JPH028281A - Adhesive for nonelectrolytic plating - Google Patents

Adhesive for nonelectrolytic plating

Info

Publication number
JPH028281A
JPH028281A JP15816888A JP15816888A JPH028281A JP H028281 A JPH028281 A JP H028281A JP 15816888 A JP15816888 A JP 15816888A JP 15816888 A JP15816888 A JP 15816888A JP H028281 A JPH028281 A JP H028281A
Authority
JP
Japan
Prior art keywords
heat
resistant resin
powder
soluble
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15816888A
Other languages
Japanese (ja)
Other versions
JPH0649851B2 (en
Inventor
Akira Enomoto
亮 榎本
Motoo Asai
元雄 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP15816888A priority Critical patent/JPH0649851B2/en
Publication of JPH028281A publication Critical patent/JPH028281A/en
Publication of JPH0649851B2 publication Critical patent/JPH0649851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0756Uses of liquids, e.g. rinsing, coating, dissolving
    • H05K2203/0773Dissolving the filler without dissolving the matrix material; Dissolving the matrix material without dissolving the filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • H05K3/387Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive for electroless plating

Abstract

PURPOSE:To obtain the title adhesive for printed-wiring board having excellent adhesion with a plating film and good heat resistance and electrical insulating properties by using a pseudo-particle covering a fine powder insoluble to an oxidant on the surface of matrix particle soluble to the oxidant. CONSTITUTION:The aimed adhesive obtained by dispersing (A) pseudo-particle for anchor formation obtained by bonding either one of (ii) heat resistant resin powder soluble to an oxidant, subjected to curing treatment and having <=0.8mum average particle size or (iii) inorganic powder soluble to the oxidant and having <=0.8mum average particle size to the surface of (i) a heat resistant powder soluble to an oxidant, subjected to curing treatment and having <=10mum particle size into (B) uncured heat resistant resin liquid capable of having properties slightly soluble to an oxidant by curing treatment. The bonding between the component (i) and component (ii) of component (iii) is preferably carried out by mutually fusing or through a binder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プリント配線板製造のために用いる無電解め
っき周接で割に関し、特に耐熱性、電気絶縁性、化学的
安定性が良く、とりわけめっき膜の密着性に優れたプリ
ント配線板製造用接着剤に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to electroless plating used for manufacturing printed wiring boards, and has particularly good heat resistance, electrical insulation, and chemical stability. In particular, it relates to an adhesive for producing printed wiring boards that has excellent adhesion to plating films.

〔従来の技術〕[Conventional technology]

近年、エレクトロニクスの進歩はめざましく、これに伴
い電子機器はより一層の小型化あるいは高速化が必要と
なっている。このために、プリント配線板、特にICや
LSIなどの部品を装着したプリント配線板については
、ファインパターンによる高密度化および高い信頼性が
求められている。
BACKGROUND ART In recent years, advances in electronics have been remarkable, and as a result, electronic devices need to be further miniaturized or faster. For this reason, printed wiring boards, especially printed wiring boards mounted with components such as ICs and LSIs, are required to have higher density and higher reliability using fine patterns.

従来、プリント配線板への導体回路(パターン)の形成
技術としては、基板に銅箔を積層した後、フォトエツチ
ングする形式のエツチドフォイル方法と呼ばれる方法が
代表的である。この方法は、基板との密着性に優れた導
体パターンを形成することができるという特徴があるが
、一方では銅箔の厚さが厚いためにエツチングにより高
精度のファインパターンが得難いという大きな欠点があ
り、さらに製造工程も複雑で効率が良くないなどの問題
点もあった。
Conventionally, a typical technique for forming a conductor circuit (pattern) on a printed wiring board is a method called an etched foil method, in which copper foil is laminated on a board and then photo-etched. This method has the feature of being able to form a conductor pattern with excellent adhesion to the board, but on the other hand, it has the major drawback that it is difficult to obtain a highly accurate fine pattern by etching because the copper foil is thick. Moreover, there were also problems such as the manufacturing process was complicated and inefficient.

そこで最近では、配線板に導体回路を形成するために、
ジエン系合成ゴムを含む接着剤を基板表面に塗布して接
着層を形成し、この接着層の表面を粗化した後、無電解
めっきを施して導体回路パターンを形成するアディティ
ブ法が脚光を浴びてきた。
Therefore, recently, in order to form conductor circuits on wiring boards,
The additive method, in which an adhesive containing diene-based synthetic rubber is applied to the surface of a substrate to form an adhesive layer, and the surface of this adhesive layer is roughened, is then subjected to electroless plating to form a conductor circuit pattern has been gaining attention. It's here.

ところが、この既知方法の下で使用されている接着剤は
、組成中に合成ゴムを含むため、例えば高温時に密着強
度が大きく低下したり、はんだ付けの際に無電解めっき
膜がふくれるなどの欠点があった。また、耐熱性が低く
、表面抵抗などの電気特性が充分でないために、適用範
囲がかなり制限されるという欠点があった。
However, since the adhesive used in this known method contains synthetic rubber in its composition, it has drawbacks such as a significant decrease in adhesion strength at high temperatures and blistering of the electroless plating film during soldering. was there. In addition, the heat resistance is low and the electrical properties such as surface resistance are not sufficient, so the range of application is considerably limited.

