JPH11246687A - Production of prepreg and laminate - Google Patents

Production of prepreg and laminate

Info

Publication number
JPH11246687A
JPH11246687A JP33395298A JP33395298A JPH11246687A JP H11246687 A JPH11246687 A JP H11246687A JP 33395298 A JP33395298 A JP 33395298A JP 33395298 A JP33395298 A JP 33395298A JP H11246687 A JPH11246687 A JP H11246687A
Authority
JP
Japan
Prior art keywords
powdery
resin
prepreg
laminate
powder composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33395298A
Other languages
Japanese (ja)
Inventor
Yasushi Tominaga
康 富永
Takahiro Nakada
高弘 中田
Kazuyuki Najima
和行 名島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP33395298A priority Critical patent/JPH11246687A/en
Publication of JPH11246687A publication Critical patent/JPH11246687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a good laminate not causing air pollution, capable of saving resources and having a stable quality at a low cost. SOLUTION: This method for producing a prepreg comprises giving mechanical energies to powdery components, respectively, consisting essentially of a powdery thermosetting resin and a powdery curing agent, to cause a mechanochemical reaction and subsequently disposing the obtained powdery resin composition at least on the surface of a sheet-like fiber substrate as such or after homogeneously mixed with a finely powdery additive having an average particle diameter of 0.01-1 μm. The method for producing a laminate comprises laminating one or more of the prepregs and subsequently heating and pressing the laminated prepregs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプリプレグ及び積層
板の製造方法、特に電気機器、電子機器、通信機器等に
使用される印刷回路板用として好適なプリプレグ及び積
層板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a prepreg and a laminate, and more particularly to a method for producing a prepreg and a laminate suitable for a printed circuit board used in electric equipment, electronic equipment, communication equipment and the like. .

【0002】[0002]

【従来の技術】プリント回路板については小型化、高機
能化の要求が強くなる反面、価格競争が激しく、特にプ
リント回路板に用いられる多層積層板やガラス布基材エ
ポキシ樹脂積層板、あるいはガラス不織布を中間層基材
としガラス織布を表面層基材とした積層板は、いずれも
価格の低減が大きな課題となっている。従来これらに用
いられるプリプレグや積層板の製造工程では、多量の溶
剤が用いられてきた。これは、樹脂ワニスの調製が容易
で、基材への樹脂の塗布・含浸が均一で容易なためであ
る。この溶剤は塗布後の乾燥工程で蒸発して製品中に存
在せず、多くは、燃焼装置等で処理され、あるいはその
まま大気中に放出されてきた。この為地球温暖化や大気
汚染の一因となることが指摘されるようになってきた。
一方では、溶剤使用量の削減が種々検討されているが、
基材への樹脂塗布・含浸などの製造上の問題からこの削
減は困難であった。
2. Description of the Related Art As for printed circuit boards, demands for miniaturization and high performance are increasing, but price competition is intense. In particular, multilayer laminated boards, glass cloth base epoxy resin laminated boards, or glass used for printed circuit boards are used. The cost reduction of any laminate using nonwoven fabric as the intermediate layer base material and glass woven fabric as the surface layer base material has been a major issue. Conventionally, a large amount of a solvent has been used in a process for producing a prepreg or a laminate used for these. This is because the preparation of the resin varnish is easy, and the application and impregnation of the resin on the base material is uniform and easy. This solvent evaporates in a drying step after coating and does not exist in the product, and most of the solvent is treated by a combustion device or the like or released to the atmosphere as it is. It has been pointed out that this contributes to global warming and air pollution.
On the other hand, various measures have been taken to reduce the amount of solvent used,
This reduction was difficult due to manufacturing problems such as application and impregnation of the resin to the base material.

【0003】溶剤を使用しないプリプレグ及び積層板の
製造のために、低融点の樹脂や液状の樹脂を加熱混合し
て均一化して基材へ塗布する研究が以前からなされてい
るが、均一混合が十分に出来ない、連続生産時加熱温度
の低下による設備への樹脂固結、加熱中の熱硬化性樹脂
のゲル化、これによる設備の掃除等の問題があり、連続
的な生産が困難であった。一方粉末状樹脂をそのまま塗
布する方法も提案されている(特開昭50−14387
0号公報)が、均一な混合及び塗布が困難であり、部分
的な硬化が生じたり、基材への含浸が不十分であるなど
の問題があり、実用化には至っていない。
[0003] For the production of prepregs and laminates that do not use a solvent, studies have been made to heat and mix a low-melting-point resin or a liquid resin so as to be uniform and apply it to a base material. It is not possible to achieve sufficient production, and there are problems such as resin consolidation in equipment due to a decrease in heating temperature during continuous production, gelling of thermosetting resin during heating, and cleaning of equipment due to this. Was. On the other hand, a method of directly applying a powdery resin has also been proposed (Japanese Patent Application Laid-Open No. 50-14387).
No. 0), however, have problems such as difficulty in uniform mixing and coating, partial curing, and insufficient impregnation of the substrate, and have not been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来製造が
困難であった溶剤を使用しない樹脂によるプリプレグ及
びこのプリプレグを使用した積層板を得んとして研究し
た結果、粉末状樹脂及び硬化剤を使用すること、及びそ
の粉体にメカノケミカル反応を施すことにより均一な混
合や基材への含浸性が従来の溶剤を使用した樹脂の場合
と同等となり得るとの知見を得、更にこの知見に基づき
種々研究を進めて本発明を完成するに至ったものであ
る。
DISCLOSURE OF THE INVENTION The present invention has been studied to obtain a prepreg made of a resin that does not use a solvent and a laminate using the prepreg, which has been conventionally difficult to produce. By using it and applying a mechanochemical reaction to the powder, we obtained the knowledge that uniform mixing and impregnation into the substrate could be equivalent to that of a resin using a conventional solvent. Based on various studies, the present invention has been completed.

【0005】[0005]

【課題を解決するための手段】本発明は、粉末状熱硬化
性樹脂及び硬化剤を必須成分とし、これら成分の混合物
に機械的エネルギーを与えてメカノケミカル反応を起こ
させて得られた粉末状樹脂組成物(以下、粉末組成物と
いう)を、シート状繊維基材(以下、基材という)の少
なくとも表面に存在させることを特徴とするプリプレグ
の製造方法、に関するものであり、さらには、このよう
にして得られたプリプレグを、1枚又は複数枚重ね合わ
せ、加熱加圧することを特徴とする積層板又は金属箔張
積層板の製造方法に関するものである。
According to the present invention, there is provided a powdery thermosetting resin and a curing agent which are essential components, and a mixture of these components is given a mechanical energy to cause a mechanochemical reaction to be carried out. A method for producing a prepreg, wherein a resin composition (hereinafter, referred to as a powder composition) is present at least on a surface of a sheet-like fiber substrate (hereinafter, referred to as a substrate). The present invention relates to a method for producing a laminate or a metal foil-clad laminate, comprising laminating one or more prepregs obtained as described above, and applying heat and pressure.

