JPS5831066A - Punch for cold working - Google Patents

Punch for cold working

Info

Publication number
JPS5831066A
JPS5831066A JP11710581A JP11710581A JPS5831066A JP S5831066 A JPS5831066 A JP S5831066A JP 11710581 A JP11710581 A JP 11710581A JP 11710581 A JP11710581 A JP 11710581A JP S5831066 A JPS5831066 A JP S5831066A
Authority
JP
Japan
Prior art keywords
mold
resistance
punch
nitrided
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11710581A
Other languages
Japanese (ja)
Other versions
JPH0317891B2 (en
Inventor
Masamitsu Noguchi
野口 政光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11710581A priority Critical patent/JPS5831066A/en
Publication of JPS5831066A publication Critical patent/JPS5831066A/en
Publication of JPH0317891B2 publication Critical patent/JPH0317891B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/06Platens or press rams
    • B30B15/065Press rams

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a punch for cold working with superior wear resistance, galling resistance and seizing resistance by forming a nitrided coat layer on the surface of the body of a punch of a high alloy steel having a specified composition by nitriding at a low temp. and by coating the nitrided coat layer with a hardened layer by vapor deposition. CONSTITUTION:A punch 1 is formed with a high alloy steel consisting of 0.35- 0.70% C, <0.1% Si, <1.0% Mn, 1.0-5.0% Cr, 0.1-7.0% Mo, 0.1-4.0% V and the balance Fe. The surface of the body 2 of the punch 1 is nitrided at about 550 deg.C which is lower than the tempering temp. to form a nitrided coat layer 3. A hardened surface layer 4 of TiN or the like may be further formed by ion plating or other method. The resulting punch satisfies required characteristics such as superior wear resistance, galling resistance, seizing resistance and toughness.

Description

【発明の詳細な説明】 開示技術は冷間鍛造等の冷間加工に用いる金型の型材と
その処理技術分野に属する。
DETAILED DESCRIPTION OF THE INVENTION The disclosed technology belongs to the field of mold materials for molds used in cold working such as cold forging and processing technology thereof.

而して、この出願の発明は5KH9等に類する強度、圧
縮変形抵抗等を有する高級工具鋼により金型本体を形成
し、更にその表面に耐摩耗性、耐かじり性、焼付性を具
備する窒化処理皮覆層を設けである冷間鍛造用等の冷間
加工用金型に関するものであり、特に、該高級工具鋼を
C:0.35〜07チ、Si:<1.0%、Mn:<1
.0%、Cr : 1.0〜5.0q6、Mo : 0
.1〜7.0 q6、V:0.1〜4.0%残部Feの
組成配合の高合金鋼とし、焼入れ、焼もどしを標準的熱
処理で行い、その後節もどし温度よシ低伝温度で窒化処
理を行って窒化処理被覆層を形成し、処理歪が少く、後
加工を最小限にし、更にはイオンブレーティング等の低
温物理蒸着によってTiN等あ表面硬化層を被覆形成さ
せた冷間加工用金型に係るものである。
Therefore, the invention of this application forms the mold body from high-grade tool steel having strength and compressive deformation resistance similar to 5KH9, etc., and furthermore, the mold body is made of a nitrided material having wear resistance, galling resistance, and seizure resistance on the surface. This relates to a mold for cold working such as cold forging which is provided with a treated coating layer, and in particular, the high-grade tool steel is made of C: 0.35 to 07%, Si: <1.0%, Mn :<1
.. 0%, Cr: 1.0-5.0q6, Mo: 0
.. High alloy steel with a composition of 1 to 7.0 q6, V: 0.1 to 4.0% balance Fe, quenched and tempered using standard heat treatment, and then nitrided at a softening temperature and a low transfer temperature. For cold processing, a nitrided coating layer is formed by processing, resulting in less processing distortion and minimal post-processing, and a surface hardening layer such as TiN is formed by low-temperature physical vapor deposition such as ion blasting. This relates to molds.