こうした無電解めっきによる導体パターンを形成するた
めに用いる「プリント配線板用樹脂組成物」として、特
開昭53−140344号公報に開示されているような
ものが提案されている。しかしながら、この組成物は、
該組成物中の球状粒子を形成する熱硬化性樹脂成分が蝕
刻(酸化剤による処理)されていない、いわゆる酸化剤
に対して不溶性のものである。この樹脂組成物が蝕刻粗
化されて得られる基板上の接着層は、深さ20μm程度
の凹凸となるため、この接着層の上に形成される導体は
微細パターンのものが得難く、パターン間の絶縁性も不
良となり易く、さらに耐熱性や電気特性に劣るから、部
品などを実装する上においては好ましくないという欠点
があった。
As a "resin composition for printed wiring boards" used to form conductor patterns by such electroless plating, a composition as disclosed in Japanese Patent Application Laid-open No. 140344/1983 has been proposed. However, this composition
The thermosetting resin component forming the spherical particles in the composition is not etched (treated with an oxidizing agent) and is insoluble in so-called oxidizing agents. The adhesive layer on the substrate obtained by etching and roughening this resin composition has irregularities with a depth of about 20 μm, so it is difficult to obtain a conductor with a fine pattern, and there are gaps between the patterns. Its insulation properties tend to be poor, and its heat resistance and electrical properties are also poor, making it undesirable for mounting components.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明したように、耐熱性、電気絶縁性、化学的安定
性が良く、とりわけ基板と無電解めっき膜との密着性が
優れ、しかも、めっきに際しての取扱いが簡単な無電解
めっき用接着剤というのは未だ知られていないし、また
このような接着剤を用いたプリント配線板の製造は未だ
試みられていないのが実情である。
As explained above, it is an adhesive for electroless plating that has good heat resistance, electrical insulation, and chemical stability, and has excellent adhesion between the substrate and the electroless plating film, and is easy to handle during plating. This is not yet known, and the fact is that no attempt has yet been made to manufacture printed wiring boards using such adhesives.

これに対し、本発明者らは先に、前述の如き欠点を解消
すべく種々研究し、特願昭60−118898号(特開
昭61−276875号)にかかる発明を提案した。
In response to this, the present inventors have previously conducted various studies to eliminate the above-mentioned drawbacks and proposed the invention disclosed in Japanese Patent Application No. 118898/1982 (Japanese Patent Application Laid-open No. 276875/1982).

しかしながら、この発明に先行して提案した前記発明に
かかる接着剤は、耐熱性樹脂微粉末とマトリックス耐熱
性樹脂の酸化剤に対する溶解性に顕著な差がないと、ア
ンカーが不明確に成り易くめっき膜の密着性が上がらな
いという解決課題を残していた。
However, in the adhesive according to the invention proposed prior to this invention, unless there is a significant difference in solubility in oxidizing agents between the heat-resistant resin fine powder and the matrix heat-resistant resin, the anchor tends to become unclear and the plating The problem remained that the adhesion of the film could not be improved.

本発明の目的は、従来の無電解めっき用接着剤が有する
前述の如き欠点および先行技術が抱えている課題を解消
し、とくに基板と無電解めっき膜との密着性が極めて優
れ、かつ取扱いが比較的容易にできる無電解めっき用接
着剤を提案するところにある。
The purpose of the present invention is to solve the above-mentioned drawbacks of conventional adhesives for electroless plating and the problems faced by the prior art, and in particular, to provide extremely excellent adhesion between a substrate and an electroless plating film and to be easy to handle. The purpose is to propose an adhesive for electroless plating that is relatively easy to make.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明者らは、本発明者らがこの発明に先行して
提案した前記先行発明の改良を目指し、無電解めっき膜
の密着性を向上させるのに有効なアンカーの形状を明確
なものとするのに好適な接着剤を開発すべく鋭意研究し
た結果、酸化剤に対して可溶性の母粒子の表面に酸化剤
に対して不溶性の微粉末をまぶしてなる擬似粒子を用い
れば、前述の課題を有利に解消す、ることができること
を知見し、本発明を完成するに到った。すなわち、本発
明は、 酸化剤に対して可溶性の硬化処理したものであって、平
均粒径が10.crm以下の耐熱性樹脂粉末の表面に、
酸化剤に対して可溶性の硬化処理したものであって、平
均粒径が0.8μm以下の耐熱性樹脂微粉末もしくは酸
化剤に対して可溶性であって平均粒径が0.8μm以下
の無機微粉末のいずれか少なくとも1種を付着させてな
るアンカー形成用擬似粒子を、硬化処理することにより
酸化剤に対して難溶性となる未硬化の耐熱性樹脂液中に
、分散させてなる無電解めっき用接着剤、 を提案する。
Therefore, the present inventors aimed to improve the prior invention proposed by the present inventors prior to this invention, and clarified the shape of the anchor that is effective for improving the adhesion of the electroless plating film. As a result of intensive research to develop adhesives suitable for oxidizing agents, we found that using pseudo-particles made by sprinkling oxidizing agent-insoluble fine powder on the surface of oxidizing agent-soluble base particles could solve the above-mentioned problems. The present inventors have discovered that it is possible to advantageously solve this problem, and have completed the present invention. That is, the present invention is a product that is hardened to be soluble in an oxidizing agent, and has an average particle size of 10. On the surface of heat-resistant resin powder below crm,
Heat-resistant resin fine powder that is hardened to be soluble in oxidizing agents and has an average particle size of 0.8 μm or less, or inorganic fine powder that is soluble in oxidizing agents and has an average particle size of 0.8 μm or less Electroless plating in which anchor-forming pseudo-particles to which at least one of the powders is attached are dispersed in an uncured heat-resistant resin liquid that becomes poorly soluble in oxidizing agents through curing treatment. Suggest adhesive for use.

なお、上記アンカー形成用擬似粒子における耐熱性樹脂
の粉末と同種樹脂の微粉末との結合は、加熱して互いを
融着させるか結合剤を用いるのが好適である。
The heat-resistant resin powder and the fine powder of the same type of resin in the anchor-forming pseudo-particles are preferably bonded together by heating to fuse them together or by using a binder.

〔作 用〕[For production]

本発明にかかる無電解めっき用接着剤は、硬化処理する
ことにより酸化剤に対して少なくとも難溶性となる性質
を有する未硬化の耐熱性樹脂液中に分散させるアンカー
形成粒子について、酸化剤により溶解することができる
予め硬化処理された耐熱性樹脂粉末(母粒子)に対し、
その母粒子の表面に、さらに酸化剤に対して可溶性の各
種微粉末(付着粉末)をまぶして得られる擬似粒子を用
いることを特徴とするものである。
The adhesive for electroless plating according to the present invention has anchor-forming particles dispersed in an uncured heat-resistant resin liquid that has a property of becoming at least poorly soluble in oxidizing agents by curing treatment, and is dissolved by an oxidizing agent. For pre-cured heat-resistant resin powder (base particles),
It is characterized by using pseudoparticles obtained by further sprinkling various fine powders (adhesive powders) soluble in an oxidizing agent on the surface of the base particles.