【0006】本発明において、用いられる粉末状熱硬化
性樹脂は、エポキシ樹脂が望ましいが、このほか、ポリ
イミド樹脂、ポリエステル樹脂、フェノール樹脂などを
用いることができる。熱硬化性樹脂がエポキシ樹脂の場
合、硬化剤としては、耐熱性や電気特性の点から、アミ
ン系、特にジシアンジアミドと芳香族アミン、及びノボ
ラック樹脂等が望ましいが、酸無水物、イミダゾール化
合物等も用いることができる。硬化剤は粉末状であるこ
とが好ましいが、配合量が少ない場合(例えば、樹脂に
対して20重量%以下)は液状でもよく、樹脂との混合
物に機械的エネルギーを与えた後に粉末化できれば使用
可能である。また、好ましくは、硬化促進剤を使用す
る。硬化促進剤も粉末状のものが好ましいが、上記と同
様に液状のものも使用可能である。かかる硬化促進剤と
しては、イミダゾール化合物、第3級アミン等を用いる
ことができる。これらの各成分は上記のものに限定され
るものではない。
In the present invention, the powdery thermosetting resin used is preferably an epoxy resin. In addition, a polyimide resin, a polyester resin, a phenol resin and the like can be used. When the thermosetting resin is an epoxy resin, the curing agent is preferably an amine type, particularly dicyandiamide and an aromatic amine, and a novolak resin, in terms of heat resistance and electric characteristics, but acid anhydrides and imidazole compounds are also preferable. Can be used. The curing agent is preferably in the form of a powder, but when the amount is small (for example, 20% by weight or less with respect to the resin), the curing agent may be in a liquid state. It is possible. Preferably, a curing accelerator is used. The curing accelerator is preferably in the form of a powder, but a liquid accelerator can also be used as described above. As such a curing accelerator, an imidazole compound, a tertiary amine, or the like can be used. These components are not limited to those described above.

【0007】これらの粉体の粒径としては、通常100
0μm以下であり、好ましくは0.1〜500μmであ
り、更に好ましくは0.1〜200μmである。これ
は、1000μmを越えると粒子重量に対しての表面積
が小さくなり、熱硬化性樹脂、硬化剤や硬化促進剤等各
成分の互いの接点が少なくなり、均一分散が困難となる
ため、反応の目標比率とは異なった比率で反応したり、
均一な反応が行われないおそれがある。メカノケミカル
反応のためには、硬化剤及び又は硬化促進剤が粉末状の
場合、熱硬化性樹脂の粒径は、硬化剤及び又は硬化促進
剤の粒径に対して5〜15倍が好ましい。これは、この
範囲では熱硬化性樹脂に硬化剤及び又は硬化促進剤が融
合しやすいためである。
The particle size of these powders is usually 100
0 μm or less, preferably 0.1 to 500 μm, more preferably 0.1 to 200 μm. This is because if the particle size exceeds 1000 μm, the surface area with respect to the particle weight becomes small, the number of contact points of each component such as a thermosetting resin, a curing agent and a curing accelerator decreases, and uniform dispersion becomes difficult. It may react at a different ratio than the target ratio,
There is a possibility that a uniform reaction is not performed. For the mechanochemical reaction, when the curing agent and / or the curing accelerator is in a powder form, the particle size of the thermosetting resin is preferably 5 to 15 times the particle size of the curing agent and / or the curing accelerator. This is because the curing agent and / or the curing accelerator are easily fused to the thermosetting resin in this range.

【0008】メカノケミカル反応とは、「固体による固
体の改質で、粉砕、磨砕、摩擦、接触による粒子の表面
活性、結晶形の転移や歪みエネルギーの増大による溶
解、熱分解速度の改質、あるいは機械的強度、磁気特性
になる場合と、表面活性を他の物質との反応、付着に用
いる場合とがある。工学的には機械的衝撃エネルギーが
利用され、摩擦、接触による電荷、あるいは磁気による
付着、核物質への改質剤の埋め込み、溶融による皮膜の
形成等、物質的改質のみならず化学的改質も行われ
る。」(「実用表面改質技術総覧」科学技術研究協会、
1993.3.25発行、p785)本発明は、メカノケミカル反応
による化学的改質を利用したものであるが、固体と液体
が機械的エネルギーにより化学的に改質される場合をも
含むものである。
[0008] The mechanochemical reaction is a "modification of solids by solids, surface modification of particles by pulverization, grinding, friction, contact, dissolution by transformation of crystal form and increase in strain energy, modification of rate of thermal decomposition". Or mechanical strength and magnetic properties, or surface activity is used to react with or adhere to other substances.Engineering uses mechanical impact energy to cause friction, electric charge due to contact, or Chemical modification as well as physical modification such as adhesion by magnetism, embedding of modifier in nuclear material, formation of film by melting, etc. are performed. " ,
The present invention utilizes chemical modification by a mechanochemical reaction, but also includes a case where solids and liquids are chemically modified by mechanical energy.

【0009】メカノケミカル反応のために機械的エネル
ギーを与える粉体処理方法としては、ライカイ機、ヘン
シェルミキサー、プラネタリーミキサー、ボールミル、
ジェットミル、オングミル、多段石臼型混練押出機等に
よる混合乃至混練がある。この中でオングミル(ホソカ
ワミクロン(株)製 メカノフュージョン方式等)、多段
石臼型混練押出機((株)KCK製:メカノケミカルディ
スパージョン方式等)、ジェットミル((株)奈良機械製
作所製:ハイブリタイザー方式等)による混合乃至混練
が好ましく、特に、メカノケミカル反応を効率よく行う
ためには、多段石臼型混練押出機((株)KCK製:メカ
ノケミカルディスパージョン方式)が好ましい。
[0009] Powder processing methods for applying mechanical energy for the mechanochemical reaction include Raikai machines, Henschel mixers, planetary mixers, ball mills,
There is mixing or kneading by a jet mill, an ong mill, a multi-stage mill-type kneading extruder, or the like. Among these, Ongmill (Mechanofusion method manufactured by Hosokawa Micron Corporation), multi-stage mill-type kneading extruder (Made by KCK: Mechanochemical dispersion method, etc.), Jet mill (Nara Machinery Co., Ltd .: Hybridizer) And the like, and mixing or kneading is preferred. In order to efficiently carry out the mechanochemical reaction, a multi-stage mill-type kneading extruder (manufactured by KCK: mechanochemical dispersion method) is preferred.

