JP2000271930A - Manufacture of prepreg and laminated sheet - Google Patents

Manufacture of prepreg and laminated sheet

Info

Publication number
JP2000271930A
JP2000271930A JP11085503A JP8550399A JP2000271930A JP 2000271930 A JP2000271930 A JP 2000271930A JP 11085503 A JP11085503 A JP 11085503A JP 8550399 A JP8550399 A JP 8550399A JP 2000271930 A JP2000271930 A JP 2000271930A
Authority
JP
Japan
Prior art keywords
prepreg
powdery
thermosetting resin
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11085503A
Other languages
Japanese (ja)
Inventor
Mamoru Nishijima
護 西島
Takahiro Nakada
高弘 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11085503A priority Critical patent/JP2000271930A/en
Publication of JP2000271930A publication Critical patent/JP2000271930A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a laminated sheet, which does not pollute air and can save resources and is stable and favorable in quality, at low cost. SOLUTION: A mechanochemical reaction is taken place in a mixture of the essential components of a thermosetting resin and a hardener with a medium agitating mill so as to obtain a powdery thermosetting resin composition through grinding, dispersion and mixing or preferably, through the addition of fine powdered additive having the average particle diameter of 0.01-1 ηm, a powdery resin composition. By existing the composition at least on the surface of a sheet-like fibrous base material, a prepreg is manufactured. By applying heat and pressure on one sheet or a plurality of piled up sheets of the prepreg, a laminated sheet is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に電気機器、電
子機器、通信機器等に使用される印刷回路板用として好
適なプリプレグ及び積層板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a prepreg and a laminated board suitable for a printed circuit board particularly used for electric equipment, electronic equipment, communication equipment and the like.

【0002】[0002]

【従来の技術】プリント回路板については小型化、高機
能化の要求が強くなる反面、価格競争が激しく、特にプ
リント回路板に用いられる多層積層板やガラス布基材エ
ポキシ樹脂積層板、ガラス不織布を中間層基材とし、ガ
ラス織布を表面層基材とした構成で、エポキシ樹脂を含
浸させ加熱加圧成形した積層板(以下、コンポジット積
層板という)は、価格の低減が大きな課題となってい
る。また、近年地球の温暖化対策や環境汚染の減少が要
求されてきた。従来これらに用いられるプリプレグや積
層板の製造工程では、基材への樹脂含浸や樹脂の均一性
から多量の溶剤が用いられてきた。一方この大量の溶剤
は塗布乾燥工程で蒸発して製品中に存在せずそのまま大
気放出されるか、燃焼処理装置で処理されて炭酸ガス等
にして大気に放出されてきた。この為大気汚染や地球温
暖化の原因となる問題があった。一方では、基材への樹
脂含浸などの製造上の問題から溶剤の削減、及びこれに
よる低コスト化が困難であった。
2. Description of the Related Art As for printed circuit boards, demands for downsizing and high functionality are becoming stronger, but price competition is fierce. In particular, multilayer laminated boards, glass cloth base epoxy resin laminated boards, and glass nonwoven fabrics used for printed circuit boards are particularly important. Is a middle layer base material and a glass woven fabric is used as a surface layer base material, and a laminated board formed by impregnating with epoxy resin and heating and pressing (hereinafter referred to as a composite laminated board) is a major issue in terms of cost reduction. ing. In recent years, measures against global warming and reduction of environmental pollution have been required. Conventionally, a large amount of solvent has been used in a process of manufacturing a prepreg or a laminated board used for these in view of resin impregnation of the base material and uniformity of the resin. On the other hand, this large amount of solvent evaporates in the coating and drying step and is released to the atmosphere as it is without being present in the product, or it is treated by a combustion treatment device and released to the atmosphere as carbon dioxide gas or the like. Therefore, there is a problem that causes air pollution and global warming. On the other hand, it has been difficult to reduce the amount of solvent and thereby reduce the cost due to manufacturing problems such as resin impregnation of the base material.

【0003】無溶剤化の技術として、低融点の樹脂や液
状の樹脂を加熱混合して均一混合して塗布する研究はさ
れてきたが、十分な均一混合が出来ない、連続生産時加
温温度の低下による設備への固結や加熱時熱硬化性樹脂
のゲル化、これによる設備の掃除の困難性があり、連続
的な生産が困難であった。一方粉末状樹脂をそのまま塗
布する場合、均一な混合塗布が出来ず、部分的な硬化の
発生や基材への含浸が出来ない問題があった。
As a technique for eliminating the solvent, studies have been made to heat and mix a resin having a low melting point or a liquid resin to uniformly mix and apply the solution. However, the heating temperature during continuous production cannot be sufficiently uniform. In addition, there is a problem that solidification of the thermosetting resin during heating and gelation of the thermosetting resin due to a decrease in the temperature, and difficulty in cleaning the facility due to the consolidation, make continuous production difficult. On the other hand, when the powdery resin is applied as it is, there is a problem that uniform mixing and application cannot be performed, and partial curing occurs and impregnation of the substrate cannot be performed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来製造が
困難であった無溶剤樹脂の使用によるプリプレグ及びこ
のプリプレグを使用した積層板を得んとして研究した結
果、粉末状樹脂及び硬化剤を使用すること、及びその粉
体にメカノケミカルな反応を施すことと粉砕・分散・混
合により均一混合や基材への含浸性が従来の溶剤を使用
した樹脂と同等となるとの知見を得、更にこの知見に基
づき種々研究を進めて本発明を完成するに至ったもので
ある。
DISCLOSURE OF THE INVENTION The present invention has been studied to obtain a prepreg using a solvent-free resin and a laminate using the prepreg, which have been conventionally difficult to produce. The fact that the powder is subjected to a mechanochemical reaction and that the powder is subjected to a mechanochemical reaction and is uniformly mixed and impregnated into the substrate by pulverization, dispersion, and mixing becomes equivalent to a resin using a conventional solvent. Based on this finding, various studies have been made to complete the present invention.