すなわち、酸化剤に対して可溶性である硬化ずみ耐熱性
樹脂粉末(母粒子)の表面に、酸化剤に対して可溶性の
微粉末からなる付着粉末を被覆させてなるアンカー形成
用擬似粒子を、未硬化耐熱性樹脂液中に分散させた接着
剤を用いると、第1に、マトリックスを形成する耐熱性
樹脂(以下、このことを「マトリックス形成耐熱性樹脂
」という)中に、アンカー形成用擬似粒子が均一に分散
した状態の接着層を得るのに都合がよく、第2に、前記
アンカー形成用擬似粒子の主要部をなす“耐熱性樹脂粉
末および付随的に用いる同種樹脂もしくは無機微粉末(
いずれも酸化剤に対して可溶性)°°と前記“マトリッ
クス形成耐熱性樹脂”との間では、 それぞれ酸化剤に対する溶解性に差がもたせであるため
に、前記接着層を酸化剤で処理した場合、接着層の表面
部分に分散しているアンカー形成用擬似粒子のみが選択
的に溶解除去され、その結果、接着層の表面粗化のため
の明確なアンカーを確実に形成し、 第3に、第1図に示すように、酸化剤に対して可溶性で
ある母粒子の表面に、酸化剤に対して可溶性の同種の樹
脂微粉末あるいは無機微粉末をまぶした前記アンカー形
成用擬似粒子を用いているため、形成されたアンカー自
体の形状を極めて複雑なものにする、 のである。
That is, the anchor-forming pseudo-particles, which are made by coating the surface of a cured heat-resistant resin powder (base particle) that is soluble in an oxidizing agent with an adhesion powder made of a fine powder that is soluble in an oxidizing agent, are When an adhesive dispersed in a cured heat-resistant resin liquid is used, first, anchor-forming pseudo particles are added to the heat-resistant resin that forms the matrix (hereinafter referred to as "matrix-forming heat-resistant resin"). It is convenient for obtaining an adhesive layer in which particles are uniformly dispersed.
Because there is a difference in solubility to oxidizing agents between the above-mentioned "matrix-forming heat-resistant resin" (both are soluble in oxidizing agents), when the adhesive layer is treated with oxidizing agents, , only the anchor-forming pseudo-particles dispersed on the surface of the adhesive layer are selectively dissolved and removed, and as a result, clear anchors for roughening the surface of the adhesive layer are reliably formed; Third, As shown in FIG. 1, the anchor-forming pseudo-particles are prepared by sprinkling the same type of resin fine powder or inorganic fine powder that is soluble in the oxidizing agent on the surface of the base particle that is soluble in the oxidizing agent. This makes the shape of the formed anchor itself extremely complicated.

さて、かかる本発明接着剤において、上記アンカー形成
用擬似粒子を構成する耐熱性樹脂は、母粒子および付着
粉末とも硬化処理したもので構成される(付着粉末につ
いては無機微粉末でも可)。
Now, in the adhesive of the present invention, the heat-resistant resin constituting the anchor-forming pseudo-particles is formed by curing both the base particles and the adhering powder (the adhering powder may be an inorganic fine powder).

この耐熱性樹脂について、硬化処理したものに限ったの
は、硬化処理していないものを用いると、マトリックス
を形成する耐熱性樹脂液あるいはこの樹脂を溶剤を用い
て溶解した溶液中に添加した場合、この樹脂も該溶液中
に一緒に溶解してしまうからである。すなわち、このよ
うな未硬化樹脂粉末を含む接着剤を基板に塗布し乾燥硬
化させると、“マトリックス形成耐熱性樹脂”と“耐熱
性樹脂の粉末およびその微粉末”とが共融した状態の接
着層を形成することになる。その結果、塗布後の酸化剤
による処理に際し、接着層がほぼ均等に溶解されること
になるから、粗面化に必要な接着層表面の選択的溶解除
去(アンカーの形成)が難しくなる。
This heat-resistant resin is limited to those that have been cured; if it is not cured, it is added to the heat-resistant resin liquid that forms the matrix or to a solution in which this resin is dissolved using a solvent. This is because this resin is also dissolved in the solution. In other words, when an adhesive containing such uncured resin powder is applied to a substrate and dried and cured, an adhesive is created in which the "matrix-forming heat-resistant resin" and "heat-resistant resin powder and its fine powder" are eutectic. This will form a layer. As a result, during treatment with an oxidizing agent after coating, the adhesive layer is almost uniformly dissolved, making it difficult to selectively dissolve and remove the adhesive layer surface (forming an anchor) necessary for surface roughening.

これに対し、これらの耐熱性樹脂の粉末、微粉末が予め
硬化処理されていると、耐熱性樹脂液あるいはこの樹脂
を溶解する溶剤に対しては少なくとも難溶性となるため
に溶解するようなことがなくなり、その結果、耐熱性樹
脂粉末をマトリックス形成耐熱性樹脂液中に“均一”に
分散した状態にすることができる。このように、可溶性
の粉末等を分散せしめた接着剤を使えば、硬化処理によ
って第2図に示すように、明確でしかも複雑形状で統一
されたアンカーの形成を容易にするのである。
On the other hand, if these heat-resistant resin powders or fine powders are cured in advance, they will be at least poorly soluble in the heat-resistant resin liquid or the solvent that dissolves this resin, so they will not dissolve. As a result, the heat-resistant resin powder can be "uniformly" dispersed in the matrix-forming heat-resistant resin liquid. In this way, by using an adhesive in which soluble powder or the like is dispersed, it becomes easy to form an anchor with a clear and complex shape as shown in FIG. 2 through the curing process.

なお、この樹脂粉末を硬化処理する方法としては、加熱
により硬化させる方法あるいは触媒を添加して硬化させ
る方法などがあるが、なかでも加熱硬化させる方法が実
用的である。
Note that methods for curing this resin powder include a method of curing by heating and a method of curing by adding a catalyst, among which a method of curing by heating is the most practical.

