JPH01242953A - Production of semiconductor exhaust gas sensor - Google Patents

Production of semiconductor exhaust gas sensor

Info

Publication number
JPH01242953A
JPH01242953A JP7120988A JP7120988A JPH01242953A JP H01242953 A JPH01242953 A JP H01242953A JP 7120988 A JP7120988 A JP 7120988A JP 7120988 A JP7120988 A JP 7120988A JP H01242953 A JPH01242953 A JP H01242953A
Authority
JP
Japan
Prior art keywords
die
mold
sensor body
sensor
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7120988A
Other languages
Japanese (ja)
Inventor
Katsuhiro Yokomizo
横溝 克広
Kazuo Okinaga
一夫 翁長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Mazda Motor Corp
Original Assignee
Figaro Engineering Inc
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Mazda Motor Corp filed Critical Figaro Engineering Inc
Priority to JP7120988A priority Critical patent/JPH01242953A/en
Publication of JPH01242953A publication Critical patent/JPH01242953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To improve the wear resistance and lubricity of the die and to facilitate the production of the sensor body by press molding by constituting the die of a cemented carbide and applying a ceramics coating on the inside surface of the die. CONSTITUTION:The powder of a metal oxide semiconductor (BaSnO3) charged from a hopper 14 is press-molded from above and below by the die consisting of a stationary died 14 and moving punches 10, 12 to form the sensor body 20. A pair of electrodes 16, 15 formed by adding a small ratio of ZrO2 to platinum are used and the wire diameter thereof is specified to 70mum. Further, the die 4 and the punches 10, 12 are constituted of the cemented carbide material WC-Co, etc., and the entire surface of the die 4 and the punches 10, 12 is coated with the TiC film of about 3mum thickness by plasma CVD. The sensor body 20 obtd. in such a manner is sintered in air, etc., to obtain the exhaust gas sensor. The wear resistance and lubricity of the die are thereby improved and the production of the sensor body by the press molding is facilitated.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、プレス成型を用いた半導体排ガスセンサの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a semiconductor exhaust gas sensor using press molding.

[従来技術] 発明者らは、プレス成型を用いた半導体排ガスセンサの
製造方法を提案した(特願昭62−128.599号)
。プレス成型を用いると、通常のグリーンシートの積層
を用いた製造方法(例えば特公昭60−21.3−11
号、特公昭57−15.335号)よりも、センサの生
産性を向上し、かつセンサ材料の汚染を抑制することが
できる。グリーンシートを用いると、シートをセンサデ
ツプに切断する際に、材料に多量のロスが生じる。ロス
した材料をグリーンノートに混入し、再度センサ材料と
して用いると、製造工程でセンサ材料に不純物が混入し
易い。
[Prior Art] The inventors proposed a method for manufacturing a semiconductor exhaust gas sensor using press molding (Patent Application No. 128.599/1982).
. When press molding is used, a manufacturing method using normal green sheet lamination (for example,
(Japanese Patent Publication No. 57-15.335), the productivity of the sensor can be improved and the contamination of the sensor material can be suppressed. With green sheets, a large amount of material is lost when cutting the sheets into sensor depths. If the lost material is mixed into the Green Note and used again as a sensor material, impurities are likely to be mixed into the sensor material during the manufacturing process.

発明者は、ここで次の問題に直面した。金型として通常
の鋼を用いると、金型はセンサ材料により削られ、金型
の消耗が著しかった。そこで発明者は、超硬合金製の金
型を試作した。しかしこの金型では、潤滑性の不足のた
め、プレス成型したセンサ本体を型から抜くことが出来
なかった。
The inventor faced the following problem. When ordinary steel was used as the mold, the mold was scraped by the sensor material, resulting in significant mold wear. Therefore, the inventor prototyped a mold made of cemented carbide. However, with this mold, the press-molded sensor body could not be removed from the mold due to lack of lubricity.

[発明の課題] この発明の課題は、金型の耐摩耗性と潤滑性とを向上さ
せ、プレス成型によるセンサ本体の製造を容易にする点
に有る。
[Problem of the Invention] An object of the present invention is to improve the wear resistance and lubricity of a mold and to facilitate the manufacture of a sensor body by press molding.

[発明の構成] この発明は、空燃比により抵抗値が変化する金属酸化物
半導体の粉末を、金型によりプレス成型してセンサ本体
とするようにした半導体排ガスセンサの製造方法におい
て、前記金型を超硬合金により構成すると共に、金型の
内面にセラミックの被覆を施したことを特徴とする。
[Structure of the Invention] The present invention provides a method for manufacturing a semiconductor exhaust gas sensor in which a sensor body is formed by press-molding metal oxide semiconductor powder whose resistance value changes depending on the air-fuel ratio using a mold. The mold is made of cemented carbide, and the inner surface of the mold is coated with ceramic.

