次に、本発明の実施例を比較例とともに具体
的に説明する。
Next, examples of the present invention will be specifically described together with comparative examples.

【0024】〔実施例1〕(KCK) 平均粒径150μmの粉末状のエポキシ樹脂(油化シェ
ルエポキシ(株)製臭素化エポキシ樹脂Ep5048,エ
ポキシ当量675)100重量部、平均粒子径15μm
の粉末状の硬化剤(ジシアンジアミド)5重量部、及び
平均粒径15μmの粉末状の硬化促進剤(2−エチル−
4−メチルイミダゾール)1重量部をヘンシェルミキサ
ーで60℃に加温しながら回転数200rpmにて1分
予備混合し、次いで、多段石臼型混練押し出し機((株)
KCK製 メカノケミカルディスパージョンシステム
KCK−80X2−V(6))を用い、温度50℃に加
温しながら回転数200rpmにて1分間処理し、平均
粒径150μmの粉末組成物を得た。この粉末組成物を
100g/m2 のガラスクロスの上面ににナイフコータ
ーで樹脂重量が50g/m2 になるように均一に塗布し
た。その後、下面側より150℃のパネルヒーター12
0℃により約1分間加温した。次いで、ガラスクロスを
上下反対にし、もう一方の面にナイフコーターで樹脂重
量が50g/m2 になるように均一に塗布し、170℃
の熱風加熱機で1分間加熱してプリプレグを得た。この
プリプレグを2枚重ね合わせ、さらにその上下に厚さ1
8μmの銅箔を重ね合わせ、温度165℃、圧力60k
g/cm2 で90分間加熱加圧成形して、厚さ0.22
mmの銅張積層板を作製した。
Example 1 (KCK) 100 parts by weight of a powdery epoxy resin having an average particle diameter of 150 μm (brominated epoxy resin Ep5048, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent: 675), and an average particle diameter of 15 μm
5 parts by weight of a powdery curing agent (dicyandiamide) and a powdery curing accelerator (2-ethyl-
1 part by weight of 4-methylimidazole) was preliminarily mixed at a rotation speed of 200 rpm for 1 minute while heating to 60 ° C. with a Henschel mixer, and then a multi-stage mill-type kneading extruder (manufactured by Co., Ltd.)
KCK made mechanochemical dispersion system
Using KCK-80X2-V (6)), the mixture was treated at a rotation speed of 200 rpm for 1 minute while heating to a temperature of 50 ° C. to obtain a powder composition having an average particle size of 150 μm. This powder composition was uniformly applied to the upper surface of a 100 g / m 2 glass cloth using a knife coater so that the resin weight became 50 g / m 2 . Then, a panel heater 12 of 150 ° C.
Heated at 0 ° C. for about 1 minute. Then, the glass cloth was turned upside down, and the other side was uniformly coated with a knife coater so that the resin weight became 50 g / m 2.
Was heated for 1 minute with a hot air heater to obtain a prepreg. Two prepregs are stacked, and a thickness of 1
8μm copper foil is superimposed, temperature 165 ℃, pressure 60k
g / cm 2 for 90 minutes under heat and pressure.
mm copper-clad laminate was prepared.