次に、かかる耐熱性樹脂の粉末およびその微粉末として
は、例えば、耐熱性樹脂を熱硬化させてからジェットミ
ルや凍結粉砕機などを用いて微粉砕したり、硬化処理す
る前に耐熱性樹脂溶液を噴霧乾燥して製造する。その他
、未硬化耐熱性樹脂エマルジョンに水溶液硬化剤を加え
て攪拌したりして得られる微粒子を、熱風乾燥器などで
単に加熱するか、あるいは各種バインダーを添加、混合
して乾燥し、その後ボールミルや超音波分散機などを用
いて解砕し、さらに風力分級機などにより分級すること
によって製造する。母粒子と微粉末を同じ樹脂で製造す
る場合は、セディグラフなどで分級することが必要であ
る。
Next, as for the heat-resistant resin powder and its fine powder, for example, the heat-resistant resin is heat-cured and then finely pulverized using a jet mill or a freeze-pulverizer, or the heat-resistant resin is The solution is prepared by spray drying. In addition, fine particles obtained by adding an aqueous curing agent to an uncured heat-resistant resin emulsion and stirring are simply heated in a hot air dryer, or various binders are added and mixed and dried, and then a ball mill or It is manufactured by crushing using an ultrasonic dispersion machine or the like, and then classifying it using a wind classifier or the like. When producing base particles and fine powder using the same resin, it is necessary to classify them using a Sedigraph or the like.

このようにして得られる耐熱性樹脂粉末の粒子形状は、
球形だけでな(各種の複雑な形状を有しており、そのた
めこれにより形成されるアンカーの形状もそれに応じて
複雑形状になるため、ビール強度、プル強度などのめっ
き膜の密着強度を向上させるのに有効に作用する。
The particle shape of the heat-resistant resin powder obtained in this way is
It is not only spherical (it has various complex shapes, so the shape of the anchor formed by this will also be complicated accordingly), which improves the adhesion strength of the plating film such as beer strength and pull strength. It works effectively.

ここで、母粒子となる耐熱性樹脂粉末の大きさとしては
、平均粒径で10μm以下の大きさにするが、よりこの
好ましくは5μm以下の大きさにしたものがよい。その
理由は、平均粒径が10μmよりも大きいと、酸化処理
に伴う溶解除去によって形成されるアンカーの密度が小
さく、かつ不均一になり易い。その結果、密着強度が悪
くなって製品の信頼性が低下し、さらには接着層表面の
凹凸が必要以上に激しくなって、導体の微細パターンが
得にくくなる、しかも部品などを実装する上で不都合が
生じるからである。
Here, the size of the heat-resistant resin powder serving as the base particles is set to an average particle size of 10 μm or less, more preferably 5 μm or less. The reason is that when the average particle size is larger than 10 μm, the density of the anchors formed by dissolution and removal accompanying the oxidation treatment is low and tends to be non-uniform. As a result, the adhesion strength deteriorates, reducing the reliability of the product.Furthermore, the unevenness of the surface of the adhesive layer becomes more severe than necessary, making it difficult to obtain a fine conductor pattern, which is also inconvenient when mounting components. This is because

一方、付着粉末として用いる耐熱性樹脂微粉末もしくは
無機微粉末の大きさとしては、平均粒径で0.8μm以
下のものを用いる。その理由は、0.8μmよりも大き
いとアンカー効果が低下し、密着強度が悪くなるからで
ある。
On the other hand, the heat-resistant resin fine powder or inorganic fine powder used as the adhering powder has an average particle size of 0.8 μm or less. The reason for this is that if the thickness is larger than 0.8 μm, the anchoring effect will be reduced and the adhesion strength will be poor.

また、かかる耐熱性樹脂の粉末およびその微粉末として
は、耐熱性と電気絶縁性に優れ、薬品に対して安定な性
質のものを用いる。また、このうち母粒子として使用す
る樹脂は、硬化処理することにより耐熱性樹脂液あるい
はこの樹脂を溶解する溶剤に対して難溶性となるが、ク
ロム酸などの酸化剤に対しては可溶性となるものを用い
る。例えば、エポキシ樹脂、ポリエステル樹脂、ビスマ
レイミド−トリアジン樹脂のなかから選ばれるいずれか
少なくとも1種である。なかでも、前記エポキシ樹脂は
特性的にも優れており最も好適である。また、酸化剤に
対して可溶性となる無機微粉末としては、炭酸カルシウ
ムを使用することができる。
Further, as the heat-resistant resin powder and its fine powder, those having excellent heat resistance and electrical insulation properties and stable properties against chemicals are used. Furthermore, by curing the resin used as the base particles, it becomes poorly soluble in heat-resistant resin liquids or solvents that dissolve this resin, but becomes soluble in oxidizing agents such as chromic acid. use something For example, it is at least one selected from epoxy resins, polyester resins, and bismaleimide-triazine resins. Among these, the epoxy resin has excellent properties and is most suitable. Furthermore, calcium carbonate can be used as the inorganic fine powder that is soluble in the oxidizing agent.

さて、本発明の前記アンカー形成用擬似粒子は、耐熱性
樹脂粉末の母粒子に耐熱性樹脂もしくは無機の微粉末を
まぶすことにより、第1図に示すような形状のものとす
る。このように、母粒子に対して、その表面に微粉末を
付着被覆したものを用いると、可溶性粒子が酸化処理時
に溶解除去されることによって形成されるアンカーの形
状を、めっき膜の密着強度を向上させるのに有効なより
複雑なものにすることができる。
The anchor-forming pseudo-particles of the present invention are formed into a shape as shown in FIG. 1 by sprinkling heat-resistant resin or inorganic fine powder onto base particles of heat-resistant resin powder. In this way, if a base particle is coated with fine powder on its surface, the shape of the anchor formed when the soluble particles are dissolved and removed during oxidation treatment and the adhesion strength of the plating film are It can be made more complex to help improve it.