【0005】[0005]

【課題を解決するための手段】本発明は、熱硬化性樹脂
及び硬化剤を必須成分とし、これら各成分の混合物に媒
体攪拌式ミルでメカノケミカルな反応を起こさせると共
に、粉砕・分散・混合して得た粉末状熱硬化性樹脂組成
物を、シート状繊維基材の少なくとも表面に存在させる
ことを特徴とするプリプレグの製造方法であり、好まし
くは、熱硬化性樹脂及び硬化剤が粉末状であるプリプレ
グの製造方法であり、熱硬化性樹脂及び硬化剤とともに
無機充填材が配合されているプリプレグの製造方法であ
る。さらには、上記粉末状熱硬化性樹脂組成物に平均粒
径0.01〜1μmの微粉末添加剤を添加し均一混合し
て得た粉末状樹脂組成物を、シート状繊維基材の少なく
とも表面に存在させることを特徴とするプリプレグの製
造方法であり、さらに、このようにして得られたプリプ
レグを、1枚又は複数枚重ね合わせ、加熱加圧すること
を特徴とする積層板の製造方法である。
According to the present invention, a thermosetting resin and a curing agent are essential components, and a mixture of these components is caused to undergo a mechanochemical reaction in a medium stirring mill, and is crushed, dispersed and mixed. A method for producing a prepreg, characterized in that the powdery thermosetting resin composition obtained as described above is present on at least the surface of a sheet-like fiber base material, wherein the thermosetting resin and the curing agent are preferably in powder form. This is a method for producing a prepreg in which an inorganic filler is blended together with a thermosetting resin and a curing agent. Further, a powdery resin composition obtained by adding a fine powder additive having an average particle size of 0.01 to 1 μm to the above powdery thermosetting resin composition and uniformly mixing the resulting mixture with at least the surface of a sheet-like fiber substrate. A method for producing a prepreg, characterized in that the method further comprises the step of laminating one or more prepregs obtained in this manner, and heating and pressurizing the laminate. .

【0006】本発明において用いられる熱硬化性樹脂は
通常粉末状であり、エポキシ樹脂が望ましいが、このほ
か、ポリイミド樹脂、ポリエステル樹脂、フェノール樹
脂などを用いることができる。熱硬化性樹脂がエポキシ
樹脂の場合、硬化剤としては、耐熱性や電気特性の点か
ら、アミン系、特にジシアンジアミドと芳香族アミン、
及びノボラック樹脂等が望ましいが、酸無水物、イミダ
ゾール化合物等も用いることができる。硬化剤は粉末状
であることが好ましいが、配合量が少ない場合(例え
ば、樹脂に対して20重量%以下)は液状でもよく、樹
脂との混合物に機械的エネルギーを与えた後に粉末化で
きれば使用可能である。また、好ましくは、硬化促進剤
を使用する。硬化促進剤も粉末状のものが好ましいが、
上記と同様に液状のものも使用可能である。かかる硬化
促進剤としては、イミダゾール化合物、第3級アミン等
を用いることができる。これらの各成分は上記のものに
限定されるものではない。
The thermosetting resin used in the present invention is usually in the form of a powder, and is preferably an epoxy resin. In addition, a polyimide resin, a polyester resin, a phenol resin and the like can be used. When the thermosetting resin is an epoxy resin, as a curing agent, from the viewpoint of heat resistance and electrical properties, amine-based, especially dicyandiamide and aromatic amine,
And novolak resins, but acid anhydrides, imidazole compounds and the like can also be used. The curing agent is preferably in the form of a powder, but when the amount is small (for example, 20% by weight or less with respect to the resin), the curing agent may be in a liquid state. It is possible. Preferably, a curing accelerator is used. The curing accelerator is also preferably in the form of powder,
Liquid substances can be used as described above. As such a curing accelerator, an imidazole compound, a tertiary amine, or the like can be used. These components are not limited to those described above.

【0007】これらの粉体の粒径としては、通常100
0μm以下であり、好ましくは0.1〜500μmであ
り、更に好ましくは0.1〜200μmである。これ
は、1000μmを越えると粒子重量に対しての表面積
が小さくなり、熱硬化性樹脂、硬化剤や硬化促進剤等各
成分の互いの接点が少なくなり、均一分散が困難となる
ため、反応の目標比率とは異なった比率で反応したり、
均一な反応が行われないおそれがある。メカノケミカル
反応の場合は、熱硬化性樹脂の粒径は、硬化剤(及び硬
化促進剤)等の粒径に対して5〜15倍が好ましい。こ
れは、この範囲では熱硬化性樹脂に硬化剤(及び硬化促
進剤)が融合しやすいためである。
The particle size of these powders is usually 100
0 μm or less, preferably 0.1 to 500 μm, more preferably 0.1 to 200 μm. This is because if the particle size exceeds 1000 μm, the surface area with respect to the particle weight becomes small, the number of contact points of each component such as a thermosetting resin, a curing agent and a curing accelerator decreases, and uniform dispersion becomes difficult. It may react at a different ratio than the target ratio,
There is a possibility that a uniform reaction is not performed. In the case of the mechanochemical reaction, the particle size of the thermosetting resin is preferably 5 to 15 times the particle size of the curing agent (and the curing accelerator). This is because the curing agent (and the curing accelerator) is easily fused to the thermosetting resin in this range.

【0008】メカノケミカル反応による改質とは、「固
体による固体の改質で、粉砕、磨砕、摩擦、接触による
粒子の表面活性、表面家電を利用するものである。活性
そのものが、結晶形の転移や歪みエネルギーの増大によ
る溶解、熱分解速度の改質、あるいは機械的強度、磁気
特性になる場合と、表面活性を他の物質との反応、付着
に用いる場合とがある。工学的には機械的衝撃エネルギ
ーが利用され、摩擦、接触による電荷、あるいは磁気に
よる付着、核物質への改質剤の埋め込み、溶融による皮
膜の形成等、物理的改質のみならず化学的改質も行われ
る。」(「実用表面改質技術総覧」材料技術研究協会
編、産業技術サービスセンター、1993.3.25発行、p786)
ものである。本発明は、メカノケミカル反応による化学
的改質を利用したものであるが、固体と液体が機械的エ
ネルギーにより化学的に改質される場合をも含むもので
ある。
[0008] The modification by mechanochemical reaction is "a modification of a solid by a solid, which utilizes the surface activity of particles by grinding, grinding, friction, and contact, and surface appliances. The activity itself is a crystalline form. In some cases, the dissolution or thermal decomposition rate is modified by increasing the transition energy or strain energy, or mechanical strength or magnetic properties are obtained. In other cases, surface activity is used for reaction or adhesion with other substances. Uses mechanical impact energy to perform not only physical modification but also chemical modification such as adhesion by electric charge or magnetism by friction, contact, embedding of modifier in nuclear material, formation of film by melting, etc. ("Overview of Practical Surface Modification Technologies" edited by the Material Technology Research Association, Industrial Technology Service Center, published March 25, 1993, p786)
Things. The present invention utilizes chemical modification by a mechanochemical reaction, but also includes a case where a solid and a liquid are chemically modified by mechanical energy.