【0025】〔実施例2〕(カップリング処理) 平均粒径150μmの粉末状のエポキシ樹脂(油化シェ
ルエポキシ(株)製臭素化エポキシ樹脂Ep5048,エ
ポキシ当量675)100重量部、平均粒子径15μm
の粉末状の硬化剤(ジシアンジアミド)5重量部、及び
平均粒径15μmの粉末状の硬化促進剤(2−エチル−
4−メチルイミダゾール)1重量部、さらにエポキシシ
ラン(日本ユニカ製A−187)1重量部添加しヘンシ
ェルミキサーで60℃に加温しながら回転数200rp
mにて1分予備混合し、次いで、多段石臼型混練押し出
し機((株)KCK製 メカノケミカルディスパージョン
システム KCK−80X2−V(6))を用い、温度
50℃に加温しながら回転数200rpmにて1分間処
理し、平均粒径150μmの粉末組成物を得た。この粉
末組成物を100g/m2 のガラスクロスの上面ににナ
イフコーターで樹脂重量が50g/m2 になるように均
一に塗布した。その後、下面側より150℃のパネルヒ
ーター120℃により約1分間加温した。次いで、ガラ
スクロスを上下反対にし、もう一方の面にナイフコータ
ーで樹脂重量が50g/m2 になるように均一に塗布
し、170℃の熱風加熱機で1分間加熱してプリプレグ
を得た。このプリプレグを2枚重ね合わせ、さらにその
上下に厚さ18μmの銅箔を重ね合わせ、温度165
℃、圧力60kg/cm2 で90分間加熱加圧成形し
て、厚さ0.22mmの銅張積層板を作製した。
Example 2 (Coupling Treatment) 100 parts by weight of a powdery epoxy resin having an average particle diameter of 150 μm (brominated epoxy resin Ep5048, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent: 675), and an average particle diameter of 15 μm
5 parts by weight of a powdery curing agent (dicyandiamide) and a powdery curing accelerator (2-ethyl-
1 part by weight of 4-methylimidazole) and 1 part by weight of epoxysilane (A-187, manufactured by Nippon Yunika) were added, and the mixture was heated to 60 ° C. with a Henschel mixer while rotating at 200 rpm.
m for 1 minute, and then using a multi-stage mill-type kneading extruder (Mechanochemical Dispersion System KCK-80X2-V (6) manufactured by KCK Co., Ltd.) while rotating to a temperature of 50 ° C. while rotating. The mixture was treated at 200 rpm for 1 minute to obtain a powder composition having an average particle size of 150 μm. This powder composition was uniformly applied to the upper surface of a 100 g / m 2 glass cloth using a knife coater so that the resin weight became 50 g / m 2 . Thereafter, the panel was heated from the lower surface side by a panel heater at 150 ° C. and 120 ° C. for about 1 minute. Next, the glass cloth was turned upside down, and the other side was uniformly coated with a knife coater so that the resin weight became 50 g / m 2, and heated with a hot air heater at 170 ° C. for 1 minute to obtain a prepreg. Two prepregs were superimposed, and a copper foil having a thickness of 18 μm was superimposed on and under the prepreg.
It was heated and pressed at 90 ° C. and a pressure of 60 kg / cm 2 for 90 minutes to produce a copper-clad laminate having a thickness of 0.22 mm.

【0026】〔実施例3〕(メカノフュージョン) 平均粒径150μmの粉末状のエポキシ樹脂(前記Ep
5048)100重量部、平均粒子径15μmの粉末状
の硬化剤(ジシアンジアミド)5重量部、及び平均粒径
15μmの粉末状の硬化促進剤(2−エチル−4−メチ
ルイミダゾール)1重量部をヘンシェルミキサーで60
℃に加温しながら回転数200rpmにて1分予備混合
し、次いで、メカノフュージョン機(ホソカワミクロン
(株)製AM−15F)を用い、温度50℃に加温しな
がら回転数2000rpmにて5分間処理し、平均粒径
150μmの粉末組成物を得た。この粉末組成物を10
0g/m2 のガラスクロスの片面上に60メッシュ篩い
を通して樹脂重量が50g/m2 になるように均一に振
りまいた。その後、170℃の熱風加熱機でガラスクロ
スの両面から30秒加温し、次いで、ガラスクロスを上
下反対にし、もう一方の面に60メッシュ篩いを通して
樹脂重量が50g/m2 になるように均一に振りまき、
170℃の熱風加熱機で3分間加熱してプリプレグを得
た。このプリプレグを用い、実施例1と同様にして、厚
さ0.22mmの銅張積層板を作製した。
Example 3 (Mechanofusion) A powdery epoxy resin having an average particle size of 150 μm (Ep
5048) 100 parts by weight, 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle diameter of 15 μm, and 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) having an average particle diameter of 15 μm 60 with a mixer
Pre-mixing at 200 rpm for 1 minute while heating to 50 ° C., and then using a mechanofusion machine (AM-15F manufactured by Hosokawa Micron Corp.) for 5 minutes at 2000 rpm while heating to 50 ° C. After the treatment, a powder composition having an average particle size of 150 μm was obtained. This powder composition was added to 10
A 60-mesh sieve was passed through one side of a glass cloth of 0 g / m 2 , and the mixture was uniformly sprinkled so that the resin weight became 50 g / m 2 . Then, the glass cloth was heated for 30 seconds from both sides of the glass cloth with a hot air heater at 170 ° C., then the glass cloth was turned upside down, and the other side was passed through a 60-mesh sieve so that the resin weight became 50 g / m 2. Sprinkle on
The prepreg was obtained by heating with a hot air heater at 170 ° C. for 3 minutes. Using this prepreg, a copper-clad laminate having a thickness of 0.22 mm was produced in the same manner as in Example 1.