ここに超硬合金としては、例えばWC−COlWC−M
o等のWCをベースとしたもの、あるいはCr5C* 
 NiやTiC−Ni−Mo等が有る。これらの材料は
硬く、センサ材料の金属酸化物半導体による研削を受け
ない。
Here, as the cemented carbide, for example, WC-COLWC-M
o etc. based on WC, or Cr5C*
Examples include Ni and TiC-Ni-Mo. These materials are hard and are not susceptible to abrasion by the metal oxide semiconductor of the sensor material.

次にセラミック被覆としては、例えばTiC。Next, as the ceramic coating, for example, TiC.

TiN、5iCSSLNa、AIN、WC等が有る。There are TiN, 5iCSSLNa, AIN, WC, etc.

これらの材料は硬Xかつ潤滑性に富み、金属酸化物半導
体による摩耗を受けず、しかも型からのセンサ本体の抜
き出しを容易にする。このような被覆の形成は、例えば
プラズマCVDにより行うことができる。プラズマCV
Dの利点は、型の内面に容易に被覆を設けることができ
る点に有る。
These materials are hard and have high lubricity, are not subject to wear caused by metal oxide semiconductors, and also facilitate the removal of the sensor body from the mold. Formation of such a coating can be carried out, for example, by plasma CVD. plasma CV
The advantage of D is that the inner surface of the mold can be easily coated.

以下、Ba5nOsのプレス成型を例に、実施例を説明
する。
Examples will be described below using press molding of Ba5nOs as an example.

[実施例コ 第1図のプレス装置2を用いて、センサ本体のプレス成
型を行った。図において、4は固定型、6はキャビティ
で、8はキャビティ6に連通させたスリットで電極線を
挿通ずるためのものである。
[Example 1] The sensor body was press-molded using the press apparatus 2 shown in FIG. In the figure, 4 is a fixed type, 6 is a cavity, and 8 is a slit communicating with the cavity 6 through which the electrode wire is inserted.

ここでは電極線の線径(70μa+)に合わせ、スリッ
ト8の幅を100μmとした。IOは下部可動型、12
は上部可動型で、14はホッパーである。そしてホッパ
ー14から投入した金属酸化物半導体(BaSnOi)
の粉末を、固定型4や可動型10゜12の金型で上下か
ら加圧成型し、センサ本体20とした。なお16.18
は一対の電極線で、ここでは白金に少量のZ r Ox
を添加したものを用い、その線径は70μ憔とした。な
おここでは金属酸化物半導体としてBa5nOsを示し
たが、T i Otや5rTiOs、あるいはLaCo
0.等でも良い。
Here, the width of the slit 8 was set to 100 μm in accordance with the wire diameter (70 μa+) of the electrode wire. IO is lower movable type, 12
is a movable upper part, and 14 is a hopper. Then, metal oxide semiconductor (BaSnOi) was introduced from the hopper 14.
The powder was molded under pressure from above and below using a fixed die 4 and a movable die 10°12 to form a sensor body 20. Furthermore, 16.18
is a pair of electrode wires, here a small amount of Z r Ox is added to platinum.
The wire diameter was 70μ. Although Ba5nOs is shown here as a metal oxide semiconductor, TiOt, 5rTiOs, or LaCo
0. etc. is also fine.

固定型4や可動型i 0,12は超硬合金材料で構成し
、ここではWC−Co材料を用いた。このような超硬合
金自体は周知であり、他の超硬合金を用いても良い。そ
して固定型4や可動型10゜12の全面をプラズマCV
Dにより、厚さ3μm程度のTiC膜で被覆した。Ti
Cに代え、TiNやS r Cz S isNいAIN
、WC等のセラミックで被覆しても良い。これらのセラ
ミックはいずれも硬く、かつ潤滑性に富んでいる。好ま
しいセラミック被覆の材料は、炭化物と窒化物である。
The fixed mold 4 and the movable molds i0 and 12 are made of cemented carbide material, and here WC-Co material is used. Such cemented carbide itself is well known, and other cemented carbide may also be used. Then, the entire surface of the fixed mold 4 and the movable mold 10°12 is coated with plasma CV.
It was covered with a TiC film having a thickness of about 3 μm. Ti
Instead of C, use TiN or S r Cz S isN AIN
It may be coated with ceramic such as , WC or the like. All of these ceramics are hard and have high lubricity. Preferred ceramic coating materials are carbides and nitrides.