【0009】メカノケミカル反応のために機械的エネル
ギーを与えるとともに攪拌による粉砕・分散・混合させ
るための処理法は、媒体攪拌式ミルを使用して行う。こ
の装置の基本構造は容器に攪拌手段である各種形状(バ
ータイプ、ディスクタイプ、ピンタイプ、パドルタイ
プ、スクリュータイプ等)を有するアジテータと各種径
(例えば20mm以下、好ましくは3〜10mm)で材
質(例えばアルミナ、ジルコニア、窒化珪素等)を備え
た媒体で構成され、形式は塔式、糟式、流通管式、アニ
ューラ式があり、本発明においては流通管式が適切で、
例えばダイナミックミル、ダイノミル等の如く、生産性
の良い横型連続式微粉砕機が好ましい。
[0009] A treatment method for applying mechanical energy for the mechanochemical reaction and for pulverizing, dispersing, and mixing by stirring is performed using a medium stirring type mill. The basic structure of this device is agitator having various shapes (bar type, disk type, pin type, paddle type, screw type, etc.) and various diameters (for example, 20 mm or less, preferably 3 to 10 mm), which are agitating means. (E.g., alumina, zirconia, silicon nitride, etc.), and includes a tower type, a tank type, a flow tube type, and an annular type. In the present invention, the flow tube type is appropriate.
For example, a horizontal continuous fine pulverizer with good productivity such as a dynamic mill and a dyno mill is preferable.

【0010】メカノケミカル反応及び媒体攪拌粉砕を行
うためには、熱硬化性樹脂の軟化点は、好ましくは50
℃以上、より好ましくは70℃以上、さらに好ましくは
80℃以上である。これは、上記処理時に粉体間あるい
は粉体と処理装置との間で摩擦、粉砕、融合により20
〜50℃程度の熱が発生するため、この影響を最小限に
とどめるためである。一方、軟化点が高すぎても有効な
メカノケミカル反応が行われにくく、かつ、後の工程で
ある樹脂組成物の基材への含浸が困難となるので、15
0℃、特に130℃以下の軟化点が好ましい。粉末状熱
硬化性樹脂及び硬化剤等の各成分は、メカノケミカル反
応のための粉体処理の前に、予め、上記粒径まで粉砕し
た後ヘンシェルミキサー等にてできるだけ均一に混合す
ることが好ましい。
In order to carry out the mechanochemical reaction and the stirring and grinding of the medium, the softening point of the thermosetting resin is preferably 50
° C or higher, more preferably 70 ° C or higher, still more preferably 80 ° C or higher. This is due to friction, pulverization and fusion between the powders or between the powder and the processing equipment during the above processing.
Since heat of about 50 ° C. is generated, this effect is to be minimized. On the other hand, even if the softening point is too high, an effective mechanochemical reaction is difficult to be performed, and it is difficult to impregnate the base material with the resin composition in a later step.
A softening point of 0 ° C., especially 130 ° C. or less is preferred. Each component such as a powdery thermosetting resin and a curing agent is preferably mixed as uniformly as possible with a Henschel mixer or the like after pulverizing to the above particle size in advance before powder treatment for mechanochemical reaction. .

【0011】本発明に用いられる熱硬化性樹脂組成物に
は、メカノケミカル反応を起こさるとともに、攪拌・粉
砕・混合して均一分散させる前に、予め無機充填材を添
加することが好ましい。無機充填材を加えると耐トラッ
キング性、耐熱性、熱膨張率の低下等の特性を付与する
ことが出来る。かかる無機充填材としては、水酸化アル
ミニウム、水酸化マグネシウム、炭酸カルシウム、タル
ク、ウォラストナイト、アルミナ、シリカ、未焼成クレ
ー、焼成クレー、硫酸バリウム等がある。これらの粒径
も前記と同様である。この他、カップリング剤等の添加
剤を配合してもよい。
It is preferable to add an inorganic filler to the thermosetting resin composition used in the present invention in advance of causing a mechanochemical reaction and stirring, pulverizing, mixing and uniformly dispersing the thermosetting resin composition. When an inorganic filler is added, characteristics such as tracking resistance, heat resistance, and a decrease in coefficient of thermal expansion can be imparted. Such inorganic fillers include aluminum hydroxide, magnesium hydroxide, calcium carbonate, talc, wollastonite, alumina, silica, unfired clay, fired clay, barium sulfate and the like. These particle sizes are the same as above. In addition, additives such as a coupling agent may be blended.

【0012】以上のようにしてメカノケミカル反応され
かつ媒体攪拌で粉砕された均一分散・混合された粉末状
樹脂組成物の粒径は、通常1000μm以下であり、好
ましくは0.1〜500μmであり、更に好ましくは
0.1〜100μmである。かかる粒径は、粉体の散布
ないし塗布時の流動性、加熱溶融時の流れ性や表面の滑
らかさの改良、シート状繊維基材への樹脂の含浸性の改
良、重量分布等の安定化のために適している。粉末状樹
脂組成物は、その後、そのままあるいは平均粒径0.0
1〜1μmの微粉末添加剤を配合し均一混合して、シー
ト状繊維基材の少なくとも表面に存在させることにより
プリプレグを得る。
The particle size of the uniformly dispersed and mixed powdery resin composition which has been subjected to the mechanochemical reaction and pulverized by stirring the medium as described above is usually 1000 μm or less, preferably 0.1 to 500 μm. , More preferably 0.1 to 100 μm. Such a particle size can be used to improve the flowability of powder during spraying or application, the flowability during heating and melting, the smoothness of the surface, the improvement of impregnation of resin into the sheet-like fiber base material, and the stabilization of weight distribution and the like. Suitable for The powdery resin composition is then used as is or with an average particle size of 0.0
A prepreg is obtained by blending and uniformly mixing a fine powder additive of 1 to 1 μm and allowing it to exist on at least the surface of the sheet-like fiber base material.