【0027】〔実施例4〕(タンブラー予備混合) 平均粒径150μmの粉末状のエポキシ樹脂(油化シェ
ルエポキシ(株)製臭素化エポキシ樹脂Ep5048,エ
ポキシ当量675)100重量部、平均粒子径15μm
の粉末状の硬化剤(ジシアンジアミド)5重量部、及び
平均粒径15μmの粉末状の硬化促進剤(2−エチル−
4−メチルイミダゾール)1重量部をタンブラーで80
℃に加温しながら回転数30rpmにて1分予備混合
し、次いで、多段石臼型混練押し出し機((株)KCK製
メカノケミカルディスパージョンシステム KCK−
80X2−V(6))を用い、温度50℃に加温しなが
ら回転数200rpmにて1分間処理し、平均粒径15
0μmの粉末組成物を得た。この粉末組成物を100g
/m2 のガラスクロスの上面ににナイフコーターで樹脂
重量が50g/m2 になるように均一に塗布した。その
後、下面側より150℃のパネルヒーター120℃によ
り約1分間加温した。次いで、ガラスクロスを上下反対
にし、もう一方の面にナイフコーターで樹脂重量が50
g/m2 になるように均一に塗布し、170℃の熱風加
熱機で1分間加熱してプリプレグを得た。このプリプレ
グを2枚重ね合わせ、さらにその上下に厚さ18μmの
銅箔を重ね合わせ、温度165℃、圧力60kg/cm
2 で90分間加熱加圧成形して、厚さ0.22mmの銅
張積層板を作製した。
Example 4 (Tumbler premix) 100 parts by weight of a powdery epoxy resin having an average particle size of 150 μm (brominated epoxy resin Ep5048, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent: 675), and an average particle size of 15 μm
5 parts by weight of a powdery curing agent (dicyandiamide) and a powdery curing accelerator (2-ethyl-
1 part by weight of 4-methylimidazole) is tumbled to 80.
Pre-mixing at 30 rpm for 1 minute while heating to ℃, then multi-stage mill-type kneading extruder (Mechanochemical dispersion system KCK- manufactured by KCK Co., Ltd.)
80X2-V (6)) and heated at a rotation speed of 200 rpm for 1 minute while heating to a temperature of 50 ° C.
A powder composition of 0 μm was obtained. 100 g of this powder composition
/ M 2 was uniformly applied to the upper surface of a glass cloth using a knife coater so that the resin weight became 50 g / m 2 . Thereafter, the panel was heated from the lower surface side by a panel heater at 150 ° C. and 120 ° C. for about 1 minute. Next, the glass cloth was turned upside down, and the resin weight was adjusted to 50% with a knife coater on the other side.
g / m 2 , and the mixture was uniformly heated at 170 ° C. for 1 minute to obtain a prepreg. Two prepregs were superimposed, and a copper foil having a thickness of 18 μm was further superimposed on the prepreg, at a temperature of 165 ° C. and a pressure of 60 kg / cm.
2 was heated and pressed for 90 minutes to produce a copper-clad laminate having a thickness of 0.22 mm.

