JPH0583511B2 - - Google Patents

Info

Publication number
JPH0583511B2
JPH0583511B2 JP62072671A JP7267187A JPH0583511B2 JP H0583511 B2 JPH0583511 B2 JP H0583511B2 JP 62072671 A JP62072671 A JP 62072671A JP 7267187 A JP7267187 A JP 7267187A JP H0583511 B2 JPH0583511 B2 JP H0583511B2
Authority
JP
Japan
Prior art keywords
oxide
chromium
salt
aluminum
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62072671A
Other languages
Japanese (ja)
Other versions
JPS63236756A (en
Inventor
Koichi Hayashi
Takeshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP62072671A priority Critical patent/JPS63236756A/en
Priority to KR1019880003112A priority patent/KR910009894B1/en
Priority to EP88302680A priority patent/EP0284418B1/en
Priority to DE3887999T priority patent/DE3887999T2/en
Priority to US07/173,445 priority patent/US4952537A/en
Publication of JPS63236756A publication Critical patent/JPS63236756A/en
Publication of JPH0583511B2 publication Critical patent/JPH0583511B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はボンデイングキヤピラリー、光コネク
ター、ワイヤーガイド、或いは装飾品として用い
る人造ルビー及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an artificial ruby used as a bonding capillary, an optical connector, a wire guide, or an ornament, and a method for producing the same.

(従来の技術) 半導体チツプ表面の電極とリードフレームのフ
インガーとをつなぐ金ワイヤーのキヤリアー等と
して従来から多結晶人造ルビーを用いている。
(Prior Art) Polycrystalline synthetic rubies have been used as carriers for gold wires connecting electrodes on the surface of semiconductor chips and fingers of lead frames.

斯かる多結晶人造ルビーは酸化アルミニウム及
び酸化クロムに、MgO,SrO,Y2O5及びLa2O3
等を焼結助剤として混合し、これを成形した後に
所定の雰囲気で焼結するようにしていたが、雰囲
気制御が困難で焼結助剤が多数必要となるため、
酸化アルミニウム、酸化クロム及び酸化マグネシ
ウムの混合物を成形した後、10-1Torr以上の真
空中で1400〜2000℃の温度で焼結する方法が特開
昭59−97572号として提案されている。
Such polycrystalline artificial ruby is made of aluminum oxide and chromium oxide, MgO, SrO, Y 2 O 5 and La 2 O 3
etc. were mixed as a sintering aid, and the mixture was molded and then sintered in a predetermined atmosphere, but it was difficult to control the atmosphere and a large number of sintering aids were required.
JP-A-59-97572 proposes a method in which a mixture of aluminum oxide, chromium oxide and magnesium oxide is molded and then sintered at a temperature of 1400 to 2000°C in a vacuum of 10 -1 Torr or more.

(発明が解決しようとする問題点) 上述した従来法によつて得られた人造ルビー
は、平均結晶粒径が大きく、透光性の点で劣り、
また硬度も200HV以上となりにくくしたがつて
加工性及び耐久性の面でも問題がある。
(Problems to be Solved by the Invention) The artificial ruby obtained by the conventional method described above has a large average crystal grain size and is inferior in light transmittance.
In addition, the hardness is difficult to exceed 200 HV, so there are problems in terms of workability and durability.

(問題点を解決するための手段) 上記問題点を解決すべく本発明は、0.7〜3wt%
の酸化クロム、0〜0.05wt%の酸化マグネシウム
及び残部を酸化アルミニウムとした酸化物の混合
微粉末を用意し、この酸化物の混合微粉末に有機
バインダーを加えて所定形状に成形し、この成形
体を1280〜1350℃で焼結した後、1300〜1310℃且
つ1000〜2000atmの条件下で熱間静水圧プレスを
かけるようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides 0.7 to 3wt%
A fine mixed powder of chromium oxide, 0 to 0.05 wt% magnesium oxide, and the balance aluminum oxide is prepared, an organic binder is added to this fine mixed oxide powder, and it is molded into a predetermined shape. After the body was sintered at 1280-1350°C, it was subjected to hot isostatic pressing at 1300-1310°C and 1000-2000 atm.

(作用) 上述した条件で行うことで、平均結晶粒径が
2.0μm以下で4μm以上の粗大粒子を含まず且つポ
アの径が0.1μm以下の透光性、硬度、曲げ強度に
優れた人造ルビーが製造される。
(Effect) By performing the process under the above conditions, the average crystal grain size can be reduced.
An artificial ruby with a pore size of 2.0 μm or less, free of coarse particles of 4 μm or more, and a pore diameter of 0.1 μm or less, excellent in translucency, hardness, and bending strength is produced.