【0013】微粉末添加剤を配合することにより、粉末
状組成物の均一分散性、及び流動特性を大きく向上させ
ことができる。このような技術により、粉末状組成物を
シート状基材へ塗布・含浸する際の均一な分布、粉体塗
布面の平滑性を得ることにより均一な含浸が可能とな
る。微粉末添加剤としては、無機系微粉末が望ましいが
有機系微粉末も用いることができる。また、粒径は平均
粒径で0.01〜1μmのものを用いるが、好ましくは
0.01〜0.1μm(比表面積:50〜500m2
g程度)のものを使用する。かかる微粉末添加剤として
は、シリカ微粉末、酸化チタン微粉末等がある。平均粒
径が1μmを越えると比表面積が小さくなり単位重量当
たりの粒子数が減少すること、及び、主成分である粉末
状樹脂及び粉末状硬化剤との粒径差が小さくなることに
より、流動性向上のためのベアリング効果が十分に得ら
れないおそれがある。粉体中のベアリング効果とは、比
較的粒径の大きな粒子同士の接触点に微粒子を存在させ
ることにより、粒径の大きな粒子の移動をより自由に
し、粉末状組成物全体としての流動性を向上させるもの
である。また、微粉末添加剤の場合、2次凝集して粒径
が2〜10μmになる場合があるがこのようなものでも
1次粒子経が平均粒径0.01〜1μmのものであれば
十分効果がある。粉末状組成物全体としての流動性を向
上させるための処理方法としては、微粉末添加剤を均一
に分散混合できる方法であればいずれの方法でも良く、
このような処理方法としては、例えばヘンシェルミキサ
ー、ライカイ機、プラネタリーミキサー、ボールミル等
による混合が挙げられる。特に2次凝集した微粉末につ
いては剪断力のあるボールミル、ヘンシェルミキサーが
好ましい。
By blending the fine powder additive, the uniform dispersibility and flow characteristics of the powdery composition can be greatly improved. By such a technique, uniform distribution can be achieved when the powdery composition is applied to and impregnated on the sheet-like substrate, and uniform impregnation can be achieved by obtaining smoothness of the powder application surface. As the fine powder additive, an inorganic fine powder is desirable, but an organic fine powder can also be used. The average particle size is 0.01 to 1 μm, preferably 0.01 to 0.1 μm (specific surface area: 50 to 500 m 2 /
g). Such fine powder additives include silica fine powder and titanium oxide fine powder. When the average particle size exceeds 1 μm, the specific surface area decreases, the number of particles per unit weight decreases, and the difference in particle size between the powdered resin and the powdered curing agent, which are the main components, decreases, resulting in fluidization. There is a possibility that the bearing effect for improving the performance cannot be sufficiently obtained. The bearing effect in powder means that fine particles are present at the contact points between particles having relatively large particle diameters, so that the movement of particles having large particle diameters becomes more free and the fluidity of the powdery composition as a whole is improved. It is to improve. In the case of a fine powder additive, the particle diameter may be 2 to 10 μm due to secondary aggregation, but if such an additive has an average primary particle diameter of 0.01 to 1 μm, it is sufficient. effective. As a treatment method for improving the fluidity of the entire powdery composition, any method may be used as long as it can uniformly disperse and mix the fine powder additive,
Examples of such a treatment method include mixing using a Henschel mixer, a Raikai machine, a planetary mixer, a ball mill, or the like. In particular, a ball mill or a Henschel mixer having a shearing force is preferably used for the secondary aggregated fine powder.

【0014】混合された粉末状組成物は、散布ないし塗
布等によりシート状繊維基材に均一に存在させる。この
粉末状組成物の量は、シート状繊維基材の繊維材質、性
状、重量(単位面積当たり)により異なるが、通常、シ
ート状繊維基材の重量の40〜60%程度である。粉末
状組成物をシート状繊維基材に存在させる方法は、シー
ト状繊維基材上面から振りかける方法、静電塗装法、流
動浸漬法、スプレーによる吹き付け法、ナイフコータ
ー、コンマナイフコーター、ダイスコーター等の各種コ
ーターによる塗布法等、特に限定されない。なお、シー
ト状繊維基材は、予め、60〜100℃程度に加熱して
おけば、粉末状組成物を散布したときに繊維によく付着
し、その後の加熱により基材の内部によく浸透し、良好
なプリプレグが得られる。シート状繊維基材としては、
ガラスクロス、ガラス不繊布等のガラス繊維基材の他、
紙、合成繊維等からなる織布や不織布、金属繊維、カー
ボン繊維、鉱物繊維等からなる織布、不織布、マット類
等が挙げられ、これらの基材の原料は単独又は混合して
使用してもよい。
The mixed powdery composition is uniformly dispersed on the sheet-like fiber substrate by spraying or coating. The amount of the powdery composition varies depending on the fiber material, properties and weight (per unit area) of the sheet-like fiber base material, but is usually about 40 to 60% of the weight of the sheet-like fiber base material. The method of causing the powdery composition to be present on the sheet-like fiber substrate includes a method of sprinkling from the upper surface of the sheet-like fiber substrate, an electrostatic coating method, a fluid immersion method, a spraying method by spraying, a knife coater, a comma knife coater, a die coater, and the like. There is no particular limitation on the coating method using various coaters. In addition, if the sheet-like fiber base material is previously heated to about 60 to 100 ° C., it adheres well to the fibers when the powdery composition is sprayed, and penetrates well into the base material by subsequent heating. , A good prepreg is obtained. As a sheet-like fiber substrate,
In addition to glass fiber base materials such as glass cloth and glass non-woven cloth,
Paper, woven or non-woven fabrics made of synthetic fibers, etc., woven fabrics, non-woven fabrics, mats, etc. made of metal fibers, carbon fibers, mineral fibers, etc., and these base materials can be used alone or in combination. Is also good.