周知の如く、冷間鍛造加工、焼結成形、グレス成形等に
於て冷間加工は広く用いられており、それぞれの用途、
加工条件により成形金型が選定使用され、そのポンチ等
の型材も使用負荷によりJISで、例えば、5KDII
(冷間ダイス鋼)から5KH9,5KH57(高速度鋼
)、更には超高合金等多岐に亘っている。
As is well known, cold working is widely used in cold forging, sintering forming, glace forming, etc.
The molding die is selected and used depending on the processing conditions, and the mold materials such as punches are also rated according to JIS standards, such as 5KDII, depending on the usage load.
(cold die steel), 5KH9, 5KH57 (high speed steel), and even ultra-high alloys.

ところで、使用負荷は耐久性との関係で長寿命を有する
べく上記選定が行われるが、該寿命に影響する金型の損
耗形態としては強度、靭性不足に基づく金型の大割れや
、欠は等の部分的チッピング、又、耐摩耗性、耐かじり
、焼付性不足に基づく型表面の摩耗、かじり、焼付、そ
して、主として強度(圧縮耐力)不足に基づく型の変形
等がある0 而して、この様な型損耗に係る型材特性と型材の組成と
は深い相互関係があることが判る。
Incidentally, the usage load is selected above in order to have a long life in relation to durability, but the forms of wear and tear on the mold that affect the life include large cracks in the mold due to lack of strength and toughness, and cracks due to lack of strength and toughness. There is also partial chipping, etc., wear, galling, and seizure of the mold surface due to insufficient wear resistance, galling resistance, and seizure resistance, and deformation of the mold mainly due to insufficient strength (compressive yield strength). It can be seen that there is a deep correlation between the mold material properties and the composition of the mold material related to such mold wear.

即ち、型材が前記5KD11から5KH9へ、5KH9
から5KH57へ、と高級化組成へと移行するに伴って
靭性特性が確実に低下することが判っている。
That is, the mold material changes from 5KD11 to 5KH9, 5KH9
It has been found that as the composition moves from 5KH57 to higher grade compositions, the toughness properties definitely decrease.

一方、金型の寿命を考慮すると、型材について型変形性
、耐摩耗性、耐かじり、焼付性に対する要求レベルがア
ップするに伴って5KD11から5KH9へ、更に5K
H9から5KH57へ、5KH57から超硬合金へと高
級化する傾向がある。
On the other hand, when considering the lifespan of the mold, as the required level of mold deformability, wear resistance, galling resistance, and seizure resistance increases, from 5KD11 to 5KH9, and further to 5K
There is a tendency to upgrade from H9 to 5KH57 and from 5KH57 to cemented carbide.

そして、該型材の表面硬化対策として硬質炭化物、窒化
物の被覆を形成する場合もある。
In some cases, a hard carbide or nitride coating is formed as a measure against surface hardening of the mold material.

さりなか”ら、前述の如く、型材の高級化に伴い靭性低
下を来たし、チッピング等が生ずるという欠点が避けら
れない。
As mentioned above, as mold materials become more sophisticated, their toughness deteriorates, and the disadvantages of chipping and the like are unavoidable.

これに対処するに近時靭性改善材とし−てのいくつかの
鋼材が開発されているが、あくまで材質そのものの改善
の範囲であるので、靭性は改善されるものの、反射条件
として硬度や摩耗性が低下するという矛盾が生じている
To deal with this, some steel materials have recently been developed to improve toughness, but this is limited to improving the material itself, so although toughness is improved, hardness and wear resistance are A contradiction has arisen in that

そこで、全く異なる手段として特殊低炭素鋼に焼入れ後
浸炭処理したIC86、IC322等の材料が靭性改善
材として案出されているが、型材用途が冷間鍛造等に比
し比較的低負荷のプレス成形用等に限られ、従って、該
冷間鍛造の如く高応力圧縮を受けると所謂タイコ状に変
形して実用に供せない難点がある。
Therefore, as a completely different method, materials such as IC86 and IC322, which are special low carbon steels that are quenched and then carburized, have been devised as toughness improving materials. It is only used for forming, etc., and therefore, when subjected to high stress compression such as in cold forging, it deforms into a so-called cylindrical shape, making it unusable for practical use.