【0010】メカノケミカル反応を行うためには、熱硬
化性樹脂の軟化点は、好ましくは50℃以上、より好ま
しくは70℃以上、さらに好ましくは80℃以上であ
る。これは、上記処理時に粉体間あるいは粉体と処理装
置との間で摩擦、粉砕、融合により20〜50℃程度の
熱が発生するため、この影響を最小限にとどめるためで
ある。一方、軟化点が高すぎても有効なメカノケミカル
反応が行われにくく、かつ、後の工程である樹脂組成物
の基材への含浸が困難となるので、150℃以下の軟化
点が好ましい。粉末状熱硬化性樹脂及び粉末状硬化剤等
の各成分は、メカノケミカル反応のための粉体処理の前
に、予め、上記粒径まで粉砕した後ヘンシェルミキサー
等にてできるだけ均一に混合することが好ましい。
[0010] In order to carry out the mechanochemical reaction, the softening point of the thermosetting resin is preferably 50 ° C or higher, more preferably 70 ° C or higher, and further preferably 80 ° C or higher. This is because heat of about 20 to 50 ° C. is generated due to friction, pulverization, and fusion between the powders or between the powder and the processing apparatus during the above-mentioned processing, so that this influence is minimized. On the other hand, if the softening point is too high, an effective mechanochemical reaction is unlikely to be performed, and it is difficult to impregnate the base material with the resin composition in a later step. Before the powder treatment for the mechanochemical reaction, each component such as the powdery thermosetting resin and the powdery curing agent should be ground to the above particle size in advance and mixed as uniformly as possible with a Henschel mixer. Is preferred.

【0011】本発明に用いられる熱硬化性樹脂組成物に
は必要により無機充填材を添加することができる。無機
充填材を加えると耐トラッキング性、耐熱性、熱膨張率
の低下等の特性を付与することが出来る。かかる無機充
填材としては、水酸化アルミニウム、水酸化マグネシウ
ム、炭酸カルシウム、タルク、ウォラストナイト、アル
ミナ、シリカ、未焼成クレー、焼成クレー、硫酸バリウ
ム等がある。これらの粒径も前記と同様である。
The thermosetting resin composition used in the present invention may optionally contain an inorganic filler. When an inorganic filler is added, characteristics such as tracking resistance, heat resistance, and a decrease in coefficient of thermal expansion can be imparted. Such inorganic fillers include aluminum hydroxide, magnesium hydroxide, calcium carbonate, talc, wollastonite, alumina, silica, unfired clay, fired clay, barium sulfate and the like. These particle sizes are the same as above.

【0012】粉体処理によりメカノケミカル反応された
粉末組成物の粒径は、通常1000μm以下であり、好
ましくは0.1〜500μmであり、更に好ましくは
0.1〜200μmである。かかる粒径は、粉末組成物
の散布ないし塗布時の流動性、及び加熱溶融時の流れや
表面の滑らかさを改良すること、基材への樹脂の含浸性
を改良すること、基材中での樹脂組成物の分布を安定化
させること等のために適している。
The particle size of the powder composition subjected to the mechanochemical reaction by the powder treatment is usually 1000 μm or less, preferably 0.1 to 500 μm, more preferably 0.1 to 200 μm. Such a particle size is to improve the fluidity of the powder composition at the time of spraying or application, and to improve the flow and surface smoothness at the time of heating and melting, to improve the resin impregnation property of the base material, It is suitable for stabilizing the distribution of the resin composition.

【0013】以上のようにして得られた粉末組成物は、
散布ないし塗布等により基材の少なくとも表面に存在さ
せる。この粉末組成物の量は、基材の繊維材質、性状、
重量(単位面積当たり)により異なるが、通常、基材の
重量の40〜60%程度である。粉末組成物を基材に存
在させる方法は、基材の上面から振りかける方法、静電
塗装法、流動浸漬法、スプレーによる吹き付け法、ナイ
フコーター、コンマコーター等の各種コーターによる塗
布法等があり、特に限定されない。基材としては、ガラ
スクロス、ガラス不繊布等のガラス繊維基材の他、紙、
合成繊維等からなる織布や不織布、金属繊維、カーボン
繊維、鉱物繊維等からなる織布、不織布、マット類等が
挙げられ、これらの基材の原料繊維は単独又は混合して
使用してもよい。
The powder composition obtained as described above is
It is made to exist on at least the surface of the substrate by spraying or coating. The amount of this powder composition depends on the fiber material of the base material, properties,
Although it depends on the weight (per unit area), it is usually about 40 to 60% of the weight of the substrate. The method of causing the powder composition to be present on the substrate includes a method of sprinkling from the upper surface of the substrate, an electrostatic coating method, a fluid immersion method, a spraying method with a spray, a knife coater, a coating method using various coaters such as a comma coater, and the like. There is no particular limitation. As the substrate, other than glass cloth, glass fiber substrate such as glass non-woven cloth, paper,
Woven fabrics and nonwoven fabrics made of synthetic fibers and the like, metal fibers, carbon fibers, woven fabrics made of mineral fibers and the like, nonwoven fabrics, mats and the like, and the raw material fibers of these substrates may be used alone or in combination. Good.

【0014】前記基材に粉末組成物を基材の片面に粉末
組成物を存在せしめてもよいが、好ましくは、反り等の
面から表裏のバランスをとるために前記基材の両面に粉
末組成物を存在せしめるのが好ましい。この操作は、通
常、基材の片面ずつ行う。即ち、一方の面に存在させた
後加温して粉末組成物を基材に付着させ、次いで、他方
の面にも同様の操作を行う。この加温温度は、粉末組成
物の軟化点にもよるが、前記の理由により、粉末組成物
が付着した面の反対面(下面)では、通常、90〜17
0℃であり、好ましくは110〜150℃である。ま
た、付着面では、通常、80〜150℃であり、好まし
くは100〜140℃である。樹脂組成物を更に十分に
含浸させ、必要により樹脂を半硬化の状態にするため
に、樹脂含浸基材を加熱してもよい。この加熱温度は、
通常、100〜200℃であり、好ましくは120〜1
90℃であるが、樹脂組成物の流動性や硬化性より異な
る場合がある。
The powder composition may be present on the base material, and the powder composition may be present on one side of the base material. Preferably, the powder composition is provided on both surfaces of the base material in order to balance the front and back from the aspect of warpage or the like. It is preferred that the substance be present. This operation is usually performed on each side of the substrate. That is, after being made to exist on one surface, the powder composition is heated and adhered to the substrate, and then the same operation is performed on the other surface. Although the heating temperature depends on the softening point of the powder composition, it is usually 90 to 17 on the surface (lower surface) opposite to the surface to which the powder composition is attached for the above-described reason.
It is 0 degreeC, Preferably it is 110-150 degreeC. In addition, on the adhesion surface, the temperature is usually 80 to 150 ° C, preferably 100 to 140 ° C. The resin-impregnated base material may be heated in order to further sufficiently impregnate the resin composition and, if necessary, bring the resin into a semi-cured state. This heating temperature is
Usually, it is 100-200 ° C, preferably 120-1.
Although it is 90 ° C., it may be different depending on the fluidity and curability of the resin composition.