また被覆の厚さは例えばt−ioμ膿程度とする。The thickness of the coating is, for example, about t-ioμ.

なおTiC等の潤滑性セラミックによる被覆は、金属酸
化物半導体と接触する部分のみに、部分的に施しても良
い。
Note that the coating with a lubricating ceramic such as TiC may be partially applied only to the portion that comes into contact with the metal oxide semiconductor.

このようにして得たセンサ本体20を空気中等で焼結し
、第2図の排ガスセンサとした。即ち、アルミナ基板2
2の先端に設けたくぼみ部24にセンサ本体20を収容
し、電極線16.+8を基板に設けた印刷電極26,2
7.28.29に溶接した。なお30.32は、予め印
刷電極26.28に接続した外部リードである。センサ
本体20をくぼみ部24に収容し、電極線16.18を
溶接した後、溶射によりセンサ本体20をくぼみ部24
に固定した。溶射は材料にMgAl*Oaを用い、溶射
電流650Aで Ar雰囲気下で行い、膜厚200μm
とした。34は生成した溶射膜である。
The sensor body 20 thus obtained was sintered in air or the like to form the exhaust gas sensor shown in FIG. That is, the alumina substrate 2
The sensor main body 20 is accommodated in the recessed part 24 provided at the tip of the electrode wire 16. +8 printed electrodes 26, 2 provided on the substrate
Welded on 7.28.29. Note that 30.32 is an external lead connected to the printed electrode 26.28 in advance. After the sensor body 20 is accommodated in the recess 24 and the electrode wires 16.18 are welded, the sensor main body 20 is placed in the recess 24 by thermal spraying.
Fixed. Thermal spraying was carried out using MgAl*Oa as the material, at a spraying current of 650 A, in an Ar atmosphere, and with a film thickness of 200 μm.
And so. 34 is the generated thermal spray film.

なお溶射膜34には、例えばT i OtやAI*Oa
等を用いてら良い。また好ましくは溶射膜34はセンサ
本体20の一部のみを被覆するようにし、応答速度の低
下を防止する。実施例では、センサ本体20のlθ%程
度を被覆するようにした。
The sprayed film 34 may include, for example, T i Ot or AI*Oa.
It is better to use etc. Preferably, the sprayed film 34 covers only a portion of the sensor body 20 to prevent a decrease in response speed. In the embodiment, approximately lθ% of the sensor body 20 was covered.

試験例 水酸化ナトリウムで安定化したスズ酸の水溶液(PH1
3)に、塩化バリウム水溶液を加え、室温でBa5nO
s・7l−1tOを沈でんさせた。沈でんの水洗を繰り
返しながら、溶液を70℃に加温し、BaSnO3・5
HtOを経て、Ba5nOa ・3H*0の結晶を得た
。Ba5nOs・3H10は、針状の長さ数十μm程度
の結晶として沈でんした。この結晶を空気中で1400
℃で加熱し、Ba5nO*へ熱分解した。熱分解後のB
aSnO3粒子は、最初の含水結晶の形態を維持してい
た。これに2wt%の酢酸セルロースバインダーを加え
、プレス成型した。なおプレス装置は第1図のものを用
い、電極線16.18の間隔は1mmとした。バインダ
ーはデキストリンやでん粉、あるいはホウ素酸化物等に
変えても良く、あるいは用いなくてら良い。
Test Example: An aqueous solution of stannic acid stabilized with sodium hydroxide (PH1
Add barium chloride aqueous solution to 3), and add Ba5nO at room temperature.
s.7l-1tO was precipitated. While repeatedly washing the precipitate with water, the solution was heated to 70°C, and BaSnO3.5
Through HtO, Ba5nOa .3H*0 crystals were obtained. Ba5nOs.3H10 was precipitated as needle-like crystals with a length of about several tens of μm. 1400 ml of this crystal in the air
It was heated at ℃ to thermally decompose it into Ba5nO*. B after pyrolysis
The aSnO3 particles maintained their initial hydrated crystalline morphology. 2 wt % cellulose acetate binder was added to this, and press molding was performed. Note that the press device shown in FIG. 1 was used, and the spacing between the electrode wires 16 and 18 was 1 mm. The binder may be replaced with dextrin, starch, or boron oxide, or may not be used.