すなわち、−船釣な単体粒子:すなわち、第3図に示す
ような単純球形粒子を用いた場合に形成されるアンカー
(第4図示)に比べ、本発明の第1図に示すような擬似
粒子は、形状がより複雑になるから、高いビール強度、
プル強度が得られ、従ってめっき膜の密着強度と安定性
が得られる。
In other words, a single particle such as the one shown in FIG. The higher the beer strength, the more complex the shape.
Pull strength can be obtained, and therefore adhesion strength and stability of the plating film can be obtained.

また、この擬似粒子は、付着させるべき微粉末を母粒子
の表面に結合剤を使って付着結合させただけのものでも
よいが、酸化剤に対して可溶性である硬化処理した耐熱
性樹脂粉末(母粒子)に対し、この母粒子がまだ幾分軟
かい状態のときに、該微粉末各種をまぶして付着せしめ
ることにより、母粒子表面内に若干くい込ませた状態で
硬化させたものでもよく、これらは等しく効果のあるア
ンカー形成用擬似粒子である。
The pseudo-particles may be made by simply adhering fine powder to the surface of the base particle using a binder, but the pseudo-particles may also be made by hardening heat-resistant resin powder that is soluble in oxidizing agents ( When the mother particles are still in a somewhat soft state, various types of fine powder may be sprinkled on the mother particles and adhered to the mother particles, thereby hardening them while slightly biting into the surface of the mother particles. These are equally effective anchor-forming pseudoparticles.

なお、上記耐熱性樹脂粉末(母粒子および付着粉末)の
表面には、マトリックス形成耐熱性樹脂との接合を良く
するために、マトリックスに溶解しない程度に、予め半
硬化層または未反応官能基を付与してもよい。
In addition, in order to improve bonding with the matrix-forming heat-resistant resin, a semi-cured layer or unreacted functional group is applied to the surface of the heat-resistant resin powder (base particles and attached powder) to the extent that it does not dissolve in the matrix. May be granted.

このようにして得られる上記擬似粒子の性質としては、
混合時に解離して元の微粉末に戻ることがない程度の接
着力で凝集されたものであることが必要である。このた
めに本発明においては、樹脂微粉末自体を加熱して融着
させるか、結合剤を介して接着し、単一粒子の如き接着
力で結合した擬似粒子とする。また、本発明にかがる耐
熱性樹脂粒子(擬似粒子)は、中心粒径となるものを基
準として±2μmの範囲内に60wt%以上が存在する
ようなバラツキを有するものが好ましい。このようなバ
ラツキのものに限定する理由は、バラツキが上記範囲よ
りも大きいと製品の信頼性が低下するためである。
The properties of the above pseudoparticles obtained in this way are as follows:
It is necessary that the particles be aggregated with such adhesive strength that they will not dissociate during mixing and return to the original fine powder. For this reason, in the present invention, the fine resin powder itself is heated and fused or bonded via a binder to form pseudo particles bonded by adhesive force such as a single particle. Furthermore, the heat-resistant resin particles (pseudo-particles) according to the present invention preferably have a variation of 60 wt % or more within a range of ±2 μm based on the center particle size. The reason why it is limited to those with such variations is that if the variations are larger than the above range, the reliability of the product will decrease.

つぎに、上記耐熱性樹脂粉末および同種の微粉末からな
るアンカー形成用擬似粒子を分散保持する側のマトリッ
クス形成耐熱性樹脂について述べる。この樹脂は、耐熱
性、電気絶縁性、化学的安定性および接着性に優れるも
のを用い、かつ硬化処理することにより酸化剤に対して
難溶性となる特性を有する樹脂を用いる。例えば、エポ
キシ樹脂、エポキシ変成ポリイミド樹脂、ポリイミド樹
脂、フェノール樹脂のなかから選ばれるいずれか少なく
とも1種、場合によってはこれらの樹脂に感光性を付与
したものを用いる。この感光性を付与したものは、ビル
ドアップ配線基板の層間絶縁材用接着剤として好適であ
る。
Next, the matrix-forming heat-resistant resin that disperses and holds the anchor-forming pseudo particles made of the heat-resistant resin powder and the same type of fine powder will be described. This resin is one that is excellent in heat resistance, electrical insulation, chemical stability, and adhesiveness, and has the property of becoming poorly soluble in oxidizing agents when cured. For example, at least one selected from epoxy resins, epoxy-modified polyimide resins, polyimide resins, and phenol resins, and in some cases, photosensitive resins are used. This photosensitive adhesive is suitable as an adhesive for interlayer insulating materials of build-up wiring boards.

既に述べたように、可溶性の前記耐熱性樹脂粉末と、硬
化処理によって難溶性となるマトリックス形成耐熱性樹
脂とでは、酸化剤に対する溶解特性に大きな差がある。
As already mentioned, there is a large difference in solubility characteristics with respect to oxidizing agents between the heat-resistant resin powder, which is soluble, and the matrix-forming heat-resistant resin, which becomes poorly soluble through hardening treatment.

したがって、前記接着層の表面部分に分散している可溶
性の耐熱性樹脂粉末および微粉末を、酸化剤を用いて溶
解除去すると、前記酸化剤に対して難溶性を示すマトリ
ックス形成耐熱性樹脂はほとんど溶解されずに基材とし
て残るから、接着層表面には第2図に示すように、溶解
除去された上記擬似粒子の抜けた部分による明確なアン
カーが形成されることとなる。
Therefore, when the soluble heat-resistant resin powder and fine powder dispersed on the surface of the adhesive layer are dissolved and removed using an oxidizing agent, most of the matrix-forming heat-resistant resin that is poorly soluble in the oxidizing agent is removed. Since the particles remain as a base material without being dissolved, clear anchors are formed on the surface of the adhesive layer by the portions of the pseudo particles that have been dissolved and removed, as shown in FIG.