更k、浸炭処理温度が焼もどし温度以上に高いため変形
、変寸等の処理歪が避けられず、当該処理後の型仕上げ
加工等の後処理が要り、工数が多く、作業が炉頂でコス
ト高につながる不利点があった。
Since the carburizing temperature is higher than the tempering temperature, processing distortions such as deformation and dimensional changes are unavoidable, and post-processing such as mold finishing is required after the carburizing process, which requires a large number of man-hours and the work is performed at the top of the furnace. There were disadvantages that led to high costs.

この出願の発明の目的は上述従来技術に基づく冷間加工
用金型の型材、処理の問題点に鑑み、型本体にC,Si
、 Mn、 Cr、 Mo、 VをFeに対して所定比
率の配分にした高合金鋼の型材を選定することにより5
KH9,5KH57等の高級工具鋼と匹敵する強度、圧
縮変形抵抗を維持することが出来る上に靭性は格段に優
れる様にし、又、型表面は焼もどし温度より低い窒化処
理を行い優れた耐摩耗性、耐かじり、焼付性を具備する
様にすると共に後加工を可及的に少くする様にした冷間
加工金型を提供せんとするものである。
The purpose of the invention of this application is to solve the problems of mold materials and processing of cold working molds based on the above-mentioned prior art, and to
, Mn, Cr, Mo, and V by selecting a high-alloy steel shape material with a predetermined ratio of Fe to Fe.
It can maintain strength and compressive deformation resistance comparable to high-grade tool steels such as KH9, 5KH57, etc., and has significantly superior toughness.The mold surface is also nitrided at a temperature lower than the tempering temperature, resulting in excellent wear resistance. It is an object of the present invention to provide a cold working mold which has good properties such as hardness, galling resistance, and seizure resistance, and which requires as little post-processing as possible.

上述目的に沿うこの出願の発明の構成は、型本体を成す
型材としてC:0.35〜0.7%、Si:<1゜0チ
、Mn:<1.0%、Cr : 1.0〜5.0%、M
o : 0..1〜7.0 %、V:0.1〜4.O%
、残部Feとする配合組成の高合金鋼にして標準的熱処
理によシ金型本体全体にわたり約HRC58〜60の均
一な硬さが得られる焼入れ特性を具備する様にし、強度
、圧縮変形抵抗は従来の高級工具鋼と同じである上に熱
処理特性、靭性特性に優れ、550℃以上の焼本どし温
度より低い温度で窒化処理を行って型本体表面に充分な
深さの硬化層を被覆させ、設計によっては更にイオンブ
レーティング等の低温物理蒸着手段によりTiN等の硬
化層を被覆する様にしたことを要旨とするものである。
The structure of the invention of this application in accordance with the above-mentioned purpose is that the mold material forming the mold body contains C: 0.35 to 0.7%, Si: <1°0, Mn: <1.0%, and Cr: 1.0. ~5.0%, M
o: 0. .. 1-7.0%, V: 0.1-4. O%
, the balance is made of high-alloy steel with a blend composition of Fe, and is subjected to standard heat treatment to provide quenching properties that provide uniform hardness of about HRC 58 to 60 over the entire mold body, and the strength and compression deformation resistance are It is the same as conventional high-grade tool steel and has excellent heat treatment and toughness properties, and is nitrided at a temperature lower than the firing temperature of 550℃ or higher to coat the surface of the mold body with a sufficiently deep hardened layer. In addition, depending on the design, a hardened layer of TiN or the like is further coated by low-temperature physical vapor deposition means such as ion blasting.

次にこの出願の発明の実施例を図面を参照して説明すれ
ば以下の通りである。
Next, embodiments of the invention of this application will be described below with reference to the drawings.