ここでBa5nO1・3HtOを出発材料としたのは、
形がい粒子を利用して、プレス成型を容易にするためで
ある。即ち、Ba5nO+・3HzOを熱分解したBa
5nO,は、母結晶の形態を維持した大きな針状の粒子
(形がい粒子)となるため、流動性に富み、金型の内部
に均一に充てんすることが容易である。また外形が大き
いため、金型からこぼれだすことが少ない。
Here, Ba5nO1.3HtO was used as the starting material because
This is to facilitate press molding by using shaped particles. That is, Ba obtained by thermally decomposing Ba5nO+・3HzO
Since 5nO forms large needle-like particles (shape particles) that maintain the morphology of the mother crystal, they are highly fluid and can be easily filled uniformly into the mold. Also, because the outside size is large, there is less chance of it spilling out of the mold.

次に金型4,10.12を各種の材質で構成し、2×2
×0.61+1I11の大きさに、センサ本体20を5
Ton/cm’の圧力でプレス成型した。金型4,10
、I2の材質には、通常の材質であるダイス鋼(比較例
1)、セラミック被覆なしのWC−Co超硬合金(比較
例2)、及び内面を厚さ約3μmのTiCで被覆したW
C−Co超硬合金(実施例)の3種を用いた。
Next, molds 4, 10.12 are constructed of various materials, and 2×2
The size of the sensor body 20 is 5×0.61+1I11.
Press molding was performed at a pressure of Ton/cm'. Mold 4, 10
, I2 are made of die steel (comparative example 1), which is a normal material, WC-Co cemented carbide without ceramic coating (comparative example 2), and W whose inner surface is coated with TiC with a thickness of about 3 μm.
Three types of C-Co cemented carbide (Example) were used.

比較例1の場合、1万回程度のプレスで金型は消耗した
。消耗は特に固定型4で著しく、固定型4の内面にくぼ
みが生じた。消耗した固定型4を用いると、センサ本体
20の形状がいびつとなり、また固定型4からの抜き出
し時に破損するものが生じた。
In the case of Comparative Example 1, the mold was worn out after about 10,000 presses. The wear and tear was particularly significant on the fixed mold 4, and a dent was formed on the inner surface of the fixed mold 4. When a worn out fixed mold 4 is used, the shape of the sensor main body 20 becomes distorted, and some parts are damaged when being extracted from the fixed mold 4.

比較例2の場合、プレス成型後のセンサ本体20を固定
型4から抜くことが難しかった、即ち、センサ本体20
の大部分は、型4から抜き出す際に破損してしまった。
In the case of Comparative Example 2, it was difficult to pull out the sensor body 20 after press molding from the fixed mold 4, that is, the sensor body 20
Most of them were damaged when being pulled out from mold 4.

実施例の場合、1万回程度使用しても金型4゜10.1
2の消耗は見られず、また型4からの抜き出し時の破損
も生じなかった。なお実施例の場合、仮に金型4゜10
.12が消耗するとしても、消耗する部分はセラミック
被覆に限らる。そして消耗した金型4,10.12に再
度セラミック被覆を施什ば、金型4,10.12を再使
用できる。またTiCによる被覆に代え、厚さ3μm程
度のTiN被覆を試みたが、結果は同様であった。
In the case of the example, the mold 4°10.1 even after being used about 10,000 times.
No wear was observed in 2, and no damage occurred during extraction from mold 4. In the case of the example, the mold is assumed to be 4°10
.. Even if 12 wears out, the part that wears out is limited to the ceramic coating. Then, by applying ceramic coating again to the worn molds 4, 10.12, the molds 4, 10.12 can be reused. Furthermore, instead of coating with TiC, a TiN coating with a thickness of about 3 μm was tried, but the results were the same.

実施例ではBa5nO*のプレス成型に付いて説明した
が、これに限るものではなく、Tie、や5rTiO+
、LaCoOs等の任意の空燃比により抵抗値が変化す
る金属酸化物半導体のプレス成型に用いることができる
。B a S n O3は、形がい粒子の利用によりプ
レス成型が容易なため、例として示したに過ぎない。
In the examples, press molding of Ba5nO* was explained, but the invention is not limited to this, and Tie, 5rTiO+
It can be used for press molding of metal oxide semiconductors whose resistance value changes depending on an arbitrary air-fuel ratio, such as , LaCoOs, etc. B a S n O 3 is only shown as an example because press molding is easy due to the use of shaped particles.