【0015】但し、基材の厚みが100μm以下(ガラ
ス基材では100g/m2 以下)と薄い場合、あるいは
粉末組成物が容易に均一に溶融する場合、片面にのみに
粉末組成物を存在せしめる方法でもよい。この場合も、
通常、その後に加温及び又は加熱する工程を設ける。
However, when the thickness of the substrate is as thin as 100 μm or less (100 g / m 2 or less for a glass substrate) or when the powder composition is easily and uniformly melted, the powder composition is present only on one side. It may be a method. Again,
Usually, a step of heating and / or heating is provided thereafter.

【0016】以上のようにして得られたプリプレグは、
この1枚又は複数枚を、必要により銅箔等の金属箔を重
ね合わせ、通常の方法により加熱加圧して積層板又は金
属箔張積層板に成形される。本発明によるプリプレグ及
び積層板の製造方法は、得られたプリプレグあるいは積
層板の性能を、従来のものと実質的に変えることなく、
粉末組成物の使用による製造が容易となり、無溶剤によ
る省資源化、省エネルギー化及び大気汚染の低減化が図
られ、さらに低コスト化をも達成することができる。
The prepreg obtained as described above is
One or more of the sheets are laminated with a metal foil such as a copper foil as necessary, and heated and pressed by a usual method to form a laminate or a metal foil-clad laminate. The method for producing a prepreg and a laminate according to the present invention, the performance of the obtained prepreg or laminate, without substantially changing the conventional one,
The production by using the powder composition is facilitated, resource saving by solvent-free, energy saving and reduction of air pollution are achieved, and further cost reduction can be achieved.

【0017】本発明は、粉末素材(樹脂、硬化剤等)の
使用とこれらのメカノケミカル反応を応用したものであ
り、かかる技術により、各成分を均一に分散し結合さ
せ、得られた粉末組成物を基材に存在させ含浸する際
に、均一な分布、塗布面の平滑性を得ることができ、こ
れにより基材への均一な含浸を達成することができたも
のである。
The present invention is an application of the use of powder materials (resins, hardeners, etc.) and their mechanochemical reactions. By this technique, the components are uniformly dispersed and combined, and the resulting powder composition is obtained. When a product is present on a substrate and impregnated, uniform distribution and smoothness of a coated surface can be obtained, whereby uniform impregnation of the substrate can be achieved.

【0018】以下、本発明の方法に関し、代表的な例を
各工程毎に図面に基づいて順次説明する。図1は、本発
明方法の工程の一例を示す概略図である。
Hereinafter, with respect to the method of the present invention, typical examples will be sequentially described for each step with reference to the drawings. FIG. 1 is a schematic diagram showing an example of the steps of the method of the present invention.

【0019】(粉末組成物混合工程)粉末状熱硬化性樹
脂、硬化剤、必要に応じて硬化促進剤等からなり、予め
混合された粉末組成物をメカノケミカル反応を起こさせ
つつ均一に混合し、次いで、定量供給装置4に投入す
る。
(Powder Composition Mixing Step) A powder composition comprising a powdery thermosetting resin, a curing agent, and, if necessary, a curing accelerator is mixed uniformly while causing a mechanochemical reaction to occur. Then, it is charged into the fixed quantity supply device 4.

【0020】(粉末組成物塗布工程)メカノケミカル反
応処理された粉末組成物3の所定量を、定量供給装置4
からコーター5によりあるいは篩いを通して上面側より
基材1に塗布する。
(Powder Composition Coating Step) A predetermined amount of the powder composition 3 subjected to the mechanochemical reaction treatment is supplied to a quantitative supply device 4.
From the upper surface side by a coater 5 or through a sieve.

【0021】(加温工程)粉末組成物が塗布された基材
を熱風加熱機、パネルヒーター等の加熱機6にて加温す
ることにより、粉末組成物を溶融し、基材に十分に付着
させ、後の加熱工程とともに樹脂組成物付着基材中の空
気が容易に逃げるようにする工程である。粉末組成物を
基材の上面に存在させ、下面側をより高温に加温するか
又は下面側のみを加温すると、溶融樹脂と基材との温度
差によるドライビングフォースによる含浸性を向上させ
るができる。
(Heating Step) The substrate coated with the powder composition is heated by a heater 6 such as a hot air heater or a panel heater to melt the powder composition and adhere sufficiently to the substrate. This is a step of allowing air in the resin composition-adhered base material to easily escape together with the subsequent heating step. When the powder composition is present on the upper surface of the substrate and the lower surface is heated to a higher temperature or only the lower surface is heated, the impregnating property by the driving force due to the temperature difference between the molten resin and the substrate is improved. it can.

【0022】(加熱工程)必要により、粉末組成物が塗
布ないし付着し、加温された基材を加熱装置7により加
熱して、基材のより内部まで樹脂を含浸させる。加熱方
式は従来より実施されている方式を用いればよく、特に
限定されるものではない。
(Heating Step) If necessary, the powder composition is applied or adhered, and the heated substrate is heated by the heating device 7 to impregnate the resin further inside the substrate. The heating method may be a method conventionally used, and is not particularly limited.

【0023】(樹脂量調整工程)粉末組成物が基材両面
にバランスよく付着し、成形後の積層板の反り等を防止
するために、前記加温又は加熱工程後に粉末組成物を基
材の反対面に付着させる樹脂量調整工程を加える。通常
は、反対面だけでよいが、基材の性状等によっては両面
に付着させる場合もある。従って、この工程のために、
通常は、片面に粉末組成物が付着された基材8は反転さ
れ、粉末組成物9の所定量を定量供給装置10からコー
ター11によりあるいは篩いを通して片面樹脂付着基材
8に塗布し、次いで、熱風加熱機、パネルヒーター等の
加熱機12により加温を行う。この加温は省略すること
もできる。なお、静電塗装法、流動槽法等を使用した場
合は反転しなくても粉末組成物を付着することは可能で
ある。
(Resin Amount Adjusting Step) In order to prevent the powder composition from adhering to both sides of the base material in a well-balanced manner and to prevent warpage of the laminated board after molding, the powder composition is mixed with the base material after the heating or heating step. A step of adjusting the amount of resin adhered to the opposite surface is added. Usually, only the opposite surface is sufficient, but depending on the properties of the base material, it may be attached to both surfaces. Therefore, for this step,
Normally, the base material 8 having the powder composition adhered to one side is inverted, and a predetermined amount of the powder composition 9 is applied to the single-side resin-attached base material 8 from the quantitative supply device 10 by the coater 11 or through a sieve, Heating is performed by a heater 12 such as a hot air heater or a panel heater. This heating can be omitted. When an electrostatic coating method, a fluidized-bed method, or the like is used, the powder composition can be adhered without inversion.