【0028】〔実施例5〕(200μmクロス) 実施例1で得た粉末組成物を210g/m2 のガラスク
ロスの片面上にナイフコーターで樹脂重量が90g/m
2 になるように均一に塗布した。その後、下面側より1
20℃の熱風加熱機により約1分間加温した。次いで、
ガラスクロスを上下反対にし、もう一方の面にナイフコ
ーターで樹脂重量が90g/m2 になるように均一に塗
布し、170℃の熱風加熱機で1分間加熱してプリプレ
グを得た。このプリプレグを2枚重ね合わせ、さらにそ
の上下に厚さ18μmの銅箔を重ね合わせ、温度165
℃、圧力60kg/cm2 で90分間加熱加圧成形し
て、厚さ0.42mmの銅張積層板を作製した。
Example 5 (200 μm cloth) The powder composition obtained in Example 1 was applied on one surface of a glass cloth of 210 g / m 2 with a knife coater to a resin weight of 90 g / m 2.
2 was applied uniformly. Then, from the bottom side
It was heated by a hot air heater at 20 ° C. for about 1 minute. Then
The glass cloth was turned upside down, and the other side was uniformly coated with a knife coater so that the resin weight became 90 g / m 2, and heated with a hot air heater at 170 ° C. for 1 minute to obtain a prepreg. Two prepregs were superimposed, and a copper foil having a thickness of 18 μm was superimposed on and under the prepreg.
It was heated and pressed at 90 ° C. and a pressure of 60 kg / cm 2 for 90 minutes to produce a copper-clad laminate having a thickness of 0.42 mm.

【0029】〔実施例6〕(ノボラック硬化) 平均粒径150μmの粉末状のエポキシ樹脂(油化シェ
ル製臭素化エポキシ樹脂Ep5048,エポキシ当量6
75)100重量部、平均粒子径30μmの粉末状のフ
ェノールノボラック樹脂(住友デュレズ製フェノールノ
ボラックPR−51470、フェノール性水酸基当量1
05)16重量部、及び平均粒子径10μmの粉末状の
トリフェニルホスフィン1重量部をヘンシェルミキサー
で70℃に加温しながら回転数200rpmにて1分予
備混合し、次いで、多段石臼型混練押し出し機((株)K
CK製 メカノケミカルディスパージョンシステム K
CK−80X2−V(6))を用い、温度40℃に加温
しながら回転数200rpmにて1分間処理し、平均粒
径150μmの粉末組成物を得た。
Example 6 (Novolak curing) Powdered epoxy resin having an average particle diameter of 150 μm (brominated epoxy resin Ep5048 manufactured by Yuka Shell, epoxy equivalent 6)
75) 100 parts by weight of a powdery phenol novolak resin having an average particle diameter of 30 μm (Phenol Novolak PR-51470 manufactured by Sumitomo Durez, phenolic hydroxyl equivalent: 1)
05) 16 parts by weight and 1 part by weight of powdery triphenylphosphine having an average particle diameter of 10 μm are premixed for 1 minute at 200 rpm while being heated to 70 ° C. with a Henschel mixer, and then multi-stage mill-type kneading and extruding. Machine (K Corporation)
CK made mechanochemical dispersion system K
Using CK-80X2-V (6)), the mixture was treated at a rotation speed of 200 rpm for 1 minute while heating to a temperature of 40 ° C. to obtain a powder composition having an average particle size of 150 μm.

【0030】この粉末組成物を100g/m2 のガラス
クロスの上面ににナイフコーターで樹脂重量が50g/
2 になるように均一に塗布した。その後、下面側より
150℃のパネルヒーター120℃により約1分間加温
した。次いで、ガラスクロスを上下反対にし、もう一方
の面にナイフコーターで樹脂重量が50g/m2 になる
ように均一に塗布し、170℃の熱風加熱機で1分間加
熱してプリプレグを得た。このプリプレグを2枚重ね合
わせ、さらにその上下に厚さ18μmの銅箔を重ね合わ
せ、温度175℃、圧力20kg/cm2 で60分間加
熱加圧成形して、厚さ0.22mmの銅張積層板を作製
した。
This powder composition was coated on the upper surface of a 100 g / m 2 glass cloth with a knife coater so that the resin weight was 50 g / m 2.
m 2 . Thereafter, the panel was heated from the lower surface side by a panel heater at 150 ° C. and 120 ° C. for about 1 minute. Next, the glass cloth was turned upside down, and the other side was uniformly coated with a knife coater so that the resin weight became 50 g / m 2, and heated with a hot air heater at 170 ° C. for 1 minute to obtain a prepreg. The prepreg overlay two further superimposed copper foil having a thickness of 18μm on the upper and lower, temperature 175 ° C., and heated pressing at a pressure 20 kg / cm 2 60 min and a thickness of 0.22mm copper clad laminate A plate was made.