(実施例) 以下に本発明の実施例を添付図面を参照しつつ
説明する。
(Example) Examples of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明方法を工程順に示したブロツク
図であり、本発明にあつては出発原料として噴霧
乾燥後に熱分解すると純度99.99%以上の酸化ア
ルミニウムになるアルミニウム塩、噴霧乾燥後に
熱分解すると純度99.99%以上の酸化クロムにな
るクロム塩及び噴霧乾燥後に熱分解すると純度
99.99%以上の酸化マグネシウムになるマグネシ
ウム塩を用意する。具体例を挙げると、アルミニ
ウム塩としてはアンモニウム明ばん、或いは、ア
ルミニウム・アンモニウム・カーボナイト・ハイ
ドロオキサイド(AACH:NH4AlCO3(OH)2
を用い、クロム塩としては硝酸クロムCr(NO3
・9H2O、マグネシウム塩としては硝酸マグネ
シウムMg(NO33・6H2Oを用いる。
FIG. 1 is a block diagram showing the method of the present invention in the order of steps. In the present invention, aluminum salt, which becomes aluminum oxide with a purity of 99.99% or more when thermally decomposed after spray drying, is used as a starting material. Chromium salt that becomes chromium oxide with a purity of 99.99% or more and purity when thermally decomposed after spray drying
Prepare a magnesium salt that becomes 99.99% or more magnesium oxide. For example, as an aluminum salt, ammonium alum or aluminum ammonium carbonite hydroxide (AACH: NH 4 AlCO 3 (OH) 2 ) is used.
Chromium nitrate Cr (NO 3 ) is used as the chromium salt.
3.9H 2 O, and magnesium nitrate Mg(NO 3 ) 3.6H 2 O is used as the magnesium salt.

そして上記の各塩を秤量しこれらを樹脂ボール
を入れた樹脂ポツトでもつて一旦懸濁水溶液と
し、噴霧乾燥法によつて乾燥せしめた後、500〜
1050℃の温度で熱分解し、酸化アルミニウム、酸
化クロム及び酸化マグネシウムを均一に混合して
なる酸化物の混合微粉末を得る。そして、この混
合微粉末を更にエタノール等の溶剤中で湿式粉砕
して凝集体をほぐし、再び噴霧乾燥法によつて乾
燥して微粉末体とする。ここで混合微粉末を構成
する各酸化物の割合は、酸化クロムを、0.7〜3wt
%、酸化マグネシウムを0〜0.05wt%、酸化アル
ミニウムを残部とする。つまり酸化マグネシウム
については全く添加しなくともよい。
Then, each of the above salts was weighed and suspended in a resin pot containing a resin ball, and dried by spray drying.
The product is thermally decomposed at a temperature of 1050°C to obtain a fine powder mixture of aluminum oxide, chromium oxide, and magnesium oxide, which is a uniform mixture of oxides. Then, this mixed fine powder is further wet-pulverized in a solvent such as ethanol to loosen aggregates, and dried again by spray drying to obtain a fine powder. Here, the proportion of each oxide constituting the mixed fine powder is chromium oxide, 0.7 to 3wt
%, magnesium oxide is 0-0.05wt%, and aluminum oxide is the balance. In other words, it is not necessary to add magnesium oxide at all.

また酸化物の混合微粉末を得るには第2図に示
すように各塩を熱分解して酸化アルミニウム、酸
化クロム及び酸化マグネシウムを別々に形成した
後、これらを秤量して混合するようにしてもよ
い。
In addition, to obtain a mixed fine powder of oxides, as shown in Figure 2, each salt is thermally decomposed to form aluminum oxide, chromium oxide, and magnesium oxide separately, and then these are weighed and mixed. Good too.

以上の如くして酸化物の混合微粉末を得たなら
ば、この混合微粉末に熱可塑性樹脂を主体とする
有機バインダーを加え、所望形状にインジエクシ
ヨン成形する。
Once the mixed fine powder of the oxide is obtained as described above, an organic binder mainly composed of a thermoplastic resin is added to the mixed fine powder, and the mixture is molded into a desired shape by injection molding.