【0024】(加熱工程)樹脂量調整工程がある場合、
次の工程として加熱工程を設けることが好ましい。この
工程においては樹脂組成物を加熱装置13により加熱す
ることにより、樹脂組成物をより十分に基材の内部に含
浸させ、必要により樹脂を半硬化の状態にすることによ
り、プリプレグを得ることができる。加熱方式は、前記
の加熱工程同様、従来より実施されている方式を用いれ
ばよい。
(Heating Step) When there is a resin amount adjusting step,
It is preferable to provide a heating step as the next step. In this step, the prepreg can be obtained by heating the resin composition with the heating device 13 so that the resin composition is more sufficiently impregnated into the inside of the base material and, if necessary, the resin is semi-cured. it can. As the heating method, a method conventionally used may be used as in the heating step.

【0025】(裁断工程)積層板を成形するために、プ
リプレグ14は裁断機15により必要な長さに裁断され
る。プリプレグを連続成形に供する場合はこの裁断工程
は省略される。
(Cutting Step) In order to form a laminated board, the prepreg 14 is cut to a required length by a cutting machine 15. When the prepreg is subjected to continuous molding, this cutting step is omitted.

【0026】なお、図1では、基材は水平方向に移動す
る方式であり、使用される装置全体は横型であるが、基
材を上下方向に移動して、粉末組成物を静電スプレー法
や予熱されたシート上基材に吹き付ける方法等を採用す
ることも可能である。この場合、縦型装置が採用され
る。
In FIG. 1, the substrate is of a type in which the substrate is moved in a horizontal direction, and the whole apparatus used is of a horizontal type. It is also possible to adopt a method of spraying a pre-heated sheet on a base material. In this case, a vertical device is employed.

【0027】[0027]

【実施例】次に、本発明の実施例を比較例とともに具体
的に説明する。
Next, examples of the present invention will be specifically described together with comparative examples.

【0028】〔実施例1〕平均粒径150μmの粉末状
のエポキシ樹脂(油化シェルエポキシ(株)製臭素化エポ
キシ樹脂Ep5048,エポキシ当量675)100重
量部、平均粒子径15μmの粉末状の硬化剤(ジシアン
ジアミド)5重量部、及び平均粒径15μmの粉末状の
硬化促進剤(2−エチル−4−メチルイミダゾール)1
重量部を予備混合し、次いで、多段石臼型混練押し出し
機((株)KCK製 メカノケミカルディスパージョンシ
ステム KCK−80X2−V(6))を用い、回転数
200rpmにて1分間処理し、平均粒径150μmの
粉末組成物を得た。この粉末組成物を100g/m2
ガラスクロスの上面ににナイフコーターで樹脂重量が5
0g/m2 になるように均一に塗布した。その後、下面
側より150℃のパネルヒーター120℃により約1分
間加温した。次いで、ガラスクロスを上下反対にし、も
う一方の面にナイフコーターで樹脂重量が50g/m2
になるように均一に塗布し、170℃の熱風加熱機で1
分間加熱してプリプレグを得た。このプリプレグを2枚
重ね合わせ、さらにその上下に厚さ18μmの銅箔を重
ね合わせ、温度165℃、圧力60kg/cm2 で90
分間加熱加圧成形して、厚さ0.22mmの銅張積層板
を作製した。
Example 1 100 parts by weight of a powdery epoxy resin having an average particle diameter of 150 μm (brominated epoxy resin Ep5048, manufactured by Yuka Shell Epoxy Co., Ltd., epoxy equivalent: 675), and curing of a powder having an average particle diameter of 15 μm. 5 parts by weight of an agent (dicyandiamide) and a powdery curing accelerator (2-ethyl-4-methylimidazole) having an average particle size of 15 μm 1
Parts by weight and then processed using a multi-stage mill-type kneading extruder (Mechano-Chemical Dispersion System KCK-80X2-V (6) manufactured by KCK Co., Ltd.) at a rotation speed of 200 rpm for 1 minute. A powder composition having a diameter of 150 μm was obtained. This powder composition was coated on the upper surface of a 100 g / m 2 glass cloth with a knife coater so that the resin weight was 5%.
The coating was uniformly performed so as to be 0 g / m 2 . Thereafter, the panel was heated from the lower surface side by a panel heater at 150 ° C. and 120 ° C. for about 1 minute. Next, the glass cloth was turned upside down, and the resin weight was 50 g / m 2 on the other side using a knife coater.
And apply with a hot air heater at 170 ° C.
Heated for a minute to obtain a prepreg. The prepreg overlay two further superimposed copper foil having a thickness of 18μm on the upper and lower, temperature 165 ° C., at a pressure 60 kg / cm 2 90
The molded body was heated and pressed for one minute to produce a copper-clad laminate having a thickness of 0.22 mm.

【0029】〔実施例2〕平均粒径150μmの粉末状
のエポキシ樹脂(前記Ep5048)100重量部、平
均粒子径15μmの粉末状の硬化剤(ジシアンジアミ
ド)5重量部、及び平均粒径15μmの粉末状の硬化促
進剤(2−エチル−4−メチルイミダゾール)1重量部
を予備混合し、次いで、メカノフュージョン機(ホソカ
ワミクロン(株)製AM−15F)を用い、回転数200
0rpmにて5分間処理し、平均粒径150μmの粉末
組成物を得た。この粉末組成物を100g/m2 のガラ
スクロスの片面上に60メッシュ篩いを通して樹脂重量
が50g/m2 になるように均一に振りまいた。その
後、170℃の熱風加熱機でガラスクロスの両面から3
0秒加温し、次いで、ガラスクロスを上下反対にし、も
う一方の面に60メッシュ篩いを通して樹脂重量が50
g/m2 になるように均一に振りまき、170℃の熱風
加熱機で3分間加熱してプリプレグを得た。このプリプ
レグを用い、実施例1と同様にして、厚さ0.22mm
の銅張積層板を作製した。
Example 2 100 parts by weight of a powdery epoxy resin (Ep5048) having an average particle size of 150 μm, 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle size of 15 μm, and a powder having an average particle size of 15 μm 1 part by weight of a curing accelerator (2-ethyl-4-methylimidazole) in the form of a mixture was preliminarily mixed, and then a mechanofusion machine (AM-15F manufactured by Hosokawa Micron Corp.) was used.
The mixture was treated at 0 rpm for 5 minutes to obtain a powder composition having an average particle size of 150 μm. This powder composition was passed through a 60-mesh sieve on one side of a 100 g / m 2 glass cloth and uniformly sprinkled so that the resin weight became 50 g / m 2 . Then, the glass cloth was heated from both sides with 170 ° C hot air heater.
Heat for 0 seconds, then turn the glass cloth upside down and pass the other side through a 60 mesh sieve to reduce the resin weight to 50
g / m 2 , and uniformly heated to 170 ° C. with a hot air heater for 3 minutes to obtain a prepreg. Using this prepreg, a thickness of 0.22 mm was obtained in the same manner as in Example 1.
Was produced.