この出願の発明の要旨を成す金・型1は冷間鍛造用のポ
ンチであシ、その金型本体2はC:0.35〜0.7%
、Si:<1.0%、Mn:ぐ]、00%Cr:1、O
〜5.0.%、Mo : 0.1〜7.0%、V:0.
1〜4.0%残部Feから成る配分組成の高合金鋼であ
る。
The mold/mold 1 that constitutes the gist of the invention of this application is a punch for cold forging, and the mold body 2 has a carbon content of 0.35 to 0.7%.
, Si:<1.0%, Mn:g], 00%Cr:1, O
~5.0. %, Mo: 0.1-7.0%, V: 0.
It is a high alloy steel with a distribution composition consisting of 1 to 4.0% balance Fe.

尚、例えば、窒化処理を前提とした苛酷な冷鍛金型等の
特殊な用途の場合には更に、W:4.、−20チ、Co
十Ni : l〜12%、At : 0.2〜2.0 
%、  N :0.2%以下を含有させても良い。
For example, in the case of special applications such as severe cold forging molds that require nitriding treatment, W: 4. , -20chi, Co
10Ni: 1~12%, At: 0.2~2.0
%, N: 0.2% or less may be contained.

而して、上述配分組成については次の理由による0 即ち、Cについては型本体20強度、耐圧縮性を付与す
るのに機能し、0.35%以下では全く機能せず、又、
0.7チを越えると炭化物、窒化物の形成分が増加し、
靭性を低下する。
The above distribution composition is determined for the following reasons: C functions to impart strength and compression resistance to the mold body, and C does not function at all below 0.35%;
When it exceeds 0.7 inch, the formation of carbides and nitrides increases,
Decreases toughness.

Siについては靭性に与るに有効な元素であるが、1.
0%を越えると靭性を悪化する。
Although Si is an effective element in contributing to toughness, 1.
If it exceeds 0%, toughness will deteriorate.

、  又、Mnについては型材の焼入性を増加するのに
役立つが10チを越えると介在物が増加し靭性を阻害し
てしまう。
Furthermore, Mn is useful for increasing the hardenability of the mold material, but if it exceeds 10 inches, inclusions increase and the toughness is impaired.

そして、Crは同じく焼入性を増加するが、更に窒化処
理の際硬化層の深さを大きくするのに有効に作用するが
、1.01以上でその作用が効き始めるが、5.0%を
越すと炭化物、窒化物の形成を助長して靭性を阻害する
ので好まシくない。
Cr also increases hardenability, but it also acts effectively to increase the depth of the hardened layer during nitriding, but this effect starts to take effect at 1.01 or more, but at 5.0% Exceeding this is undesirable because it promotes the formation of carbides and nitrides and impairs toughness.

更に、Moについては上記Cr同様焼入性と硬化層増大
に与るが、o、 i qb以下では有効に働かず、7、
 O%を越えると炭化物、窒化物を増加させて靭性を悪
化させることになる。
Furthermore, like Cr, Mo contributes to hardenability and increase in hardened layer, but it does not work effectively below o, i qb.
If it exceeds 0%, carbides and nitrides will increase and toughness will deteriorate.

最後にVについては窒化処理に伴う表面硬さ、硬化深さ
の増加にプラスするが、0.1 %以下ではその効果が
なく、4.0チを越えると同じく炭化物、窒化物の成形
を助勢し、靭性を阻害して感心し々い0 而して、Wl及び、Co+Niについては共に型材の耐
熱性、焼もどし、軟化抵抗を増して有効に働くが7、前
者が4%以下、後者が1チ以下では効果がなく、20%
、12q6を越えるとやはり炭化物、窒化物が増加し靭
性にプラスしない。
Finally, V increases the surface hardness and hardening depth associated with nitriding, but if it is less than 0.1%, it has no effect, and if it exceeds 4.0%, it also supports the formation of carbides and nitrides. However, both Wl and Co+Ni work effectively by increasing the heat resistance, tempering, and softening resistance of the molded material, but the former is less than 4% and the latter is less than 4%. Less than 1 inch has no effect, 20%
, 12q6, carbides and nitrides increase and the toughness is not improved.