次いでインジエクシヨン成形によつて得た成形
体を脱脂後焼結する。焼結の条件は1280〜1300℃
の大気中、1280〜1300℃で10-3〜10-6Torrの真
空中或いは1300〜1350℃でN2,Ar又はH2の雰囲
気中で行うものとし、大気中で行う場合は、例え
ば昇温速度を200℃/hとして800℃及び1295℃そ
れぞれ1時間保持する。
Next, the molded body obtained by injection molding is degreased and then sintered. Sintering conditions are 1280-1300℃
The test shall be carried out in an atmosphere of 1280 to 1300°C and a vacuum of 10 -3 to 10 -6 Torr, or in an atmosphere of N 2 , Ar or H 2 at 1300 to 1350°C. The heating rate was set to 200°C/h, and the temperature was maintained at 800°C and 1295°C for 1 hour each.

以上のようにして得られた焼結体に熱間静水圧
プレスをかける。この時の条件としては1300〜
1310℃、圧力1000〜2000atmでアルゴン雰囲中で
1時間行なう。このようにして得られた製品にダ
イヤモンド精密研削及び精密研磨を施して最終製
品を得る。
The sintered body obtained as described above is subjected to hot isostatic pressing. The conditions at this time are 1300~
It is carried out for 1 hour at 1310°C and a pressure of 1000 to 2000 atm in an argon atmosphere. The product thus obtained is subjected to diamond precision grinding and precision polishing to obtain a final product.

(発明の効果) 第3図は酸化クロムと酸化マグネシウムの割合
を変えて製造した本発明品(No.1〜6)及び比較
例(No.7〜9)の耐久性等を示した図示である。
尚、比較例(No.9)についてのみ出発原料をバイ
ヤー法の酸化アルミニウムとし、この原料に対し
1575℃×1hrで真空焼結を行い、次いで1500℃×
1000atm×1hr(in Ar)の条件下で熱間静水圧プ
レスをかけた。
(Effect of the invention) Figure 3 is a diagram showing the durability, etc. of the products of the present invention (Nos. 1 to 6) and comparative examples (Nos. 7 to 9) manufactured by changing the ratio of chromium oxide and magnesium oxide. be.
In addition, only for the comparative example (No. 9), the starting material was aluminum oxide of the Bayer method, and for this material
Vacuum sintering was performed at 1575℃×1hr, then 1500℃×
Hot isostatic pressing was performed under conditions of 1000 atm x 1 hr (in Ar).

また、耐久性試験はウルトラソニツクタイプの
ボンデイングキヤピラリーを試作し、20000回ワ
イヤーボンデイングを繰り返した後に王水洗浄し
て先端使用面の状態を電子顕微鏡(400倍)で観
察し、全く変化がない場合をA、多少の摩耗があ
る場合をB、脱落やチツピングが認められた場合
をCとした。
In addition, for durability testing, we prototyped an ultrasonic type bonding capillary, and after repeating wire bonding 20,000 times, we cleaned it with aqua regia and observed the condition of the tip using an electron microscope (400x magnification), and found no changes at all. The case where there was no damage was rated A, the case where there was some wear was rated B, and the case where falling off or chipping was observed was rated C.

また、加工性試験は60rpmで回転する摺り合せ
精密研削・精密研磨機に荷重500gをかけて以下
の精密研削及び精密研磨を行つた。
In addition, for the workability test, the following precision grinding and polishing were performed by applying a load of 500 g to a sliding precision grinding/polishing machine rotating at 60 rpm.

研削 水・湿式200#メタルボンドダイヤモン
ド・砥石 10min 研磨 オイル・湿式 8μmダイヤモンドペース
ト・陶板上 10min 研削 オイル・湿式 1μmダイヤモンドペース
ト・銅板上 20min 研磨 オイル・湿式 0.5μmダイヤモンドペー
ストバフ上 10min そして、精密研削・精密研磨後に鏡面となつた
場合をA、一部に傷が残つている場合をB、チツ
ピングが著しい場合をCとした。
Grinding Water/wet method 200# metal bond diamond/grinding wheel 10min Polishing Oil/wet method 8μm diamond paste/on ceramic plate 10min Grinding Oil/wet method 1μm diamond paste/on copper plate 20min Polishing Oil/wet method 0.5μm diamond paste on buff 10min And precision grinding/ A case where the surface became a mirror surface after precision polishing was rated A, a case where some scratches remained was rated B, and a case where chipping was significant was rated C.