【0031】〔比較例1〕平均粒径150μmの粉末状
のエポキシ樹脂(油化シェルエポキシ(株)製臭素化エポ
キシ樹脂Ep5048,エポキシ当量675)100重
量部、平均粒子径15μmの粉末状の硬化剤(ジシアン
ジアミド)5重量部、及び平均粒径15μmの粉末状の
硬化促進剤(2−エチル−4−メチルイミダゾール)1
重量部を予備混合し、次いで、多段石臼型混練押し出し
機((株)KCK製 メカノケミカルディスパージョンシ
ステム KCK−80X2−V(6))を用い、温度5
0℃に加温しながら回転数200rpmにて1分間処理
し、平均粒径150μmの粉末組成物を得た。この粉末
組成物を100g/m2 のガラスクロスの上面ににナイ
フコーターで樹脂重量が50g/m2 になるように均一
に塗布した。その後、下面側より150℃のパネルヒー
ター120℃により約1分間加温した。次いで、ガラス
クロスを上下反対にし、もう一方の面にナイフコーター
で樹脂重量が50g/m2 になるように均一に塗布し、
170℃の熱風加熱機で1分間加熱してプリプレグを得
た。このプリプレグを2枚重ね合わせ、さらにその上下
に厚さ18μmの銅箔を重ね合わせ、温度165℃、圧
力60kg/cm2 で90分間加熱加圧成形して、厚さ
0.22mmの銅張積層板を作製した。
Comparative Example 1 100 parts by weight of a powdery epoxy resin having an average particle diameter of 150 μm (brominated epoxy resin Ep5048, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent: 675), and a powder having an average particle diameter of 15 μm was cured. 5 parts by weight of an agent (dicyandiamide) and a powdery curing accelerator (2-ethyl-4-methylimidazole) having an average particle size of 15 μm 1
Parts by weight and then using a multi-stage mill-type kneading extruder (Mechanochemical Dispersion System KCK-80X2-V (6) manufactured by KCK Co., Ltd.) at a temperature of 5
The mixture was treated at 200 rpm for 1 minute while heating to 0 ° C. to obtain a powder composition having an average particle size of 150 μm. This powder composition was uniformly applied to the upper surface of a 100 g / m 2 glass cloth using a knife coater so that the resin weight became 50 g / m 2 . Thereafter, the panel was heated from the lower surface side by a panel heater at 150 ° C. and 120 ° C. for about 1 minute. Next, the glass cloth was turned upside down, and the other side was uniformly coated with a knife coater so that the resin weight became 50 g / m 2 .
The prepreg was obtained by heating with a hot air heater at 170 ° C. for 1 minute. The prepreg overlay two further superimposed copper foil having a thickness of 18μm on the upper and lower, temperature 165 ° C., and heated pressing at a pressure 60 kg / cm 2 90 min and a thickness of 0.22mm copper clad laminate A plate was made.