[発明の効果] この発明では、半導体排ガスセンサのセンサ本体をプレ
ス成型する。そしてプレス成型時の、金型の消耗を防止
し、かつ金型からのセンサ本体の抜き出し時の破損を防
止して、プレス成型を容易にする。
[Effects of the Invention] In the present invention, the sensor body of the semiconductor exhaust gas sensor is press-molded. Further, during press molding, consumption of the mold is prevented, and damage when the sensor main body is extracted from the mold is prevented, thereby facilitating press molding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例での半導体排ガスセンサの製造工程を現
す斜視図、第2図は実施例で製造した排ガスセンサの一
部切り欠き部付き正面図である。 図において、4 固定型、I O,+ 2  可動型、
16.18  電極線、   20 センサ本体。
FIG. 1 is a perspective view showing the manufacturing process of the semiconductor exhaust gas sensor in the example, and FIG. 2 is a front view with a partially cutout portion of the exhaust gas sensor manufactured in the example. In the figure, 4 fixed type, I O, + 2 movable type,
16.18 Electrode wire, 20 Sensor body.

Claims (1)

【特許請求の範囲】[Claims] (1)空燃比により抵抗値が変化する金属酸化物半導体
の粉末を、金型によりプレス成型してセンサ本体とする
ようにした、半導体排ガスセンサの製造方法において、 前記金型を超硬合金により構成すると共に、金型の内面
にセラミックの被覆を施したことを特徴とする、半導体
排ガスセンサの製造方法。
(1) A method for manufacturing a semiconductor exhaust gas sensor in which a metal oxide semiconductor powder whose resistance value changes depending on the air-fuel ratio is press-molded using a mold to form a sensor body, wherein the mold is made of a cemented carbide. 1. A method for manufacturing a semiconductor exhaust gas sensor, characterized in that the inner surface of a mold is coated with ceramic.
JP7120988A 1988-03-24 1988-03-24 Production of semiconductor exhaust gas sensor Pending JPH01242953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7120988A JPH01242953A (en) 1988-03-24 1988-03-24 Production of semiconductor exhaust gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7120988A JPH01242953A (en) 1988-03-24 1988-03-24 Production of semiconductor exhaust gas sensor

Publications (1)

Publication Number Publication Date
JPH01242953A true JPH01242953A (en) 1989-09-27

Family

ID=13454062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7120988A Pending JPH01242953A (en) 1988-03-24 1988-03-24 Production of semiconductor exhaust gas sensor

Country Status (1)

Country Link
JP (1) JPH01242953A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468697A (en) * 1977-11-11 1979-06-01 Nippon Soken Gas constituent detector
JPS5831066A (en) * 1981-07-28 1983-02-23 Toyota Motor Corp Punch for cold working

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468697A (en) * 1977-11-11 1979-06-01 Nippon Soken Gas constituent detector
JPS5831066A (en) * 1981-07-28 1983-02-23 Toyota Motor Corp Punch for cold working

Similar Documents

Publication Publication Date Title
US20010014295A1 (en) Method of processing a surface of a mold using electric discharge, an electrode used in such processing and a method of manufacturing such an electrode
EP1057565A3 (en) Post-cast EDM method for reducing the thickness of a turbine nozzle wall
KR20020042434A (en) A glass-forming mold and a manufacturing method thereof
JPH01242953A (en) Production of semiconductor exhaust gas sensor
ATE77776T1 (en) PROCESS FOR PRODUCTION OF METALLIC PRODUCTS FROM POWDER BY HOT ISOSTATIC PRESSURE USING CERAMIC CORE.
AU2001295587A1 (en) Dental moulded part and method for the production thereof
CN110281683A (en) A kind of artwork Ornament production method of ceramic inserts metal
JP5053206B2 (en) Method of forming quartz glass material using mold material
AR002508A1 (en) METHOD FOR MOLDING METAL SHEET
JPH0688832B2 (en) Polycrystalline ceramic product and manufacturing method thereof
JPH0561226B2 (en)
JPS63292050A (en) Exhaust gas sensor
JPS6116807A (en) Manufacture of ceramic sheet
SU361013A1 (en) ALL-UNION NATEHTHO-lTXflSi'ir'KAfl
JPH0583511B2 (en)
JP3609208B2 (en) Method for producing ceramic molded body forming oxygen sensor element body
JPS63292055A (en) Manufacture of gas sensor
SU808475A1 (en) Method of making ceramic articles
JPS61135458A (en) Apparatus for producing thin metallic strip
JP6678473B2 (en) Scraper
JPS57187127A (en) Production for pressure die
CN109496066A (en) A kind of metallic circuit and preparation method thereof being designed at chip ceramic matrix body specific region
JPH04164830A (en) Mold for forming optical element and penewal of used mold
JP2000119707A (en) Production of high purity ruthenium fine powder
JPS63207556A (en) Manufacture of diamond wire