また、透光性の良否については、得られた焼結
体を厚さ0.3mmにスライス研磨したものを通して、
1cm離れた新聞紙面上の文字が見えるか否かで判
定した。
In addition, regarding the quality of translucency, the obtained sintered body was sliced and polished to a thickness of 0.3 mm.
The test was based on whether the characters on the newspaper surface 1 cm away were visible.

第3図から明らかなように、酸化クロムが0.7
〜3.0wt%、酸化マグネシウムが0〜0.05wt%で
あれば各種特性に優れた人造ルビーを得ることが
できる。
As is clear from Figure 3, chromium oxide is 0.7
~3.0wt% and magnesium oxide is 0 to 0.05wt%, an artificial ruby with excellent various properties can be obtained.

以上まとめれば本発明により以下の如き効果を
発揮する。
To summarize the above, the present invention exhibits the following effects.

先ず、出発原料に金属塩を用いたことにより低
い温度で焼結させることができる。即ち金属塩を
熱分解して得た高純度酸化物は表面が活性化して
いるため、低い温度で焼結を完了させることがで
きる。そして焼結温度が低いと仮りに酸化マグネ
シウムを添加しなくとも異常粒成長が生じにくく
均一で微細な結晶粒となる。したがつて酸化マグ
ネシウムは必須の材料ではないが、添加すること
により焼結性は向上する。
First, by using a metal salt as a starting material, sintering can be performed at a low temperature. That is, since the high purity oxide obtained by thermally decomposing a metal salt has an activated surface, sintering can be completed at a low temperature. If the sintering temperature is low, even if magnesium oxide is not added, abnormal grain growth is less likely to occur, resulting in uniform and fine crystal grains. Therefore, although magnesium oxide is not an essential material, its addition improves sinterability.

また、混合方法として噴霧乾燥法を用いている
ため各種酸化物等を均一に混合せしめることがで
き、熱間静水圧プレスを施すため製品の硬度を高
めることができる。特に焼結温度を1280℃以上、
熱間静水圧プレスを1300℃以上且つ1000atm以上
としたため0.1μm以上のポアが残ることがなく、
焼結温度を1350℃以下、熱間静水圧プレスを1310
℃以下且つ2000atm以下としたため4μm以上の異
常粒成長がない。
Furthermore, since a spray drying method is used as a mixing method, various oxides, etc. can be mixed uniformly, and since hot isostatic pressing is performed, the hardness of the product can be increased. Especially when the sintering temperature is 1280℃ or higher,
Because the hot isostatic press was performed at a temperature of 1300℃ or higher and 1000atm or higher, no pores larger than 0.1μm remain.
Sintering temperature below 1350℃, hot isostatic press at 1310℃
Since the temperature was below ℃ and below 2000 atm, there was no abnormal grain growth of 4 μm or more.

また、熱間静水圧プレスをかけたことにより結
晶に力学的格子ひずみが生じ、これが製品の硬度
を高めることとなる。
In addition, hot isostatic pressing causes mechanical lattice strain in the crystal, which increases the hardness of the product.

更に本発明はクロムを添加しており、このクロ
ムは物質表面に自己拡散しやすく、セラミツクス
の表面にクロムリツチな酸化被膜を形成するた
め、炭素の付着が阻止され、硬度及び耐食性が向
上する。ただし、酸化クロムの割合が0.7wt%以
下だと所望の硬度や耐食性が得られず、3wt%以
上となると熱間静水圧プレス後の製品に0.1μm以
上のポアが残り、所望の靱性と強度が期待できな
くなるため、酸化クロム(クロム塩の場合は酸化
クロムに換算する)の割合(酸化アルミニウム、
酸化クロム及び酸化マグネシウムの混合物を100
とする)は0.7〜3wt%とすることが好ましい。
Further, in the present invention, chromium is added, and this chromium easily self-diffuses onto the surface of the material, forming a chromium-rich oxide film on the surface of the ceramic, thereby preventing carbon adhesion and improving hardness and corrosion resistance. However, if the proportion of chromium oxide is less than 0.7wt%, the desired hardness and corrosion resistance cannot be obtained, and if it is more than 3wt%, pores of 0.1μm or more will remain in the product after hot isostatic pressing, resulting in the desired toughness and strength. Therefore, the ratio of chromium oxide (converted to chromium oxide in the case of chromium salt) (aluminum oxide,
100% mixture of chromium oxide and magnesium oxide
) is preferably 0.7 to 3 wt%.