【0032】〔比較例2〕粉末状のエポキシ樹脂(油化
シェル製臭素化エポキシEp5048)100重量部、
粉末状の硬化剤(ジシアンジアミド)5重量部、及び粉
末状の硬化促進剤(2−エチル−4−メチルイミダゾー
ル)1重量部を混合し後、この粉末組成物を100℃で
加温して溶融した後、樹脂固形分で100g/m2 にな
るように100g/m2 のガラスクロスを浸けて含浸さ
せて170℃の加熱装置で2分間加熱してプリプレグを
得た。このプリプレグを2枚重ね合わせ、さらにその上
下に厚さ18μmの銅箔を重ね合わせ、温度165℃、
圧力60kg/cm2 で90分間加熱加圧成形して、厚
さ0.22mmの銅張積層板を作製した。
Comparative Example 2 100 parts by weight of a powdery epoxy resin (brominated epoxy Ep5048 manufactured by Yuka Shell)
After mixing 5 parts by weight of a powdery curing agent (dicyandiamide) and 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole), the powder composition is heated at 100 ° C. and melted. After that, a glass cloth of 100 g / m 2 was soaked and impregnated so as to have a resin solid content of 100 g / m 2 , and heated at 170 ° C. for 2 minutes to obtain a prepreg. Two prepregs were laminated, and a copper foil having a thickness of 18 μm was laminated on top and bottom of the prepreg.
It was heated and pressed at a pressure of 60 kg / cm 2 for 90 minutes to produce a copper-clad laminate having a thickness of 0.22 mm.

【0033】〔比較例3〕エポキシ樹脂(油化シェル製
臭素化エポキシEp5048)100重量部、硬化剤
(ジシアンジアミド)5重量部、及び硬化促進剤(2−
エチル−4−メチルイミダゾール)1重量部を混合し、
これをメチルセルソルブ100重量部に溶かした。この
ワニスを樹脂固形分で100g/m2 になるように10
0g/m2 のガラスクロスを浸けて含浸させた後、17
0℃の熱風加熱機で3分間加熱してプリプレグを得た。
このプリプレグを2枚重ね合わせ、さらにその上下に厚
さ18μmの銅箔を重ね合わせ、温度165℃、圧力6
0kg/cm2 で90分間加熱加圧成形して、厚さ0.
22mmの銅張積層板を作製した。
Comparative Example 3 100 parts by weight of an epoxy resin (brominated epoxy Ep5048 manufactured by Yuka Shell), 5 parts by weight of a curing agent (dicyandiamide), and a curing accelerator (2-
1 part by weight of ethyl-4-methylimidazole),
This was dissolved in 100 parts by weight of methyl cellosolve. This varnish was added to a resin solid content of 100 g / m 2 to obtain a varnish of 10 g / m 2.
After impregnating by impregnating a glass cloth of 0 g / m 2 ,
The prepreg was obtained by heating with a hot air heater at 0 ° C. for 3 minutes.
Two prepregs were superimposed, and a copper foil having a thickness of 18 μm was superimposed on and under the prepreg.
Heat-press molding at 0 kg / cm 2 for 90 minutes to give a thickness of 0.
A 22 mm copper-clad laminate was produced.

【0034】以上実施例及び比較例において、プリプレ
グについては、ガラスクロスへの樹脂の含浸性を測定
し、銅張積層板については、成形性、引張り強さ、銅箔
引剥し強さ、半田耐熱性及び絶縁抵抗を測定した。その
結果を表1及び表2に示す。
In the above Examples and Comparative Examples, for the prepreg, the impregnating property of the resin into the glass cloth was measured, and for the copper-clad laminate, the moldability, tensile strength, copper foil peeling strength, and solder heat resistance were measured. Properties and insulation resistance were measured. The results are shown in Tables 1 and 2.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】(測定方法) 1.含浸性:プリプレグを実体顕微鏡にて観察し、ガラ
ス繊維間のボイドの有無を確認した。 2.成形性:銅張積層板の銅箔をエッチングして、目視
により硬化剤等の析出の有無を観察し、樹脂組成物の分
散性の評価をした。 3.引張り強さ:銅張積層板の銅箔をエッチングして、
10×100mmに切断後テンシロンにて引張り強度を
測定した。 4.銅箔引剥し強さ:JIS C 6481により測定し
た。 5.半田耐熱性:50×50mmの積層板を、260℃
の半田浴に3分間フロートさせ、ふくれの有無を測定し
た。 6.絶縁抵抗:JIS C 6481により測定した。
(Measurement method) Impregnating property: The prepreg was observed with a stereoscopic microscope, and the presence or absence of voids between glass fibers was confirmed. 2. Formability: The copper foil of the copper-clad laminate was etched, the presence or absence of the precipitation of a curing agent or the like was visually observed, and the dispersibility of the resin composition was evaluated. 3. Tensile strength: Etching copper foil of copper clad laminate,
After cutting to 10 × 100 mm, the tensile strength was measured with Tensilon. 4. Copper foil peel strength: Measured according to JIS C6481. 5. Solder heat resistance: A laminate of 50 × 50 mm is subjected to 260 ° C.
Was floated in a solder bath for 3 minutes, and the presence or absence of blisters was measured. 6. Insulation resistance: Measured according to JIS C6481.