なお、同じ種類の耐熱性樹脂であっても、例えば耐熱性
樹脂粉末として酸化剤に溶は易いエポキシ樹脂を用い、
他方前記マトリックス耐熱性樹脂として酸化剤に対して
比較的溶は難いエポキシ樹脂を組合わせて使用しても同
じような効果が期待できる。
Even if the same type of heat-resistant resin is used, for example, using an epoxy resin that is easily dissolved in an oxidizing agent as a heat-resistant resin powder,
On the other hand, the same effect can be expected even if an epoxy resin, which is relatively difficult to dissolve in oxidizing agents, is used in combination as the matrix heat-resistant resin.

また、前記耐熱性樹脂粉末などからなるアンカー形成用
擬似粒子を分散させるために用いる、いわゆるマトリッ
クス形成耐熱性樹脂液としては、溶剤を含まない耐熱性
樹脂液をそのまま使用することができるが、耐熱性樹脂
を溶剤に溶解した耐熱性樹脂液の方が、低粘度であるか
ら上記耐熱性樹脂粉末を均一に分散させやすく、かつ基
板に塗布し易いので有利に使用することができる。なお
、耐熱性樹脂の溶解に用いる溶剤としては、例えば、メ
チルエチルケトン、メチルセルソルブ、エチルセルソル
ブ、ブチルカルピトール、ブチルセルロース、テトラリ
ン、ジメチルホルムアミド、ノルマルメチルピロリドン
などを用いることができる。
Furthermore, as the so-called matrix-forming heat-resistant resin liquid used to disperse the anchor-forming pseudo-particles made of the heat-resistant resin powder, a heat-resistant resin liquid that does not contain a solvent can be used as is. A heat-resistant resin liquid prepared by dissolving a heat-resistant resin in a solvent can be used more advantageously because it has a lower viscosity, which makes it easier to uniformly disperse the heat-resistant resin powder, and it is easier to apply the heat-resistant resin powder to a substrate. Note that, as the solvent used for dissolving the heat-resistant resin, for example, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, butyl calpitol, butyl cellulose, tetralin, dimethylformamide, n-methylpyrrolidone, etc. can be used.

なお、このマトリックスとなる上記耐熱性樹脂液には、
シリカ、アルミナ、酸化チタン、ジルコニアなどの無機
質微粉末からなる充填剤を適宜配合して使用してもよい
Note that the heat-resistant resin liquid that serves as the matrix contains:
A filler made of inorganic fine powder such as silica, alumina, titanium oxide, and zirconia may be appropriately mixed and used.

前記マトリックス形成耐熱性樹脂に対する耐熱性樹脂粉
末などからなるアンカー形成用擬似粒子の配合量は、マ
トリックス形成耐熱性樹脂固形分100重量部に対して
2〜350重量部の範囲内とするが、特に5〜200重
量部の範囲は基板と無電解めっき膜との密着強度をより
高くし得るので好ましい範囲である。すなわち、N似粒
子の配合量が2重量部より少ないと、溶解除去して形成
されるアンカーの密度が低くなり、基板と無電解めっき
膜との充分な密着強度か得られない。一方350重量部
よりも多くなると、接着層全体がほとんど溶解されるこ
とになるのでアンカーが形成されない。
The blending amount of the anchor-forming pseudo particles made of heat-resistant resin powder or the like with respect to the matrix-forming heat-resistant resin is within the range of 2 to 350 parts by weight based on 100 parts by weight of the solid content of the matrix-forming heat-resistant resin. The range of 5 to 200 parts by weight is a preferable range because it can further increase the adhesion strength between the substrate and the electroless plated film. That is, if the amount of N-like particles is less than 2 parts by weight, the density of the anchors formed by dissolving and removing them will be low, making it impossible to obtain sufficient adhesion strength between the substrate and the electroless plated film. On the other hand, if the amount exceeds 350 parts by weight, almost the entire adhesive layer will be dissolved and no anchor will be formed.

なお、本発明接着剤は、無電解めっき用のものとして常
法に従う幾つかの方法の他、例えば基板に無電解めっき
を施してから回路をエツチングする方法や無電解めっき
を施す際に直接回路を形成する方法などにも有利に適用
することができる。
The adhesive of the present invention can be used for electroless plating in addition to several conventional methods, such as applying electroless plating to a substrate and then etching the circuit, or directly etching the circuit when applying electroless plating. It can also be advantageously applied to methods of forming.

〔実施例〕〔Example〕

叉施斑上 +1)  エポキシ樹脂粉末(東し製、商品名:トレパ
ールEP−B、平均粒径3.9 p m)200 gを
、51のアセトン中に分散させ、ヘンシェルミキサー(
三井三池化工機製、FMIOB型)内で攪拌しながらエ
ポキシ樹脂粉末(東し製、商品名:トレパールEP−8
゜平均粒径0.5μm) 300gとエポキシ樹脂(三
井石油化学製、商品名: TA−1800)をアセトン
11に対し30gの割合で溶解しているアセトン中に分
散させた懸濁液を、前記エポキシ樹脂粉末懸濁液中へ滴
下することにより、上記エポキシ樹脂粉末(母粒子)の
表面に該付着粉末を付着せしめた後上記アセトンを除去
し、その後150°Cに加熱して、アンカー形成用粒子
を作成した。得られたアンカー形成用擬似粒子は、平均
粒径が約4.3μmであり、約75重量%が平均粒径を
中心として±2μmの範囲に存在していた。
200 g of epoxy resin powder (manufactured by Toshi Co., Ltd., trade name: Trepar EP-B, average particle size 3.9 pm) was dispersed in 51 acetone, and mixed with a Henschel mixer (
Epoxy resin powder (Mitsui Miike Kakoki, FMIOB type) was mixed with epoxy resin powder (manufactured by Toshi, product name: Trepearl EP-8).
A suspension prepared by dissolving 300 g of epoxy resin (manufactured by Mitsui Petrochemicals, trade name: TA-1800) in acetone at a ratio of 30 g to 11 acetone was prepared using the above-mentioned method. The adhering powder is attached to the surface of the epoxy resin powder (base particles) by dropping it into the epoxy resin powder suspension, and then the acetone is removed, and then heated to 150°C to form an anchor. Created particles. The obtained anchor-forming pseudoparticles had an average particle size of about 4.3 μm, and about 75% by weight existed within a range of ±2 μm around the average particle size.