そして、クロムイオンの半径とアルミニウムイ
オンの半径とは略々等しい(約12%の差)ためク
ロムイオンとアルミニウムイオンとが焼結時に置
換し、その結果結晶に格子ひずみが生じ、この格
子ひずみにより前記同様製品の硬度が向上する。
Since the radius of the chromium ion and the radius of the aluminum ion are almost equal (about 12% difference), the chromium ion and aluminum ion replace each other during sintering, resulting in lattice strain in the crystal. As above, the hardness of the product is improved.

したがつて本発明方法によれば、透光性に優
れ、結晶粒径が均質となり、緻密で且つ微細な組
織となり強度、硬度、耐久性及び加工性に優れた
人造ルビーを得ることができる。
Therefore, according to the method of the present invention, it is possible to obtain an artificial ruby that has excellent light transmittance, has a uniform crystal grain size, has a dense and fine structure, and has excellent strength, hardness, durability, and workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を工程順に示したブロツク
図、第2図は別実施例の工程を示す図、第3図は
強度及び硬度等を比較した図表である。
Fig. 1 is a block diagram showing the method of the present invention in the order of steps, Fig. 2 is a drawing showing the steps of another embodiment, and Fig. 3 is a chart comparing strength, hardness, etc.

Claims (1)

【特許請求の範囲】 1 酸化アルミニウムに0.7〜3.0wt%の酸化クロ
ムが固溶した平均粒径2.0μm以下の結晶又は酸化
アルミニウムに0.7〜3.0wt%の酸化クロム及び
0.05wt%以下の酸化マグネシウムが固溶した平均
粒径2.0μm以下の結晶からなり、内部に存在する
ポアの径が0.1μm以下で、4μm以上の粗大粒が存
在せず、硬度が2000Hv以上で、透光性を有する
ことを特徴とする多結晶人造ルビー。 2 クロム塩を熱分解して得た酸化クロムを0.7
〜3.0wt%、マグネシウム塩を熱分解して得た酸
化マグネシウムを0〜0.05wt%、アルミニウム塩
を熱分解して得た酸化アルミニウムを残部とした
酸化物の混合粉末に有機バインダーを加えて所望
の形状に成形し、この成形体を1280〜1350℃で焼
結し、次いでこの焼結体に1300〜1310℃且つ1000
〜2000atmの条件下で熱間静水圧プレスをかける
ようにしたことを特徴とする多結晶人造ルビーの
製造方法。 3 前記酸化物の混合粉末は、アルミニウム塩、
クロム塩及びマグネシウム塩を秤量して均質な懸
濁溶液とし、この懸濁溶液を噴霧乾燥法にて乾燥
して微粉末とし、この微粉末を加熱分解すること
で得るようにしたことを特徴とする特許請求の範
囲第2項記載の多結晶人造ルビーの製造方法。 4 前記成形体の焼結は大気中、10-3乃至10-6
Torrの真空中若しくはN2、Ar又はH2の雰囲気
中で行うことを特徴とする特許請求の範囲第2項
記載の多結晶人造ルビーの製造方法。
[Claims] 1. Crystals with an average particle size of 2.0 μm or less in which 0.7 to 3.0 wt% of chromium oxide is dissolved in aluminum oxide, or 0.7 to 3.0 wt% of chromium oxide in aluminum oxide and
It consists of crystals with an average particle size of 2.0 μm or less in which 0.05 wt% or less of magnesium oxide is dissolved, the internal pore diameter is 0.1 μm or less, there are no coarse particles of 4 μm or more, and the hardness is 2000 Hv or more. , a polycrystalline artificial ruby characterized by having translucency. 2 Chromium oxide obtained by thermally decomposing chromium salt is 0.7
~3.0wt%, 0 to 0.05wt% of magnesium oxide obtained by thermally decomposing a magnesium salt, and the balance being aluminum oxide obtained by thermally decomposing an aluminum salt, and an organic binder is added to the desired powder. This molded body is sintered at 1280-1350℃, and then this sintered body is heated at 1300-1310℃ and 1000℃.
A method for producing polycrystalline artificial ruby, characterized by applying hot isostatic pressing under conditions of ~2000 atm. 3 The mixed powder of the oxide contains an aluminum salt,
The method is characterized in that a chromium salt and a magnesium salt are weighed to form a homogeneous suspension solution, this suspension solution is dried by a spray drying method to form a fine powder, and this fine powder is obtained by thermal decomposition. A method for producing a polycrystalline artificial ruby according to claim 2. 4 The molded body is sintered in the atmosphere at 10 -3 to 10 -6
3. The method for producing polycrystalline artificial ruby according to claim 2, wherein the method is carried out in a Torr vacuum or in an atmosphere of N 2 , Ar or H 2 .
JP62072671A 1987-03-26 1987-03-26 Polycrystal artificial ruby and manufacture Granted JPS63236756A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62072671A JPS63236756A (en) 1987-03-26 1987-03-26 Polycrystal artificial ruby and manufacture
KR1019880003112A KR910009894B1 (en) 1987-03-26 1988-03-23 Ceramic products and process for producing the same
EP88302680A EP0284418B1 (en) 1987-03-26 1988-03-25 Ceramic products and process for producing the same
DE3887999T DE3887999T2 (en) 1987-03-26 1988-03-25 Ceramic products and processes for their manufacture.
US07/173,445 US4952537A (en) 1987-03-26 1988-03-25 Ceramic products and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072671A JPS63236756A (en) 1987-03-26 1987-03-26 Polycrystal artificial ruby and manufacture