又、Atについては窒化処理の硬化深さを迅速、且つ、
大きくするのに有効に作用するが、02チ以下では効か
ず、2.0チを越えると同じく炭化物、窒化物増加に与
シ、靭性に好ましくない。
In addition, for At, the hardening depth of nitriding treatment can be quickly and
Although it works effectively to increase the size, it is not effective when it is less than 0.02 inch, and when it exceeds 2.0 inch, it also causes an increase in carbides and nitrides, which is not favorable for toughness.

そして、Nについては強度、耐圧縮性に有効であシ、0
.2チを越えるとやはり炭化物、窒化物生成に与シ、靭
性にとってプラスしない。
Regarding N, it is effective for strength and compression resistance, and 0
.. If it exceeds 2 inches, it will contribute to the formation of carbides and nitrides, and will not improve the toughness.

上述高合金鋼による所定成形による金型本体2の成形後
標準的熱処理により全体均一に硬さを確、保した後節も
どし温度より低い温度550℃でイオン窒化、ガス窒化
、塩浴窒化、固体窒化等の適宜手段を用いて窒化処理し
、該型本体20表面に充分な深さで窒化処理皮覆層3を
形成させ、表面の耐摩耗性、耐かじり性、焼付性を向上
させる0従って、浸炭処理等の高温による歪もなく、後
仕上げ加工も不要である。
After forming the mold body 2 using the above-mentioned high alloy steel in a prescribed manner, uniform hardness was ensured and maintained throughout through standard heat treatment, and then ion nitriding, gas nitriding, salt bath nitriding, and solid state were performed at a temperature of 550°C, lower than the resetting temperature. A nitriding treatment is performed using an appropriate means such as nitriding to form a nitriding coating layer 3 on the surface of the mold body 20 with a sufficient depth to improve the wear resistance, galling resistance, and seizure resistance of the surface. There is no distortion due to high temperatures such as carburizing, and no post-finishing is required.

そして、設計によっては更にイオンブレーティング等の
手段により低温での物理蒸着処理を行い、硬さにして約
HRC60以上のTiN等の窒化物や炭化物の硬化層4
を被覆させる0 勿論、型本体20強度、耐圧縮性は上述窒化処理、物理
蒸着により何ら損わるものではなく、この様にして型本
体2の高靭性と表面に於ける耐摩耗性、耐かじり性、焼
付性を分化分担させることが出来る。
Then, depending on the design, a physical vapor deposition treatment at a low temperature is performed by means such as ion blasting, and a hardened layer 4 of nitride or carbide such as TiN with a hardness of approximately HRC 60 or more is applied.
Of course, the strength and compression resistance of the mold body 20 are not impaired in any way by the above-mentioned nitriding treatment and physical vapor deposition, and in this way, the high toughness of the mold body 2 and the wear resistance and galling resistance on the surface are improved. It is possible to differentiate between the properties of heat and burn-in.

次に上述実施例に則す実験例を以下に示す。Next, an experimental example based on the above-mentioned embodiment will be shown below.

型本体2については高合金鋼をC:0.55q6、Si
:0.3%、Mn : 0.4 %、Cr : 4.1
 %%  MO: 5.1チ、W:6.6%、V:1.
96’%、残部二Feの配分組成にし、該高合金鋼を1
200℃ソルトにて焼入れし、56”0℃で焼もどしを
行う。
For the mold body 2, high alloy steel is made of C: 0.55q6, Si
: 0.3%, Mn: 0.4%, Cr: 4.1
%% MO: 5.1 inches, W: 6.6%, V: 1.
The high alloy steel was made into a composition of 96'% and the balance was
Quench at 200℃ salt and temper at 56"0℃.

この状態では硬さHcR60、シャルピー衝撃値は7.
3 kV/cni (10Rノツチ)、又、抗折耐力は
300汚/−が確保出来た。
In this state, the hardness is HcR60 and the Charpy impact value is 7.
3 kV/cni (10R notch) and bending strength of 300 stains/- could be secured.