【0030】〔実施例3〕平均粒径150μmの粉末状
のエポキシ樹脂(前記Ep5048)100重量部、平
均粒子径15μmの粉末状の硬化剤(ジシアンジアミ
ド)5重量部、平均粒径15μmの粉末状の硬化促進剤
(2−エチル−4−メチルイミダゾール)1重量部の比
率で予備混合したものをヘンシェルミキサーで回転数5
00rpm、5分間処理して粉末組成物を得た。この粉
末組成物を用い実施例2と同様にしてプリプレグを得
た。このプリプレグを2枚重ね合わせ、さらにその上下
に厚さ18μmの銅箔を重ね合わせ、温度165℃、圧
力60kg/cm2 で90分間加熱加圧成形して、厚さ
0.22mmの銅張積層板を作製した。
Example 3 100 parts by weight of a powdery epoxy resin having an average particle diameter of 150 μm (the above-mentioned Ep5048), 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle diameter of 15 μm, and a powdery form having an average particle diameter of 15 μm Pre-mixed at a ratio of 1 part by weight of a curing accelerator (2-ethyl-4-methylimidazole) of the formula (5) with a Henschel mixer at a rotational speed of 5 parts.
The mixture was treated at 00 rpm for 5 minutes to obtain a powder composition. Using this powder composition, a prepreg was obtained in the same manner as in Example 2. Two prepregs are laminated, and a copper foil having a thickness of 18 μm is laminated on the upper and lower sides of the prepreg, and is heated and pressed at a temperature of 165 ° C. and a pressure of 60 kg / cm 2 for 90 minutes to form a copper-clad laminate having a thickness of 0.22 mm. A plate was made.

【0031】〔実施例4〕平均粒子径15μmの粉末状
の硬化剤(ジシアンジアミド)5重量部、平均粒径15
μmの粉末状の硬化促進剤(2−エチル−4−メチルイ
ミダゾール)1重量部の比率で混合したものをメカノフ
ュージョン機(ホソカワミクロン(株)製AM−15F)
で回転数2000rpm、2分間処理したのち、平均粒
径150μmの粉末状のエポキシ樹脂(前記Ep504
8)100重量部を混合し、さらに前記メカノフュージ
ョン機で回転数2000rpm、3分間処理して粉末組
成物を得た。この粉末組成物を用いて実施例2と同様に
してプリプレグを得た。このプリプレグを2枚重ね合わ
せ、さらにその上下に厚さ18μmの銅箔を重ね合わ
せ、温度165℃、圧力60kg/cm2 で90分間加
熱加圧成形して、厚さ0.22mmの銅張積層板を作製
した。
Example 4 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle diameter of 15 μm, and an average particle diameter of 15
A mixture of 1 μm of a μm powdery curing accelerator (2-ethyl-4-methylimidazole) mixed at a ratio of 1 part by weight was used as a mechanofusion machine (AM-15F, manufactured by Hosokawa Micron Corporation).
2,000 rpm for 2 minutes, and then a powdery epoxy resin having an average particle size of 150 μm (the Ep504
8) 100 parts by weight were mixed, and the mixture was further treated with the mechanofusion machine at a rotation speed of 2000 rpm for 3 minutes to obtain a powder composition. A prepreg was obtained in the same manner as in Example 2 using this powder composition. Two prepregs are laminated, and a copper foil having a thickness of 18 μm is laminated on the upper and lower sides of the prepreg, and is heated and pressed at a temperature of 165 ° C. and a pressure of 60 kg / cm 2 for 90 minutes to form a copper-clad laminate having a thickness of 0.22 mm. A plate was made.

【0032】〔実施例5〕実施例1で得た粉末組成物を
210g/m2 のガラスクロスの片面上にナイフコータ
ーで樹脂重量が90g/m2 になるように均一に塗布し
た。その後、下面側より120℃の熱風加熱機により約
1分間加温した。次いで、ガラスクロスを上下反対に
し、もう一方の面にナイフコーターで樹脂重量が90g
/m2 になるように均一に塗布し、170℃の熱風加熱
機で1分間加熱してプリプレグを得た。このプリプレグ
を2枚重ね合わせ、さらにその上下に厚さ18μmの銅
箔を重ね合わせ、温度165℃、圧力60kg/cm2
で90分間加熱加圧成形して、厚さ0.42mmの銅張
積層板を作製した。
Example 5 The powder composition obtained in Example 1 was uniformly applied to one side of a glass cloth of 210 g / m 2 using a knife coater so that the resin weight became 90 g / m 2 . Thereafter, the mixture was heated from the lower surface side by a hot air heater at 120 ° C. for about 1 minute. Next, turn the glass cloth upside down, and weigh 90 g of resin on the other side with a knife coater.
/ M 2, and heated for 1 minute with a hot air heater at 170 ° C. to obtain a prepreg. Two prepregs were superimposed, and a copper foil having a thickness of 18 μm was superimposed on top and bottom of the prepreg, at a temperature of 165 ° C. and a pressure of 60 kg / cm 2.
For 90 minutes to produce a copper-clad laminate having a thickness of 0.42 mm.

【0033】〔実施例6〕平均粒径150μmの粉末状
のエポキシ樹脂(油化シェル製臭素化エポキシ樹脂Ep
5048,エポキシ当量675)100重量部、平均粒
子径30μmの粉末状のフェノールノボラック樹脂(住
友デュレズ製フェノールノボラックPR−51470、
フェノール性水酸基当量105)16重量部、平均粒子
径10μmの粉末状のトリフェニルホスフィン1重量部
の割合で予備混合し、次いで、多段石臼型混練押し出し
機((株)KCK製 メカノケミカルディスパージョンシ
ステム KCK−80X2−V(6))を用い、回転数
200rpmにて1分間処理し、平均粒径150μmの
粉末組成物を得た。この粉末組成物を100g/m2
ガラスクロスの上面ににナイフコーターで樹脂重量が5
0g/m2 になるように均一に塗布した。その後、下面
側より150℃のパネルヒーター120℃により約1分
間加温した。次いで、ガラスクロスを上下反対にし、も
う一方の面にナイフコーターで樹脂重量が50g/m2
になるように均一に塗布し、170℃の熱風加熱機で1
分間加熱してプリプレグを得た。このプリプレグを2枚
重ね合わせ、さらにその上下に厚さ18μmの銅箔を重
ね合わせ、温度175℃、圧力20kg/cm2 で60
分間加熱加圧成形して、厚さ0.22mmの銅張積層板
を作製した。
Example 6 A powdery epoxy resin having an average particle size of 150 μm (brominated epoxy resin Ep manufactured by Yuka Shell Co., Ltd.)
5048, epoxy equivalent 675) 100 parts by weight, powdered phenol novolak resin having an average particle diameter of 30 μm (Phenol Novolak PR-51470 manufactured by Sumitomo Durez, Inc.)
Phenolic hydroxyl equivalent 105) 16 parts by weight, premixed at a ratio of 1 part by weight of powdery triphenylphosphine having an average particle diameter of 10 μm, and then a multi-stage mill-type kneading extruder (Mechanochemical dispersion system manufactured by KCK Co., Ltd.) Using KCK-80X2-V (6)) for 1 minute at a rotation speed of 200 rpm, a powder composition having an average particle size of 150 μm was obtained. This powder composition was coated on the upper surface of a 100 g / m 2 glass cloth with a knife coater so that the resin weight was 5%.
The coating was uniformly performed so as to be 0 g / m 2 . Thereafter, the panel was heated from the lower surface side by a panel heater at 150 ° C. and 120 ° C. for about 1 minute. Next, the glass cloth was turned upside down, and the resin weight was 50 g / m 2 on the other side using a knife coater.
And apply with a hot air heater at 170 ° C.
After heating for a minute, a prepreg was obtained. Two prepregs were superimposed, and a copper foil having a thickness of 18 μm was further superimposed on the two prepregs at a temperature of 175 ° C. and a pressure of 20 kg / cm 2 .
The molded body was heated and pressed for one minute to produce a copper-clad laminate having a thickness of 0.22 mm.