【0015】以上のようにして得られたプリプレグは、
この1枚又は複数枚を、必要により銅箔等の金属箔を重
ね合わせ、通常の方法により加熱加圧して積層板に成形
される。本発明によるプリプレグ及び積層板の製造方法
は、得られたプリプレグあるいは積層板の性能を実質的
に変えることなく、粉末状樹脂組成物の使用による製造
が容易となり、無溶剤による省資源化及び大気汚染の低
減化、省エネルギー化が図られ、さらに低コスト化をも
達成することができる。本発明は、粉末状素材(樹脂、
硬化剤、硬化促進剤等)の使用とメカノケミカル反応を
応用したものであり、このような技術により、各粉末状
素材を均一に分散し結合させ、得られた粉末状樹脂組成
物をシート状繊維基材に塗布・含浸する際に、均一な分
布、粉体塗布面の平滑性を得ることにより均一な含浸が
可能となったものである。
The prepreg obtained as described above is
One or more of the sheets are laminated with a metal foil such as a copper foil as necessary, and heated and pressed by a usual method to form a laminate. The method for producing a prepreg and a laminate according to the present invention can be easily produced by using a powdery resin composition without substantially changing the performance of the obtained prepreg or laminate, and can save resources and eliminate air by using no solvent. Pollution can be reduced, energy can be saved, and cost can be reduced. The present invention relates to a powdery material (resin,
And a mechanochemical reaction. The powdery materials are uniformly dispersed and bonded by such a technique, and the resulting powdery resin composition is formed into a sheet. When coating and impregnating on a fiber base material, uniform impregnation is made possible by obtaining uniform distribution and smoothness of the powder coated surface.

【0016】[0016]

【実施例】次に、本発明の実施例を比較例とともに具体
的に説明する。
Next, examples of the present invention will be specifically described together with comparative examples.

【0017】〔実施例1〕平均粒径150μmの粉末状
のエポキシ樹脂(油化シェル製臭素化エポキシ樹脂Ep
5048,エポキシ当量675)100重量部、平均粒
子径15μmの粉末状の硬化剤(ジシアンジアミド)5
重量部、及び平均粒径15μmの粉末状の硬化促進剤
(2−エチル−4−メチルイミダゾール)1重量部をヘ
ンシェルミキサーで回転数500rpm、5分間混合
し、次いて、この粉体に無機充填材として水酸化アルミ
ニウム(住友化学(株)製CL−310)50重量部を加
えて、媒体攪拌ミル(三井鉱山(株)乾式連続式微粉砕
機:ダイナミックミル)を用いて、媒体径8mm、媒体
充填率70%、回転数500rpm、処理した平均粒径
150μmの粉体組成物を得た。
Example 1 A powdery epoxy resin having an average particle size of 150 μm (brominated epoxy resin Ep manufactured by Yuka Shell Co., Ltd.)
5048, epoxy equivalent 675) 100 parts by weight, powdery curing agent (dicyandiamide) 5 having an average particle size of 15 μm 5
Parts by weight and 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) having an average particle size of 15 μm are mixed with a Henschel mixer at a rotation speed of 500 rpm for 5 minutes, and then the powder is inorganic-filled. As a material, 50 parts by weight of aluminum hydroxide (CL-310 manufactured by Sumitomo Chemical Co., Ltd.) was added, and a medium agitating mill (Mitsui Mining Co., Ltd. dry continuous pulverizer: dynamic mill) was used. A powder composition having a filling rate of 70%, a rotation speed of 500 rpm and an average particle size of 150 μm was obtained.

【0018】この粉末状樹脂組成物を100g/m2
ガラスクロスの片面上にナイフコーターで間隙0.2m
mにして樹脂重量が50g/m2になるように均一に塗
布した。その後、170℃の乾燥機で30秒加熱した
後、ガラスクロスを上下反対にし、もう一方の面にナイ
フコーターで間隙0.2mmにして樹脂重量が50g/
2になるように均一に塗布して、170℃の乾燥機で
3分間乾燥してプリプレグを得た。このプリプレグを2
枚重ね合わせ、さらにその上下に厚さ18μmの銅箔を
重ね合わせ、温度165℃、圧力60kg/cm2で9
0分間加熱加圧成形して、厚さ0.22mmの銅張積層
板を作製した。
This powdery resin composition was coated on one side of a glass cloth of 100 g / m 2 with a knife coater at a gap of 0.2 m.
m and the resin weight was 50 g / m 2 . Then, after heating with a dryer at 170 ° C. for 30 seconds, the glass cloth was turned upside down and the other surface was adjusted to a gap of 0.2 mm with a knife coater so that the resin weight was 50 g / g.
m 2, and dried by a dryer at 170 ° C. for 3 minutes to obtain a prepreg. This prepreg is 2
A copper foil having a thickness of 18 μm is laminated on the upper and lower sides, and the temperature is 165 ° C. and the pressure is 60 kg / cm 2 .
It was heated and pressed for 0 minutes to produce a copper-clad laminate having a thickness of 0.22 mm.

【0019】〔実施例2〕実施例1で得た平均粒径15
0μmの粉末状樹脂組成物100重量部に、平均粒径
0.05μmの微粉末シリカ(日本アエロジル製アエロ
ジル#200)1重量部の割合で添加し、ヘンシェルミ
キサーで回転数500rpm、5分間混合処理した。こ
の粉末状組成物を実施例1と同様にしてプリプレグを
得、次いで、このプリプレグを用い厚さ0.22mmの
銅張積層板を作製した。
Example 2 The average particle size of 15 obtained in Example 1
To 100 parts by weight of a 0-μm powdery resin composition, 1 part by weight of fine powdered silica (Aerosil # 200 manufactured by Nippon Aerosil Co., Ltd.) having an average particle diameter of 0.05 μm was added, and mixed at 500 rpm for 5 minutes using a Henschel mixer. did. A prepreg was obtained from this powdery composition in the same manner as in Example 1, and a copper-clad laminate having a thickness of 0.22 mm was produced using the prepreg.