【0038】なお、製造コストについては、実施例の方
法は溶剤を使用しないので、実施例では得られた積層板
は比較例3で得られたものに比べ30〜40%程度低コ
スト化することができた。また、比較例2については、
100℃で樹脂を溶かす工程で樹脂の硬化特性の経時変
化が著しく、また、設備への樹脂付着物が硬化して清掃
が困難となった。
As for the manufacturing cost, since the method of the embodiment does not use a solvent, the laminated board obtained in the embodiment is reduced in cost by about 30 to 40% as compared with that obtained in the comparative example 3. Was completed. Moreover, about the comparative example 2,
In the step of melting the resin at 100 ° C., the change over time in the curing characteristics of the resin was remarkable, and the resin adhered to the equipment hardened, making cleaning difficult.

【0039】[0039]

【発明の効果】本発明の方法は、熱硬化性樹脂及び硬化
剤を必須成分とし、これら成分を加温しながら予備混合
した後、機械的エネルギーを与えてメカノケミカル反応
を起こさせて得られた粉末状熱硬化性樹脂組成物を使用
するので、有機溶剤を使用しないにもかかわらず、電気
特性、耐熱性等品質の良好な積層板を安定して得ること
ができる。そして有機溶剤を使用しないので、省資源、
省エネルギー及び大気汚染の低減化が図られ、省資源化
及び省エネルギー化することにより、低コスト化の点で
も優れている。このように、本発明は、工業的なプリプ
レグ及び積層板の製造方法として好適である。
The method of the present invention comprises a thermosetting resin and a curing agent as essential components, premixing these components while heating them, and then applying mechanical energy to cause a mechanochemical reaction. Since the powdered thermosetting resin composition is used, a laminate having good quality such as electric characteristics and heat resistance can be stably obtained even though an organic solvent is not used. And because no organic solvent is used, resource saving,
Energy saving and reduction of air pollution are achieved, and resource saving and energy saving are also excellent in cost reduction. Thus, the present invention is suitable as an industrial method for producing a prepreg and a laminate.