(2)  フェノールノボラック型エポキシ樹脂(油化
シェル製、商品名: E−154)60重量部、ビスフ
ェノールA型エポキシ樹脂(油化シェル製、商品名: 
E−1001) 40重量部、イミダゾール硬化剤(四
国化成製、商品名IP4MH2)4重量部、前記(1)
で作成したアンカー形成用擬似粒子50重量部からなる
ものに、ブチルセルソルブ溶剤を添加しながらホモデイ
スパー分散機で粘度を120cpsに調整し、ついで三
本ロールで混練して接着剤を得た。
(2) 60 parts by weight of phenol novolak epoxy resin (manufactured by Yuka Shell, trade name: E-154), bisphenol A epoxy resin (manufactured by Yuka Shell, trade name:
E-1001) 40 parts by weight, 4 parts by weight of imidazole curing agent (manufactured by Shikoku Kasei, trade name IP4MH2), (1) above
The viscosity was adjusted to 120 cps using a homodisper disperser while adding a butyl cellosolve solvent to 50 parts by weight of the anchor-forming pseudo particles prepared above, and then kneaded using a triple roll to obtain an adhesive.

(3)前記(2)で得られた接着剤を、ローラーコータ
ーを使用して銅箔が貼着されていないガラスポリイミド
基板(東芝ケミカル製、商品名二東芝デュライト積層板
−EL)に塗布した後、100℃で1時間、さらに15
0℃で5時間乾燥硬化させて厚さ20μmの接着層を形
成した。
(3) The adhesive obtained in (2) above was applied using a roller coater to a glass polyimide substrate (manufactured by Toshiba Chemical, trade name: Toshiba Durite Laminated Board-EL) to which no copper foil was attached. After that, at 100℃ for 1 hour, and then for another 15 days.
It was dried and cured at 0° C. for 5 hours to form an adhesive layer with a thickness of 20 μm.

(4)前記(3)で得られた基板を、クロム酸(Crz
Oz)500g/ Il水溶液からなる酸化剤に70℃
で15分間浸漬して接着層の表面を粗化してから、中和
溶液(シブレイ社製、商品名: P N−950)に浸
漬し水洗した。
(4) The substrate obtained in (3) above was treated with chromic acid (Crz
oz) 500g/Il aqueous solution at 70°C.
The adhesive layer was immersed for 15 minutes to roughen the surface of the adhesive layer, and then immersed in a neutralizing solution (manufactured by Sibley, trade name: PN-950) and washed with water.

(5)上記(4)で得られた接着層の表面が粗化された
基板に、パラジウム触媒(シブレイ社製、商品名:キャ
タポジット44)を付与して接着層の表面を活性化させ
、下記に示す組成のアディティブ法用無電解銅めっき液
に11時間浸漬して、めっき膜の厚さ25μmの無電解
銅めっきを施した。
(5) Applying a palladium catalyst (manufactured by Sibley, trade name: Cataposit 44) to the substrate with the roughened surface of the adhesive layer obtained in (4) above to activate the surface of the adhesive layer, It was immersed in an electroless copper plating solution for additive method having the composition shown below for 11 hours to form electroless copper plating with a thickness of 25 μm.

硫酸銅(CuSO,・58zO) ホルマリン(37%) 水酸化ナトリウム DTA 添加剤 めっき温度ニア0〜72℃ 0.06モル/1 O630モル/1 O035モル/1 0.12モル/l 少々 PH: 12.4 上述のようにして製造した配線板に、さらに硫酸銅めっ
き浴中で電気めっき厚さ35μmの銅めっきを施した。
Copper sulfate (CuSO, 58zO) Formalin (37%) Sodium hydroxide DTA Additive plating temperature near 0 to 72°C 0.06 mol/1 O630 mol/1 O035 mol/1 0.12 mol/l A little PH: 12 .4 The wiring board produced as described above was further electroplated with copper to a thickness of 35 μm in a copper sulfate plating bath.

このようにして製造したプリント配線板について、まず
、基板と銅めっき膜との密着強度をJIS−C−648
1の方法で測定した。その結果、ビール強度は1.88
 kg/cmであった。また100℃の煮沸水に2時間
浸漬することによる接着層の表面抵抗の変化は、初期値
5X1014Ω・cmに対して2X10′3Ω・amで
あった。さらに、表面温度を300℃に保持したホット
プレートに配線板の表面を密着させて10分間加熱する
耐熱性試験を行なったところ、何の異常も認められなか
った。
Regarding the printed wiring board manufactured in this way, first, the adhesion strength between the board and the copper plating film was measured according to JIS-C-644.
It was measured by method 1. As a result, the beer strength was 1.88
kg/cm. Further, the change in surface resistance of the adhesive layer due to immersion in boiling water at 100° C. for 2 hours was 2×10′3 Ω·am compared to the initial value of 5×10 14 Ω·cm. Further, when a heat resistance test was conducted in which the surface of the wiring board was brought into close contact with a hot plate whose surface temperature was maintained at 300° C. and heated for 10 minutes, no abnormality was observed.

去施炎叢 基本的に実施例1と同じ方法でプリント配線板を製造し
た。ただし、この実施例は、第1表に示す如き配合で作
成した無電解めっき用接着剤を使用してプリント配線板
を作成したものである。
A printed wiring board was produced basically in the same manner as in Example 1. However, in this example, a printed wiring board was prepared using an adhesive for electroless plating prepared with the formulation shown in Table 1.