その後、該成形型本体2に対してガス窒化処理を550
℃×20H行い、その結果窒化皮覆層3を得、その表面
硬度はHV 1200以上、硬化層深さ0、3 tta
n以上の高深さとなり、型本体2に比し耐摩耗性、耐か
じ9性、焼付性を著るしく向上されていることが判った
After that, the mold body 2 is subjected to gas nitriding treatment for 550 ml.
℃ x 20 hours, and as a result, a nitride coating layer 3 was obtained, the surface hardness of which was HV 1200 or more, and the hardened layer depth was 0.3 tta.
It was found that the depth was greater than n, and compared to mold body 2, the wear resistance, rudder resistance, and seizure resistance were significantly improved.

而して、最後にイオンシレーティングによりTiNの表
面硬化層4を得、その厚さは0.5〜20μであった。
Finally, a TiN surface hardening layer 4 was obtained by ion silating, and its thickness was 0.5 to 20 microns.

尚、この出願の発明の実施態様は上述実施例に限るもの
でないことは勿論であり、対象も冷間鍛造の外にプレス
成形、焼結成形金型等の種々の態様が採用可能である。
It goes without saying that the embodiments of the invention of this application are not limited to the above-mentioned embodiments, and various embodiments such as press molding, sintering molds, etc. can be adopted in addition to cold forging.

上述の如く、この出願の発明によれば、基本的に金型本
体と表面硬化層との物理的機械的機能を分化分担する様
にし、従って、型本体は硬化層に要求される耐摩耗性、
耐かじシ、焼付性をそれ程考慮する必要がなく、その、
ため、標準的熱処理で均一に得られる焼入性、窒化処理
、物理蒸着処理後に於ても゛猶保持可能な強度、耐圧縮
性等の靭性な得、一方、硬化層では耐摩耗性、耐かじり
性、焼付性を改善させることが出来る優れた効果が奏さ
れる。
As mentioned above, according to the invention of this application, the physical and mechanical functions are basically divided between the mold body and the hardened surface layer, so that the mold body has the wear resistance required for the hardened layer. ,
There is no need to consider stiffness and seizure resistance that much, and
Therefore, the hardenability, which can be uniformly obtained by standard heat treatment, the strength that can be maintained even after nitriding treatment, physical vapor deposition treatment, and toughness such as compression resistance are obtained, but on the other hand, the hardened layer has poor wear resistance and toughness. Excellent effects can be achieved in improving galling and seizing properties.

従って、これまでの様に耐摩耗性、耐かじシ性、焼付性
と靭性との相反選択をせまられることなく、双方の要求
特性を満足させることが出来る優れた金型が得られる躬
来がある。
Therefore, instead of having to make contradictory choices between wear resistance, galling resistance, seizure resistance, and toughness as in the past, it is now possible to obtain an excellent mold that can satisfy the required characteristics of both. be.

而して、金型本体の熱処理後、焼もどし温度より低い温
度、で窒化処理をすることが出来、窒化処理皮覆層の硬
化層が得られて上記メリットがある上に焼もどし温度以
下であるため、熱歪、サイズ変化がなく、そのため、後
処理の仕上げ加工も不要であることになり、工数削減、
コスト低減のメ°リットもある。
Therefore, after the heat treatment of the mold body, nitriding can be performed at a temperature lower than the tempering temperature, and a hardened layer of the nitrided coating layer can be obtained. As a result, there is no thermal distortion or size change, and there is no need for post-processing finishing, reducing man-hours and
There is also the advantage of cost reduction.

加えて、該窒化処理皮覆層に対しイオンル−ティング等
の物理蒸着を施して最終表面硬化層を得ることによりそ
の炭化物、窒化物はこれまでのCVD、TD処理と同じ
かそれ以上の耐摩耗性、耐かじり性、焼付性を付与する
ことが出来、優れた表面特性を与え、二重硬化層をより
改良することが出来る効果がある。
In addition, by applying physical vapor deposition such as ion routing to the nitrided coating layer to obtain a final surface hardening layer, the carbides and nitrides have the same or higher wear resistance than conventional CVD and TD treatments. It has the effect of imparting properties such as hardness, galling resistance, and seizure resistance, providing excellent surface properties, and further improving the double-cured layer.