フロントページの続き Fターム(参考) 4F072 AA04 AA07 AB09 AB28 AD13 AD23 AD37 AD45 AE01 AF28 AF30 AG03 AG16 AG17 AH05 AH24 AJ04 AK05 AL12 AL13 4F100 AB01B AB17 AG00 AH03H AK01A AK53 BA01 BA02 CA02A DE01A DG00A DH01A EJ42A GB43 JB13A 4F205 AA36 AA39 AB03 AC04 AD16 AG01 AG03 AH36 HA08 HB01 HF01 HT02 HT08 Continued on the front page F-term (reference) 4F072 AA04 AA07 AB09 AB28 AD13 AD23 AD37 AD45 AE01 AF28 AF30 AG03 AG16 AG17 AH05 AH24 AJ04 AK05 AL12 AL13 4F100 AB01B AB17 AG00 AH03H AK01A AK53 BA01 BA02 CA02A DE01A01A39 EB00A DEB AC04 AD16 AG01 AG03 AH36 HA08 HB01 HF01 HT02 HT08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂及び硬化剤を必須成分と
し、これら成分を加温しながら予備混合した後、機械的
エネルギーを与えてメカノケミカル反応を起こさせて得
られた粉末状熱硬化性樹脂組成物を、シート状繊維基材
の少なくとも表面に存在させることを特徴とするプリプ
レグの製造方法。
1. A thermosetting resin obtained by premixing a thermosetting resin and a curing agent as essential components while heating these components and then applying mechanical energy to cause a mechanochemical reaction. A method for producing a prepreg, wherein the resin composition is present on at least a surface of a sheet-like fiber substrate.
【請求項2】 熱硬化性樹脂及び硬化剤が粉末状である
請求項1記載のプリプレグの製造方法。
2. The method for producing a prepreg according to claim 1, wherein the thermosetting resin and the curing agent are in a powder form.
【請求項3】 予備混合する時の加温温度が熱硬化性樹
脂の溶融温度以下である請求項1又は2記載のプリプレ
グの製造方法。
3. The method for producing a prepreg according to claim 1, wherein the heating temperature at the time of pre-mixing is lower than the melting temperature of the thermosetting resin.
【請求項4】 メカノケミカル反応を起こさせるための
装置が、ジェットミル、オングミル、媒体撹拌式ミル又
は多段石臼型混練押し出し機である請求項1又は2記載
のプリプレグの製造方法。
4. The method for producing a prepreg according to claim 1, wherein the apparatus for causing the mechanochemical reaction is a jet mill, an ong mill, a medium stirring mill or a multi-stage mill-type kneading extruder.
【請求項5】 請求項1,2,3又は4記載の方法によ
り得られたプリプレグを1枚又は複数枚重ね合わせ、加
熱加圧することを特徴とする積層板又は金属箔張積層板
の製造方法。
5. A method for producing a laminate or a metal foil-clad laminate, comprising laminating one or more prepregs obtained by the method according to claim 1, 2, 3 or 4 and heating and pressing. .
JP11140634A 1999-05-20 1999-05-20 Preparation of prepreg and laminate Pending JP2000327812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11140634A JP2000327812A (en) 1999-05-20 1999-05-20 Preparation of prepreg and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11140634A JP2000327812A (en) 1999-05-20 1999-05-20 Preparation of prepreg and laminate

Publications (1)

Publication Number Publication Date
JP2000327812A true JP2000327812A (en) 2000-11-28

Family

ID=15273259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11140634A Pending JP2000327812A (en) 1999-05-20 1999-05-20 Preparation of prepreg and laminate

Country Status (1)

Country Link
JP (1) JP2000327812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025325A (en) * 2001-07-23 2003-01-29 Sumitomo Bakelite Co Ltd Method for producing composite particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025325A (en) * 2001-07-23 2003-01-29 Sumitomo Bakelite Co Ltd Method for producing composite particle

Similar Documents

Publication Publication Date Title
WO1999027002A1 (en) Processes for the production of prepregs and laminated sheets
JP2000344917A (en) Flame-retardant prepreg and laminate
JP3373164B2 (en) Method for producing prepreg and laminate
JP2000327812A (en) Preparation of prepreg and laminate
JP2000345006A (en) Flame retarded prepreg and laminate
JP2000280242A (en) Production of prepreg and laminated sheet
JPH11302411A (en) Preparation of prepreg and laminate
JP2000273222A (en) Flame-retardant prepreg and laminate
JP2000273217A (en) Production of prepreg and laminate
JP2000336190A (en) Production of both prepreg and laminate
JP3582770B2 (en) Manufacturing method of laminated board
JP2000344916A (en) Flame-retardant prepreg and laminate
JPH11240967A (en) Production of prepreg and laminate
JPH11246687A (en) Production of prepreg and laminate
JP2000273218A (en) Production of prepreg and laminate
JP2000280241A (en) Production of prepreg and laminated sheet
JPH11309808A (en) Metal foil with adhesive, prepreg with metal foil, and laminated plate
JP2000273219A (en) Prepreg and laminate
JP2000273238A (en) Flame retardant prepreg and laminate
JPH11246688A (en) Production of prepreg and laminate
JP3565737B2 (en) Manufacturing method of laminated board
JP2000271930A (en) Manufacture of prepreg and laminated sheet
JPH11350359A (en) Production of prepreg and laminate
JP4301044B2 (en) Prepreg and laminate manufacturing method
JP2000286551A (en) Manufacture of multilayer printed wiring board

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203