【0020】〔実施例3〕平均粒径150μmの粉末状
のエポキシ樹脂(Ep5048)100重量部、平均粒
子径15μmの粉末状の硬化剤(ジシアンジアミド)5
重量部、及び平均粒径15μmの粉末状の硬化促進剤
(2−エチル−4−メチルイミダゾール)1重量部をヘ
ンシェルミキサーで回転数500rpm、5分間混合
し、次いで、媒体攪拌ミル(三井鉱山(株)乾式連続式
微粉砕機ダイナミックミル)を用いて、媒体径10m
m、媒体充填率65%、回転数500rpm、処理した
平均粒径150μmの粉体組成物を得た。以下、実施例
1と同様にしてプリプレグを得、次いで、このプリプレ
グを用い厚さ0.22mmの銅張積層板を作製した。
Example 3 100 parts by weight of a powdery epoxy resin (Ep5048) having an average particle size of 150 μm and a powdery curing agent (dicyandiamide) 5 having an average particle size of 15 μm
Parts by weight and 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) having an average particle size of 15 μm were mixed with a Henschel mixer at 500 rpm for 5 minutes, and then mixed with a medium stirring mill (Mitsui Mining ( Medium diameter 10m using a dry continuous type fine grinding machine dynamic mill)
m, a medium filling rate of 65%, a rotation speed of 500 rpm, and a processed powder composition having an average particle size of 150 μm. Thereafter, a prepreg was obtained in the same manner as in Example 1, and then a copper-clad laminate having a thickness of 0.22 mm was produced using the prepreg.

【0021】〔実施例4〕実施例3で得た平均粒径20
0μmの粉末状樹脂組成物100重量部に、平均粒径
0.1μmの微粉末シリカ(塩野義製薬製カープレック
ス#67)1重量部の割合で添加し、ヘンシェルミキサ
ーで回転数500rpm、5分間混合処理した。この粉
末状組成物を実施例1と同様にしてプリプレグを得、次
いで、このプリプレグを用い厚さ0.22mmの銅張積
層板を作製した。
Example 4 The average particle size obtained in Example 3 was 20.
To 100 parts by weight of a 0-μm powdery resin composition, 1 part by weight of fine powdered silica (Carplex # 67 manufactured by Shionogi & Co., Ltd.) having an average particle diameter of 0.1 μm was added, and the rotation speed was 500 rpm for 5 minutes using a Henschel mixer. It was mixed. A prepreg was obtained from this powdery composition in the same manner as in Example 1, and a copper-clad laminate having a thickness of 0.22 mm was produced using the prepreg.

【0022】〔比較例1〕粉末状のエポキシ樹脂(油化
シェル製臭素化エポキシ樹脂Ep5048,エポキシ当
量675)100重量部、粉末状の硬化剤(ジシアンジ
アミド)5重量部、粉末状の硬化促進剤(2−エチル−
4−メチルイミダゾール)1重量部の比率で混合し直径
12インチの2本ロールを用い、高速側回転数20rp
m、高速側ロール温度100℃、低速側ロール温度90
℃、回転比1.5:1にて30回処理し、シート状で取
りだし冷風にて冷却後、微粉砕機にて平均粒径200μ
mに粉砕した。この粉末状組成物を実施例1と同様にし
てプリプレグを得、次いで、このプリプレグを用い厚さ
0.22mmの銅張積層板を作製した。
Comparative Example 1 100 parts by weight of a powdery epoxy resin (brominated epoxy resin Ep5048, oil equivalent shell, epoxy equivalent: 675), 5 parts by weight of a powdery curing agent (dicyandiamide), and a powdery curing accelerator (2-ethyl-
4-methylimidazole) mixed at a ratio of 1 part by weight, using two rolls having a diameter of 12 inches, and rotating at a high speed side of 20 rpm
m, high-speed roll temperature 100 ° C, low-speed roll temperature 90
At 30 ° C. and a rotation ratio of 1.5: 1, taken out in the form of a sheet, cooled with cold air, and then crushed with a fine pulverizer at an average particle size of 200 μm.
m. A prepreg was obtained from this powdery composition in the same manner as in Example 1, and a copper-clad laminate having a thickness of 0.22 mm was produced using the prepreg.

【0023】〔比較例2〕粉末状のエポキシ樹脂(油化
シェル製臭素化エポキシEp5048)100重量部、
粉末状の硬化剤(ジシアンジアミド)5重量部、粉末状
の硬化促進剤(2−エチル−4−メチルイミダゾール)
1重量部の比率で混合し後、この粉体を100℃で加温
して溶融した後、樹脂固形分で100g/m2になるよ
うに100g/m2のガラスクロスを浸けて含浸させて
170℃の乾燥機で2分間乾燥してプリプレグを得た。
このプリプレグを2枚重ね合わせ、さらにその上下に厚
さ18μmの銅箔を重ね合わせ、温度165℃、圧力6
0kg/cm2で90分間加熱加圧成形して、厚さ0.
22mmの銅張積層板を作製した。
Comparative Example 2 100 parts by weight of a powdery epoxy resin (brominated epoxy Ep5048 manufactured by Yuka Shell)
5 parts by weight of powdery curing agent (dicyandiamide), powdery curing accelerator (2-ethyl-4-methylimidazole)
After mixing at a ratio of 1 part by weight, was melted by warming at this powder 100 ° C., impregnated with a glass cloth of 100 g / m 2 so as to 100 g / m 2 of resin solids The prepreg was dried by drying at 170 ° C. for 2 minutes.
Two prepregs were superimposed, and a copper foil having a thickness of 18 μm was superimposed on and under the prepreg.
Heat-press molding at 0 kg / cm 2 for 90 minutes to give a thickness of 0.
A 22 mm copper-clad laminate was produced.