基板と銅めっき膜との密着強度は、実施例1と同様の方
法で測定し、第1表に示した。
The adhesion strength between the substrate and the copper plating film was measured in the same manner as in Example 1, and is shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明接着剤は、耐熱性や電気特性
のみならず基板と無電解めっき膜との密着性が極めて優
れる。とくに好ましいアンカーができるので、該密着性
を上げるのに必要な表面粗化ができやすく、高品質のプ
リント配線板を製造できる。
As explained above, the adhesive of the present invention has extremely excellent not only heat resistance and electrical properties but also adhesion between the substrate and the electroless plated film. Since a particularly preferable anchor can be formed, the surface roughening necessary to improve the adhesion can be easily performed, and a high-quality printed wiring board can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明で用いるアンカー形成用擬似粒子の断
面図、 第2図は、前記アンカー形成用擬似粒子を用いることに
より接着層表面に形成された本発明の場合のアンカー形
状を示す部分断面図、 第3図は、従来例におけるアンカー形成用粒子の断面図
、 第4図は、前記アンカー形成用擬似粒子を用いることに
より接着層表面に形成された従来の場合のアンカーの形
状を示す部分断面図である。
FIG. 1 is a cross-sectional view of the anchor-forming pseudo-particles used in the present invention, and FIG. 2 is a section showing the shape of the anchor formed on the surface of the adhesive layer by using the anchor-forming pseudo-particles in the present invention. FIG. 3 is a cross-sectional view of anchor-forming particles in a conventional example, and FIG. 4 shows the shape of a conventional anchor formed on the surface of an adhesive layer by using the anchor-forming pseudo particles. FIG.

Claims (1)

【特許請求の範囲】 1、酸化剤に対して可溶性の硬化処理したものであって
、平均粒径が10μm以下の耐熱性樹脂粉末の表面に、
酸化剤に対して可溶性の硬化処理したものであって、平
均粒径が0.8μm以下の耐熱性樹脂微粉末もしくは酸
化剤に対し可溶性であって平均粒径が0.8μm以下の
無機微粉末のいずれか少なくとも1種を付着させてなる
アンカー形成用擬似粒子を、硬化処理することにより酸
化剤に対して難溶性となる未硬化の耐熱性樹脂液中に、
分散させてなる無電解めっき用接着剤。 2、前記アンカー形成用擬似粒子における耐熱性樹脂の
粉末と耐熱性樹脂の微粉末との結合を、該粉末と該微粉
末どうしを互いに融着させることによって行うことを特
徴とする請求項1に記載の接着剤。 3、前記アンカー形成用擬似粒子における耐熱性樹脂の
粉末と耐熱性樹脂の微粉末との結合を、該粉末と該微粉
末との間に結合剤を介在させることによって行うことを
特徴とする請求項1に記載の接着剤。
[Claims] 1. On the surface of a heat-resistant resin powder that has been hardened to be soluble in an oxidizing agent and has an average particle size of 10 μm or less,
Heat-resistant fine resin powder that is hardened to be soluble in oxidizing agents and has an average particle size of 0.8 μm or less, or fine inorganic powder that is soluble in oxidizing agents and has an average particle size of 0.8 μm or less In an uncured heat-resistant resin liquid that becomes poorly soluble in oxidizing agents by curing the anchor-forming pseudo particles to which at least one of the following is attached,
Adhesive for electroless plating made by dispersing. 2. According to claim 1, the heat-resistant resin powder and the heat-resistant resin fine powder in the anchor-forming pseudo particles are bonded by fusing the powder and the fine powder to each other. Adhesives listed. 3. A claim characterized in that the heat-resistant resin powder and the heat-resistant resin fine powder in the anchor-forming pseudo particles are bonded by interposing a binder between the powder and the fine powder. The adhesive according to item 1.
JP15816888A 1988-06-28 1988-06-28 Adhesive for electroless plating Expired - Lifetime JPH0649851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15816888A JPH0649851B2 (en) 1988-06-28 1988-06-28 Adhesive for electroless plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15816888A JPH0649851B2 (en) 1988-06-28 1988-06-28 Adhesive for electroless plating

Publications (2)

Publication Number Publication Date
JPH028281A true JPH028281A (en) 1990-01-11
JPH0649851B2 JPH0649851B2 (en) 1994-06-29

Family

ID=15665761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15816888A Expired - Lifetime JPH0649851B2 (en) 1988-06-28 1988-06-28 Adhesive for electroless plating

Country Status (1)

Country Link
JP (1) JPH0649851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232398B1 (en) 1996-12-05 2001-05-15 Nec Corporation Alkali or acid corrodible organic or composite particles in resin matrix

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107873A1 (en) * 2008-02-29 2009-09-03 住友化学株式会社 Method of gluing objects together

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232398B1 (en) 1996-12-05 2001-05-15 Nec Corporation Alkali or acid corrodible organic or composite particles in resin matrix

Also Published As

Publication number Publication date
JPH0649851B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US5055321A (en) Adhesive for electroless plating, printed circuit boards and method of producing the same
JPH0455555B2 (en)
JPH0734505B2 (en) Multilayer printed wiring board and manufacturing method thereof
JPS61276875A (en) Adhesive for electroless plating and production of wiring board using said adhesive
JPH06268339A (en) Flex-rigid multilayer printed wiring board and production thereof
JP3090973B2 (en) Method of forming adhesive layer for additive printed wiring board
JPH028281A (en) Adhesive for nonelectrolytic plating
JPH028283A (en) Adhesive for nonelectrolytic plating
JPH05235546A (en) Multilayer printed board and manufacture thereof
JP3007648B2 (en) Method for manufacturing adhesive printed wiring board for electroless plating and printed wiring board
JPH01301775A (en) Heat-resistant resin particle for forming anchor of adhesive used in electroless plating and production thereof
JPH01275682A (en) Adhesive for electroless plating and manufacture of printed circuit board by using said adhesive
JP2877992B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JPH01301774A (en) Adhesive for electroless plating
JPS62250086A (en) Substrate adhesive for electroless plating
JPH01166598A (en) Multi-layer printed circuit board and manufacture therefor
JP3076680B2 (en) Adhesive for wiring board, method for manufacturing printed wiring board using this adhesive, and printed wiring board
JP3115435B2 (en) Adhesives and printed wiring boards
JPH0533840B2 (en)
JP3469214B2 (en) Build-up multilayer printed wiring board
JPH04212496A (en) Adhesive layer producing method for additive printed wiring board
JPH11323099A (en) Resin composition suitable for buildup substrate
JPH0776281B2 (en) Prepreg
JPH0380592A (en) Manufacture of printed wiring board
JP3469146B2 (en) Build-up multilayer printed wiring board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term