【0034】〔比較例1〕平均粒径150μmの粉末状
のエポキシ樹脂(油化シェル製臭素化エポキシ樹脂Ep
5048,エポキシ当量675)100重量部、平均粒
子径15μmの粉末状の硬化剤(ジシアンジアミド)5
重量部、及び平均粒径15μmの粉末状の硬化促進剤
(2−エチル−4−メチルイミダゾール)1重量部を錨
羽ね型の撹拌機で回転数70rpmにて1分間撹拌混合
処理して粉末組成物を得た。この粉末組成物を用い実施
例1と同様にしてプリプレグを得、次いで、このプリプ
レグを用い厚さ0.22mmの銅張積層板を作製した。
Comparative Example 1 A powdery epoxy resin having an average particle size of 150 μm (brominated epoxy resin Ep manufactured by Yuka Shell)
5048, epoxy equivalent 675) 100 parts by weight, powdery curing agent (dicyandiamide) 5 having an average particle size of 15 μm 5
Parts by weight and 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) having an average particle size of 15 μm are mixed by stirring with an anchor-type stirrer at a rotation speed of 70 rpm for 1 minute. A composition was obtained. Using this powder composition, a prepreg was obtained in the same manner as in Example 1, and then a copper-clad laminate having a thickness of 0.22 mm was produced using this prepreg.

【0035】〔比較例2〕平均粒径150μmの粉末状
のエポキシ樹脂(油化シェル製臭素化エポキシEp50
48)100重量部、平均粒子径15μmの粉末状の硬
化剤(ジシアンジアミド)5重量部、平均粒径15μm
の粉末状の硬化促進剤(2−エチル−4−メチルイミダ
ゾール)1重量部の比率で混合し後、この粉末組成物を
100℃で加温して溶融した後、樹脂固形分で100g
/m2 になるように100g/m2のガラスクロスを浸
けて含浸させて170℃の加熱装置で2分間加熱してプ
リプレグを得た。このプリプレグを2枚重ね合わせ、さ
らにその上下に厚さ18μmの銅箔を重ね合わせ、温度
165℃、圧力60kg/cm2 で90分間加熱加圧成
形して、厚さ0.22mmの銅張積層板を作製した。
Comparative Example 2 A powdery epoxy resin having an average particle size of 150 μm (brominated epoxy Ep50 manufactured by Yuka Shell Co., Ltd.)
48) 100 parts by weight, 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle diameter of 15 μm, and an average particle diameter of 15 μm
After mixing at a ratio of 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole), the powder composition was heated and melted at 100 ° C., and then 100 g as a resin solid content
/ M 2 , soaked and impregnated with 100 g / m 2 glass cloth, and heated with a heating device at 170 ° C for 2 minutes to obtain a prepreg. Two prepregs are laminated, and a copper foil having a thickness of 18 μm is laminated on the upper and lower sides of the prepreg, and is heated and pressed at a temperature of 165 ° C. and a pressure of 60 kg / cm 2 for 90 minutes to form a copper-clad laminate having a thickness of 0.22 mm. A plate was made.

【0036】〔比較例3〕平均粒径150μmの粉末状
のエポキシ樹脂(油化シェル製臭素化エポキシEp50
48)100重量部、平均粒子径15μmの粉末状の硬
化剤(ジシアンジアミド)5重量部、平均粒径15μm
の粉末状の硬化促進剤(2−エチル−4−メチルイミダ
ゾール)1重量部の比率で混合したものをメチルセルソ
ルブ100重量部に溶かした。このワニスを樹脂固形分
で100g/m2 になるように100g/m2 のガラス
クロスを浸けて含浸させた後、170℃の熱風加熱機で
3分間加熱してプリプレグを得た。このプリプレグを2
枚重ね合わせ、さらにその上下に厚さ18μmの銅箔を
重ね合わせ、温度165℃、圧力60kg/cm2 で9
0分間加熱加圧成形して、厚さ0.22mmの銅張積層
板を作製した。
Comparative Example 3 A powdery epoxy resin having an average particle size of 150 μm (brominated epoxy Ep50 manufactured by Yuka Shell Co., Ltd.)
48) 100 parts by weight, 5 parts by weight of a powdery curing agent (dicyandiamide) having an average particle diameter of 15 μm, and an average particle diameter of 15 μm
Was mixed with 1 part by weight of a powdery curing accelerator (2-ethyl-4-methylimidazole) in 100 parts by weight of methylcellosolve. The varnish was impregnated with 100 g / m 2 glass cloth so as to have a resin solid content of 100 g / m 2, and then heated with a hot air heater at 170 ° C. for 3 minutes to obtain a prepreg. This prepreg is 2
A copper foil having a thickness of 18 μm is laminated on the upper and lower sides, and the temperature is 165 ° C. and the pressure is 60 kg / cm 2 .
It was heated and pressed for 0 minutes to produce a copper-clad laminate having a thickness of 0.22 mm.