【0024】〔比較例3〕エポキシ樹脂(油化シェル製
臭素化エポキシEp5048)100重量部、硬化剤
(ジシアンジアミド)5重量部、硬化促進剤(2−エチ
ル−4−メチルイミダゾール)1重量部の比率で混合し
たものをメチルセルソルブ100重量部に溶かした。こ
のワニスを樹脂固形分で100g/m2になるように1
00g/m2のガラスクロスを浸けて含浸させた後、1
70℃の乾燥機で3分間乾燥してプリプレグを得た。こ
のプリプレグを2枚重ね合わせ、さらにその上下に厚さ
18μmの銅箔を重ね合わせ、温度165℃、圧力60
kg/cm2で90分間加熱加圧成形して、厚さ0.2
2mmの銅張積層板を作製した。
Comparative Example 3 100 parts by weight of an epoxy resin (brominated epoxy Ep5048 manufactured by Yuka Shell), 5 parts by weight of a curing agent (dicyandiamide), and 1 part by weight of a curing accelerator (2-ethyl-4-methylimidazole) The mixture in the ratio was dissolved in 100 parts by weight of methylcellosolve. The varnish was adjusted to a resin solid content of 100 g / m 2 by 1 g.
After soaking and impregnating 00 g / m 2 glass cloth,
The prepreg was dried by drying at 70 ° C. for 3 minutes to obtain a prepreg. Two prepregs were laminated, and a copper foil having a thickness of 18 μm was laminated on top and bottom of the prepreg.
Heat / press molding at 90 kg / cm 2 for 90 minutes
A 2 mm copper-clad laminate was produced.

【0025】以上実施例及び比較例において、プリプレ
グについては、ガラスクロスへの樹脂の含浸性を測定
し、銅張積層板については、成形性、引張り強さ、銅箔
引剥し強さ、半田耐熱性を測定した。その結果を表1に
示す。
In the above Examples and Comparative Examples, for the prepreg, the impregnating property of the resin into the glass cloth was measured, and for the copper-clad laminate, the moldability, tensile strength, copper foil peeling strength, and solder heat resistance were measured. The properties were measured. Table 1 shows the results.

【0026】[0026]

【表1】 [Table 1]

【0027】(測定方法) 1.含浸性:ガラス繊維間のボイドの有無を、プリプレ
グを実体顕微鏡にて確認した。 2.成形性:銅張積層板の銅箔をエッチングして、目視
により硬化剤等の析出の有無を観察し、分散性の評価を
する。 3.引張り強さ:銅張積層板の銅箔をエッチングして、
10×100mmに切断後テンシロンにて引張り強度を
測定した。 4.銅箔引剥し強さ:JIS C 6481による 5.半田耐熱性:50×50mmの積層板を、260℃
の半田浴に3分間フロートさせ、ふくれの有無を測定し
た。 6.絶縁抵抗:JIS C 6481による
(Measurement method) Impregnating property: The presence or absence of voids between glass fibers was confirmed with a prepreg under a stereoscopic microscope. 2. Formability: The copper foil of the copper-clad laminate is etched, and the presence or absence of precipitation of a curing agent or the like is visually observed to evaluate the dispersibility. 3. Tensile strength: Etching copper foil of copper clad laminate,
After cutting to 10 × 100 mm, the tensile strength was measured with Tensilon. 4. 4. Copper foil peel strength: according to JIS C6481 Solder heat resistance: A laminate of 50 × 50 mm is subjected to 260 ° C.
Was floated in a solder bath for 3 minutes, and the presence or absence of blisters was measured. 6. Insulation resistance: According to JIS C6481

【0028】なお、製造コストについては、実施例の方
法は溶剤を使用しないので、実施例では得られた積層板
は比較例3で得られたものに比べ30〜40%程度低コ
スト化することができた。また、比較例2については、
100℃で樹脂を溶かす工程で樹脂の硬化特性の経時変
化が著しく、また、設備への樹脂付着物が硬化して清掃
が困難となった。
As for the manufacturing cost, the method of the embodiment does not use a solvent, so that the laminated board obtained in the embodiment is reduced in cost by about 30 to 40% as compared with that obtained in the comparative example 3. Was completed. Moreover, about the comparative example 2,
In the step of melting the resin at 100 ° C., the change over time in the curing characteristics of the resin was remarkable, and the resin adhered to the equipment hardened, making cleaning difficult.

【0029】[0029]