そして、前記型本体の靭性については前記高合金鋼の配
合組成にしたことにより相互牽速相俟って硬化層の機能
とは分担した型本体本来に有効である様にすることが出
来る効果がある。
As for the toughness of the mold body, by using the high-alloy steel composition, there is an effect that the mold body, which does not share the function of the hardened layer, is effective due to mutual tension. be.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの出願の発明の1実施例の説明図であり、冷間
鍛造ポンチのモデルであって、第1図はその下面概略説
明図、第2図”は部分縦断側面説明図である。
The drawings are explanatory diagrams of one embodiment of the invention of this application, and are a model of a cold forging punch, in which FIG. 1 is a schematic explanatory view of the bottom surface thereof, and FIG. 2 is a partially longitudinal sectional side explanatory view thereof.

Claims (2)

【特許請求の範囲】[Claims] (1)高級工具鋼よシ成る金型本体と該金型本体表面に
窒化処理皮覆層を有する冷間加工用金型において、C:
0.35〜0.7%、Si :<1.OtslMn :
〈1,0%、Cr : 1.0〜5. O%’、Mo 
: 0.1〜7.0 ’16、V : 0.1〜4.0
チ、残部Feの組成高合金鋼の金型本体表面に焼もどし
温度より低い処理温度で形成した窒化処理皮覆層を設け
であることを特徴とする冷間加工用金型。
(1) In a cold working mold having a mold body made of high-grade tool steel and a nitrided coating layer on the surface of the mold body, C:
0.35-0.7%, Si:<1. OtslMn:
<1.0%, Cr: 1.0-5. O%', Mo
: 0.1~7.0'16, V: 0.1~4.0
H. A mold for cold working, characterized in that a nitrided coating layer formed at a treatment temperature lower than the tempering temperature is provided on the surface of the mold body made of high-alloy steel with a balance of Fe.
(2)高級工具鋼よシ成る金型本体と該金型本体表面に
窒化処理皮覆層を有する冷間加工用金型において、C:
0.35〜0.7%、Si:<0.1%、Mn:< 1
.0%、Cr : 1.0〜5.0 %、Mo : 0
.1〜7.0 %、V : 0.1〜4.0チ、残部F
eの高合金鋼の金型本体表面に焼もどし温度より低い処
理温度で形成した窒化処理皮覆層を設け、更にその上に
物理蒸着処理による硬化層を被覆ピであることを特徴と
する7冷間加工用金型。
(2) In a cold working mold having a mold body made of high-grade tool steel and a nitrided coating layer on the surface of the mold body, C:
0.35-0.7%, Si:<0.1%, Mn:<1
.. 0%, Cr: 1.0-5.0%, Mo: 0
.. 1-7.0%, V: 0.1-4.0ch, remainder F
A nitrided coating layer formed at a treatment temperature lower than the tempering temperature is provided on the surface of the high alloy steel mold body of e, and a hardened layer formed by physical vapor deposition is further coated thereon.7. Mold for cold working.
JP11710581A 1981-07-28 1981-07-28 Punch for cold working Granted JPS5831066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11710581A JPS5831066A (en) 1981-07-28 1981-07-28 Punch for cold working

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11710581A JPS5831066A (en) 1981-07-28 1981-07-28 Punch for cold working

Publications (2)

Publication Number Publication Date
JPS5831066A true JPS5831066A (en) 1983-02-23
JPH0317891B2 JPH0317891B2 (en) 1991-03-11

Family

ID=14703519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11710581A Granted JPS5831066A (en) 1981-07-28 1981-07-28 Punch for cold working

Country Status (1)