Publications (2)

Publication Number Publication Date
JPS63236756A JPS63236756A (en) 1988-10-03
JPH0583511B2 true JPH0583511B2 (en) 1993-11-26

Family

ID=13496054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072671A Granted JPS63236756A (en) 1987-03-26 1987-03-26 Polycrystal artificial ruby and manufacture

Country Status (1)

Country Link
JP (1) JPS63236756A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559303B2 (en) * 1994-02-28 2004-09-02 京セラ株式会社 Ceramic guide member
JP2006273701A (en) * 2005-03-30 2006-10-12 Masaji Miyake Synthetic jewel production process
EP3219691B1 (en) * 2016-03-15 2019-02-27 The Swatch Group Research and Development Ltd. Opaque red polycrystalline ceramic
CN111433606B (en) * 2017-02-09 2024-05-24 上海宜晟生物科技有限公司 Determination with different pitch heights

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238514A (en) * 1975-09-23 1977-03-25 Sumitomo Electric Industries Manufacture of alumina ceramic materials
JPS57100976A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Industries Tenacious ceramic material
JPS5997572A (en) * 1982-11-22 1984-06-05 科学技術庁無機材質研究所長 Manufacture of polycrystal artificial ruby
JPS61291449A (en) * 1985-06-19 1986-12-22 並木精密宝石株式会社 Manufacture of alumina sintered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238514A (en) * 1975-09-23 1977-03-25 Sumitomo Electric Industries Manufacture of alumina ceramic materials
JPS57100976A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Industries Tenacious ceramic material
JPS5997572A (en) * 1982-11-22 1984-06-05 科学技術庁無機材質研究所長 Manufacture of polycrystal artificial ruby
JPS61291449A (en) * 1985-06-19 1986-12-22 並木精密宝石株式会社 Manufacture of alumina sintered body

Also Published As

Publication number Publication date
JPS63236756A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
US5035724A (en) Sol-gel alumina shaped bodies
KR910009894B1 (en) Ceramic products and process for producing the same
JP2729204B2 (en) Polycrystalline ceramic product and method for producing the same
JPH0583511B2 (en)
JPS63239154A (en) Colored light-permeable polycrystal ceramics product and manufacture
JP2004203639A (en) Formed blank product of silica glass, its polished product, and method of manufacturing them
JPS63236757A (en) Polycrystal ceramic product and manufacture
JP3370800B2 (en) Manufacturing method of composite material
JP3756567B2 (en) Mold for optical element molding
JPS63236755A (en) Composite ceramics and manufacture
JPS62287027A (en) Manufacture of porous cu-alloy sintered compact
JPH08245259A (en) Polycrystalline ceramics and its production
JPH11255523A (en) Mold for forming glass mold and its production
JPH0761615B2 (en) Coated high hardness powder and method for producing the same
JPH03193605A (en) Production of target material for forming oxide superconducting thin film
JPH11156703A (en) Lapping plate and its manufacture
JPH0827571A (en) Production of storontium titanate target
JPH05275226A (en) Manufacture of junction ferrite
JPH0283277A (en) Production of porous ceramics
JPS6395155A (en) Composite sintered body comprising carbide and oxide
JPH02180761A (en) Aluminum nitride sintered body
JPH08208323A (en) Productionn of nonmagnetic ceramic for magnetic head
JPH06144920A (en) Oxide ceramic sintered compact and its production
JPS60186470A (en) Manufacture of silicon nitride sintered body
JPH03112844A (en) Production of composite sintered ceramic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 14