【発明の効果】本発明は、熱硬化性樹脂及び硬化剤を必
須成分とする混合物に媒体攪拌式ミルで機械的エネルギ
ーを与えてメカノケミカルな反応を起こさせるとともに
粉砕・分散・混合して得た粉末状熱硬化性樹脂組成物を
使用して、好ましくはさらに平均粒径0.01〜1μm
の微粉末添加剤を配合した粉末状樹脂組成物を使用して
プリプレグ及び積層板を製造するので、各成分の均一な
混合や基材への含浸性が優れ、有機溶剤を使用しないに
もかかわらず、電気特性、耐熱性等品質の良好な積層板
を安定して得ることができる。そして有機溶剤を使用し
ないので、大気汚染が無く、省資源化することができ
る。品質上も安定で良好な積層板を得ることができる。
そして、低コスト化の点で優れており、工業的な積層板
の製造方法として好適である。
According to the present invention, a mixture containing a thermosetting resin and a curing agent as essential components is given mechanical energy by a medium stirring mill to cause a mechanochemical reaction, and is also obtained by pulverizing, dispersing and mixing. Using a powdered thermosetting resin composition, preferably further having an average particle size of 0.01 to 1 μm
Since prepregs and laminates are manufactured using a powdery resin composition blended with a fine powder additive, uniform mixing of each component and excellent impregnation into a substrate are achieved, and even though an organic solvent is not used. In addition, a laminate having good quality such as electric characteristics and heat resistance can be stably obtained. Since no organic solvent is used, there is no air pollution and resources can be saved. It is possible to obtain a good and stable laminate in terms of quality.
It is excellent in terms of cost reduction, and is suitable as an industrial method for manufacturing a laminate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 101:10 701:10 B29L 9:00 Fターム(参考) 4F072 AA04 AA07 AB09 AD13 AD23 AD37 AD45 AE01 AE02 AF03 AF04 AF06 AG03 AH05 AH22 AH24 AJ04 AJ15 AK05 AL13 4F205 AA36 AA39 AB03 AB11 AB16 AC04 AD04 AD08 AD16 AG03 AH36 HA08 HA14 HA25 HA33 HA35 HA47 HB02 HC05 HC16 HE16 HE21 HF01 HF02 HF23 HF24 HK03 HK04 HK16 HM04 HM12 HT03 HT08 HT13 HT27 HW05 HW41 4J002 AA021 CC031 CC042 CD001 CD121 CF001 CM041 DE077 DE147 DE237 DG047 DJ007 DJ017 DJ037 DJ047 EL136 EN006 EN056 ET006 EU116 FD017 FD142 FD146 GF00 GQ00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B29K 101: 10 701: 10 B29L 9:00 F term (Reference) 4F072 AA04 AA07 AB09 AD13 AD23 AD37 AD45 AD45 AE01 AE02 AF03 AF04 AF06 AG03 AH05 AH22 AH24 AJ04 AJ15 AK05 AL13 4F205 AA36 AA39 AB03 AB11 AB16 AC04 AD04 AD08 AD16 AG03 AH36 HA08 HA14 HA25 HA33 HA35 HA47 HB02 HC05 HC16 HE16 HE21 HF01 HF02 HF23 HT23 HK23 HT23 HK23 HT04 HK24 4J002 AA021 CC031 CC042 CD001 CD121 CF001 CM041 DE077 DE147 DE237 DG047 DJ007 DJ017 DJ037 DJ047 EL136 EN006 EN056 ET006 EU116 FD017 FD142 FD146 GF146 GQ00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂及び硬化剤を必須成分と
し、これら各成分の混合物に媒体攪拌式ミルでメカノケ
ミカルな反応を起こさせると共に、粉砕・分散・混合し
て得た粉末状熱硬化性樹脂組成物を、シート状繊維基材
の少なくとも表面に存在させることを特徴とするプリプ
レグの製造方法。
A thermosetting resin and a curing agent are essential components, and a mixture of these components is caused to undergo a mechanochemical reaction by a medium stirring mill, and is also powdered thermosetting obtained by pulverization, dispersion and mixing. A method for producing a prepreg, wherein the conductive resin composition is present on at least the surface of a sheet-like fiber base material.
【請求項2】 熱硬化性樹脂及び硬化剤が粉末状である
請求項1記載のプリプレグの製造方法。
2. The method for producing a prepreg according to claim 1, wherein the thermosetting resin and the curing agent are in a powder form.
【請求項3】 熱硬化性樹脂及び硬化剤とともに無機充
填材が配合されている請求項1又は2記載のプリプレグ
の製造方法。
3. The method for producing a prepreg according to claim 1, wherein an inorganic filler is blended together with the thermosetting resin and the curing agent.
【請求項4】 粉末状熱硬化性樹脂組成物に、平均粒径
0.01〜1μmの微粉末添加剤を添加し均一混合して
得た粉末状樹脂組成物を、シート状繊維基材の少なくと
も表面に存在させる請求項1、2又は3記載のプリプレ
グの製造方法。
4. A powdery resin composition obtained by adding and uniformly mixing a fine powder additive having an average particle size of 0.01 to 1 μm to a powdery thermosetting resin composition, The method for producing a prepreg according to claim 1, wherein the prepreg is present at least on a surface.
【請求項5】 媒体攪拌式ミルが乾式連続型の攪拌式微
粉砕機である請求項1、2、3又は4記載のプリプレグ
の製造方法。
5. The method for producing a prepreg according to claim 1, wherein the medium stirring mill is a dry continuous stirring mill.
【請求項6】 請求項1、2、3、4又は5記載のプリ
プレグを、1枚又は複数枚重ね合わせ、加熱加圧するこ
とを特徴とする積層板の製造方法。
6. A method for manufacturing a laminate, comprising laminating one or more prepregs according to claim 1, 2, 3, 4 or 5, and applying heat and pressure.
JP11085503A 1999-03-29 1999-03-29 Manufacture of prepreg and laminated sheet Pending JP2000271930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11085503A JP2000271930A (en) 1999-03-29 1999-03-29 Manufacture of prepreg and laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11085503A JP2000271930A (en) 1999-03-29 1999-03-29 Manufacture of prepreg and laminated sheet

Publications (1)

Publication Number Publication Date
JP2000271930A true JP2000271930A (en) 2000-10-03

Family

ID=13860747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11085503A Pending JP2000271930A (en) 1999-03-29 1999-03-29 Manufacture of prepreg and laminated sheet

Country Status (1)

Country Link
JP (1) JP2000271930A (en)

Similar Documents

Publication Publication Date Title
WO1999027002A1 (en) Processes for the production of prepregs and laminated sheets
JP2000344917A (en) Flame-retardant prepreg and laminate
JP3373164B2 (en) Method for producing prepreg and laminate
JP2000271930A (en) Manufacture of prepreg and laminated sheet
JP2000273218A (en) Production of prepreg and laminate
JP2000345006A (en) Flame retarded prepreg and laminate
JP2000336190A (en) Production of both prepreg and laminate
JPH11302411A (en) Preparation of prepreg and laminate
JP2000280241A (en) Production of prepreg and laminated sheet
JP3582770B2 (en) Manufacturing method of laminated board
JP2000280242A (en) Production of prepreg and laminated sheet
JP2000273222A (en) Flame-retardant prepreg and laminate
JP2000327812A (en) Preparation of prepreg and laminate
JP2000273217A (en) Production of prepreg and laminate
JPH11309808A (en) Metal foil with adhesive, prepreg with metal foil, and laminated plate
JPH11240967A (en) Production of prepreg and laminate
JP2000344916A (en) Flame-retardant prepreg and laminate
JP2000273219A (en) Prepreg and laminate
JP3565737B2 (en) Manufacturing method of laminated board
JPH11246688A (en) Production of prepreg and laminate
JP2000273220A (en) Production of prepreg and laminate
JPH11350359A (en) Production of prepreg and laminate
JP3323122B2 (en) Method for producing prepreg and laminate
JPH11246687A (en) Production of prepreg and laminate
JP2000286551A (en) Manufacture of multilayer printed wiring board