【0037】以上実施例及び比較例において、プリプレ
グについては、ガラスクロスへの樹脂の含浸性を測定
し、銅張積層板については、成形性、引張り強さ、銅箔
引剥し強さ、半田耐熱性を測定した。その結果を表1及
び表2に示す。
In the above Examples and Comparative Examples, for the prepreg, the impregnation of the resin into the glass cloth was measured, and for the copper-clad laminate, the moldability, tensile strength, copper foil peeling strength, and solder heat resistance were measured. The properties were measured. The results are shown in Tables 1 and 2.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】(測定方法) 1.含浸性:プリプレグを実体顕微鏡にて観察し、ガラ
ス繊維間のボイドの有無を確認した。 2.成形性:銅張積層板の銅箔をエッチングして、目視
により硬化剤等の析出の有無を観察し、樹脂組成物の分
散性の評価をした。 3.引張り強さ:銅張積層板の銅箔をエッチングして、
10×100mmに切断後テンシロンにて引張り強度を
測定した。 4.銅箔引剥し強さ:JIS C 6481により測定し
た。 5.半田耐熱性:50×50mmの積層板を、260℃
の半田浴に3分間フロートさせ、ふくれの有無を測定し
た。 6.絶縁抵抗:JIS C 6481により測定した。
(Measurement method) Impregnating property: The prepreg was observed with a stereoscopic microscope, and the presence or absence of voids between glass fibers was confirmed. 2. Formability: The copper foil of the copper-clad laminate was etched, the presence or absence of the precipitation of a curing agent or the like was visually observed, and the dispersibility of the resin composition was evaluated. 3. Tensile strength: Etching copper foil of copper clad laminate,
After cutting to 10 × 100 mm, the tensile strength was measured with Tensilon. 4. Copper foil peel strength: Measured according to JIS C6481. 5. Solder heat resistance: A laminate of 50 × 50 mm is subjected to 260 ° C.
Was floated in a solder bath for 3 minutes, and the presence or absence of blisters was measured. 6. Insulation resistance: Measured according to JIS C6481.

【0041】なお、製造コストについては、実施例の方
法は溶剤を使用しないので、実施例では得られた積層板
は比較例3で得られたものに比べ30〜40%程度低コ
スト化することができた。また、比較例2については、
100℃で樹脂を溶かす工程で樹脂の硬化特性の経時変
化が著しく、また、設備への樹脂付着物が硬化して清掃
が困難となった。
As for the manufacturing cost, since the method of the embodiment does not use a solvent, the laminated board obtained in the embodiment is reduced in cost by about 30 to 40% as compared with that obtained in the comparative example 3. Was completed. Moreover, about the comparative example 2,
In the step of melting the resin at 100 ° C., the change over time in the curing characteristics of the resin was remarkable, and the resin adhered to the equipment hardened, making cleaning difficult.

【0042】[0042]

【発明の効果】本発明の方法は、有機溶剤を使用しない
にもかかわらず、電気特性、耐熱性等品質の良好な積層
板を安定して得ることができる。そして有機溶剤を使用
しないので、省資源、省エネルギー及び大気汚染の低減
化が図られ、省資源化及び省エネルギー化することによ
り、低コスト化の点でも優れている。このように、本発
明は、工業的なプリプレグ及び積層板の製造方法として
好適である。
According to the method of the present invention, a laminate having good quality such as electric characteristics and heat resistance can be stably obtained even though no organic solvent is used. Since no organic solvent is used, resource saving, energy saving, and reduction of air pollution are achieved, and resource saving and energy saving are also excellent in terms of cost reduction. Thus, the present invention is suitable as an industrial method for producing a prepreg and a laminate.

フロントページの続き (51)Int.Cl.6 識別記号 FI // B29K 105:06 Continued on the front page (51) Int.Cl. 6 Identification symbol FI // B29K 105: 06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粉末状熱硬化性樹脂及び硬化剤を必須成
分とし、これら成分の混合物に機械的エネルギーを与え
てメカノケミカル反応を起こさせて得られた粉末状樹脂
組成物を、シート状繊維基材の少なくとも表面に存在さ
せることを特徴とするプリプレグの製造方法。
1. A powdery resin composition obtained by using a powdery thermosetting resin and a curing agent as essential components and applying a mechanical energy to a mixture of these components to cause a mechanochemical reaction to obtain a sheet-like fiber. A method for producing a prepreg, wherein the method is present on at least a surface of a substrate.
【請求項2】 硬化剤が粉末状硬化剤である請求項1記
載のプリプレグの製造方法。
2. The method for producing a prepreg according to claim 1, wherein the curing agent is a powdery curing agent.
【請求項3】 メカノケミカル反応を起こさせるための
装置が、ジェットミル、オングミル、又は多段石臼型混
練押し出し機である請求項1又は2記載のプリプレグの
製造方法。
3. The method for producing a prepreg according to claim 1, wherein the apparatus for causing the mechanochemical reaction is a jet mill, an ong mill, or a multi-stage mill-type kneading extruder.
【請求項4】 請求項1,2又は3記載の方法により得
られたプリプレグを1枚又は複数枚重ね合わせ、加熱加
圧することを特徴とする積層板又は金属箔張積層板の製
造方法。
4. A method for producing a laminate or a metal foil-clad laminate, comprising laminating one or more prepregs obtained by the method according to claim 1, 2, or 3 and heating and pressing.
JP33395298A 1997-11-26 1998-11-25 Production of prepreg and laminate Pending JPH11246687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33395298A JPH11246687A (en) 1997-11-26 1998-11-25 Production of prepreg and laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-324725 1997-11-26
JP32472597 1997-11-26
JP33395298A JPH11246687A (en) 1997-11-26 1998-11-25 Production of prepreg and laminate

Publications (1)

Publication Number Publication Date
JPH11246687A true JPH11246687A (en) 1999-09-14

Family

ID=26571578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33395298A Pending JPH11246687A (en) 1997-11-26 1998-11-25 Production of prepreg and laminate

Country Status (1)

Country Link
JP (1) JPH11246687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025325A (en) * 2001-07-23 2003-01-29 Sumitomo Bakelite Co Ltd Method for producing composite particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025325A (en) * 2001-07-23 2003-01-29 Sumitomo Bakelite Co Ltd Method for producing composite particle

Similar Documents

Publication Publication Date Title
WO1999027002A1 (en) Processes for the production of prepregs and laminated sheets
JP3373164B2 (en) Method for producing prepreg and laminate
JP2000344917A (en) Flame-retardant prepreg and laminate
JPH11246687A (en) Production of prepreg and laminate
JP2000345006A (en) Flame retarded prepreg and laminate
JPH11240967A (en) Production of prepreg and laminate
JPH11302411A (en) Preparation of prepreg and laminate
JP2000273222A (en) Flame-retardant prepreg and laminate
JP3582770B2 (en) Manufacturing method of laminated board
JP2000336190A (en) Production of both prepreg and laminate
JP2000280242A (en) Production of prepreg and laminated sheet
JP2000327812A (en) Preparation of prepreg and laminate
JP2000273217A (en) Production of prepreg and laminate
JP2000344916A (en) Flame-retardant prepreg and laminate
JPH11309808A (en) Metal foil with adhesive, prepreg with metal foil, and laminated plate
JP2000280241A (en) Production of prepreg and laminated sheet
JPH11246688A (en) Production of prepreg and laminate
JP2000273219A (en) Prepreg and laminate
JP2000273238A (en) Flame retardant prepreg and laminate
JP2000273218A (en) Production of prepreg and laminate
JP3565737B2 (en) Manufacturing method of laminated board
JP3323122B2 (en) Method for producing prepreg and laminate
JPH11350359A (en) Production of prepreg and laminate
JP2001138438A (en) Method for manufacturing laminate
JP2000286551A (en) Manufacture of multilayer printed wiring board