Country Link
JP (1) JPS5831066A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033339A (en) * 1983-08-01 1985-02-20 Aichi Steel Works Ltd Wear resisting alloyed steel
JPS613869A (en) * 1984-06-15 1986-01-09 Plus Eng Co Ltd Knockout pin for reinforced plastic having superior toughness
JPH01242953A (en) * 1988-03-24 1989-09-27 Mazda Motor Corp Production of semiconductor exhaust gas sensor
US5595612A (en) * 1993-05-27 1997-01-21 Balzers Aktiengesellschaft Workpiece with wear resistance coating
EP0841153A2 (en) * 1996-11-11 1998-05-13 Notter GmbH Werkzeugbau Tabletting tool with an adhesion inhibiting coating
EP0847850A1 (en) * 1996-12-13 1998-06-17 Bayer Bitterfeld GmbH Apparatus for pressing flowable solid materials or semi-solid materials
US7744056B2 (en) 2006-09-27 2010-06-29 Hitachi Metals, Ltd. Hard-material-coated member excellent in durability
CN104805362A (en) * 2015-03-31 2015-07-29 吉林大学 Aluminium-containing medium alloy casting cold-working mould steel
EP3006601A4 (en) * 2013-05-30 2016-11-02 Hitachi Metals Ltd Method for manufacturing mold for cold working use

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033339A (en) * 1983-08-01 1985-02-20 Aichi Steel Works Ltd Wear resisting alloyed steel
JPH0360903B2 (en) * 1983-08-01 1991-09-18 Aichi Steel Works Ltd
JPS613869A (en) * 1984-06-15 1986-01-09 Plus Eng Co Ltd Knockout pin for reinforced plastic having superior toughness
JPH01242953A (en) * 1988-03-24 1989-09-27 Mazda Motor Corp Production of semiconductor exhaust gas sensor
US5595612A (en) * 1993-05-27 1997-01-21 Balzers Aktiengesellschaft Workpiece with wear resistance coating
EP0841153A2 (en) * 1996-11-11 1998-05-13 Notter GmbH Werkzeugbau Tabletting tool with an adhesion inhibiting coating
EP0841153A3 (en) * 1996-11-11 1998-05-27 Notter GmbH Werkzeugbau Tabletting tool with an adhesion inhibiting coating
EP0847850A1 (en) * 1996-12-13 1998-06-17 Bayer Bitterfeld GmbH Apparatus for pressing flowable solid materials or semi-solid materials
US7744056B2 (en) 2006-09-27 2010-06-29 Hitachi Metals, Ltd. Hard-material-coated member excellent in durability
EP3006601A4 (en) * 2013-05-30 2016-11-02 Hitachi Metals Ltd Method for manufacturing mold for cold working use
CN104805362A (en) * 2015-03-31 2015-07-29 吉林大学 Aluminium-containing medium alloy casting cold-working mould steel

Also Published As

Publication number Publication date
JPH0317891B2 (en) 1991-03-11

Similar Documents

Publication Publication Date Title
US20100135844A1 (en) Cold-work die steel and die
JPS5831066A (en) Punch for cold working
JPH0617224A (en) Carburized bearing parts excellent in high temperature rolling fatigue property
CN105917149A (en) Piston ring and production method therefor
JPS6321748B2 (en)
JP2001158937A (en) Tool steel for hot working, method for producing same and method for producing tool for hot working
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP7264117B2 (en) Steel part and its manufacturing method
JPH06172943A (en) Die for hot working excellent in wear resistance
JP3629851B2 (en) Cold tool steel for plasma carburizing
JPH10226818A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP3833388B2 (en) Method for producing constant velocity joint with excellent cold workability and strength
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JP7310723B2 (en) Steel part and its manufacturing method
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JP3196901B2 (en) Steel for aluminum extrusion dies
JPS61147815A (en) Production of roll having high hardened depth
JP3191008B2 (en) Hot tool steel
JP4778626B2 (en) Manufacturing method of steel parts with low heat treatment strain
JPH0881734A (en) Steel for nitriding treatment and production therof
JPH0463261A (en) Production of durable metal mold
JPH09256045A (en) Production of steel for soft-nitriding and soft-nitrided parts using the same steel
KR20010094511A (en) Production method of cold rolling roll
JP2022118887A (en) Cold tool steel excellent in surface treatment characteristics and tool
JPH02200783A (en) Surface hardened die material