JP3370800B2 - Manufacturing method of composite material - Google Patents

Manufacturing method of composite material

Info

Publication number
JP3370800B2
JP3370800B2 JP26410894A JP26410894A JP3370800B2 JP 3370800 B2 JP3370800 B2 JP 3370800B2 JP 26410894 A JP26410894 A JP 26410894A JP 26410894 A JP26410894 A JP 26410894A JP 3370800 B2 JP3370800 B2 JP 3370800B2
Authority
JP
Japan
Prior art keywords
composite material
metal
grain growth
salt
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26410894A
Other languages
Japanese (ja)
Other versions
JPH08127807A (en
Inventor
光雄 桑原
哲也 大石
光弘 船木
一仁 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP26410894A priority Critical patent/JP3370800B2/en
Publication of JPH08127807A publication Critical patent/JPH08127807A/en
Priority to US08/892,996 priority patent/US5945167A/en
Application granted granted Critical
Publication of JP3370800B2 publication Critical patent/JP3370800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス粉末と金
属粉末からなる複合材において、その表面がセラミック
スリッチでその内部が金属リッチである複合材の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite material composed of ceramic powder and metal powder, the surface of which is rich in ceramics and the inside of which is rich in metal.

【0002】[0002]

【従来の技術】例えば、各種機械部品の材料として、硬
度や耐熱性に優れるという利点からセラミックスが広く
使用されている。ところが、このセラミックスは、一般
的に靱性に劣るという欠点があり、このため、最近、セ
ラミックスと金属を複合化したセラミックス複合体(以
下、複合材という)が採用されている。
2. Description of the Related Art For example, ceramics are widely used as materials for various machine parts because of their excellent hardness and heat resistance. However, this ceramic has a drawback that it is generally inferior in toughness, and therefore, a ceramic composite body (hereinafter referred to as a composite material) in which a ceramic and a metal are composited is recently adopted.

【0003】この場合、複合材の耐摩耗性を向上させる
ためにセラミックス量を増加させると、硬度が上昇する
一方、靱性が低下して強度低下が発生してしまう。そこ
で、種々の異なる組成比に設定された金属とセラミック
スの混合粉末を階段状に積層してこの混合粉末を焼結す
るもの(以下、従来例1という)や、クラッド(被
着)、嵌合または焼嵌め等によるもの(以下、従来例2
という)が一般的に採用されている。
In this case, if the amount of ceramics is increased in order to improve the wear resistance of the composite material, the hardness increases, but the toughness decreases and the strength decreases. Therefore, a mixed powder of metal and ceramics having various different composition ratios is stacked stepwise and the mixed powder is sintered (hereinafter referred to as Conventional Example 1), a clad (adhesion), and a fitting. Or by shrink fitting (hereinafter referred to as Conventional Example 2
Is commonly used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
従来例1では、金属とセラミックスの焼成温度が大きく
異なっているため、金属の焼成温度を基準にするとセラ
ミックスが緻密化せず、一方、セラミックスの焼成温度
を基準にすると金属の融点を越えて形状を保つことがで
きない。しかも、金属とセラミックスの緻密化速度およ
び組成による収縮が温度により異なるため、変形の他、
クラックが生じてしまうという問題が指摘されている。
However, in the above-mentioned conventional example 1, since the firing temperatures of the metal and the ceramics are largely different, the ceramics do not become densified on the basis of the firing temperature of the metal, while the ceramics of the ceramics are not densified. If the firing temperature is used as a reference, the shape cannot be maintained beyond the melting point of the metal. Moreover, since the densification rate of metal and ceramics and the shrinkage due to composition differ depending on the temperature, in addition to deformation,
It has been pointed out that a crack may occur.

【0005】また、上記の従来例2では、金属とセラミ
ックスの界面が存在するため、この界面で熱伝導や応力
弾性波等が集中し、熱応力の集中や応力集中が発生する
という問題がある。
Further, in the above-mentioned conventional example 2, since there is an interface between metal and ceramics, heat conduction, stress elastic waves, etc. are concentrated at this interface, and there is a problem that thermal stress or stress concentration occurs. .

【0006】本発明は、この種の問題を解決するもので
あり、その物性を深さ方向に変化させることにより、表
面の硬度に優れるとともに、靭性も高く、しかも界面が
存在しない複合材の製造方法を提供することを目的とす
る。
The present invention solves this kind of problem, and by changing its physical properties in the depth direction, it is possible to produce a composite material having excellent surface hardness, high toughness and no interface. The purpose is to provide a method.

【0007】[0007]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明は、セラミックス粉末と金属粉末の混合粉
末により成形体を成形し、この成形体を仮焼成して仮焼
成体を得た後、この仮焼成体に金属塩の溶液を含浸させ
て本焼成する複合材の製造方法であって、前記金属塩溶
液は、周期表のVIII族のFe、Ni、CoとVII
A族のMnとVIA族のCrと有機金属塩から選択され
る1種以上あるいはそれらの合金であるセラミックス粒
子成長材を有する溶液であることを特徴とする。
In order to solve the above-mentioned problems, according to the present invention, a molded body is molded from a mixed powder of ceramic powder and metal powder, and the molded body is calcined to obtain a calcined body. After that, a method of manufacturing a composite material, in which a solution of a metal salt is impregnated in the pre-baked body and then the main baking is performed, wherein the metal salt solution is Fe, Ni, Co and VII of Group VIII of the periodic table.
It is characterized in that it is a solution containing a ceramic particle growth material which is at least one selected from Mn of group A, Cr of group VIA, and an organic metal salt or an alloy thereof.

【0008】[0008]

【作用】本発明に係る複合材の製造方法では、所定の複
合比で金属とセラミックスの混合粉末が得られ、この混
合粉末で成形された成形体には、仮焼成が施される。次
いで、セラミックス粒子の粒成長を促進させるような金
属(以下、粒成長促進材という)が、水溶液や有機溶媒
に分散された形態で仮焼成体に導入された後、本焼成処
理が施される。この本焼成処理中、焼成温度の上昇に伴
って金属の体積拡散とセラミックス粒子の粒成長が惹起
されるため、表面側がセラミックスリッチでかつ内部が
金属リッチな傾斜機能を有する複合材を得ることができ
る。
In the method of manufacturing a composite material according to the present invention, a mixed powder of metal and ceramics is obtained at a predetermined composite ratio, and a molded body molded with this mixed powder is pre-baked. Next, a metal that promotes grain growth of ceramic particles (hereinafter referred to as grain growth promoting material) is introduced into the pre-baked body in a form dispersed in an aqueous solution or an organic solvent, and then subjected to a main baking treatment. . During this main calcination, volume diffusion of the metal and grain growth of the ceramic particles are caused with an increase in the calcination temperature, so that a composite material having a ceramic-rich surface side and a metal-rich gradient function inside can be obtained. it can.

【0009】[0009]

【実施例】本発明に係る複合材の製造方法について実施
例を挙げ、添付の図面を参照しながら以下詳細に説明す
る。
The method for producing a composite material according to the present invention will be described in detail below with reference to the accompanying drawings.

【0010】図1は、本発明方法の処理手順を示すフロ
ーチャートであり、これに沿って概略的に説明する。ま
ず、所定の複合比に調製された金属とセラミックスの混
合粉末が得られ(ステップS1)、この混合粉末で成形
体が成形される(ステップS2)。この成形体は、成形
時に添加された成形補助材が脱脂された後、800℃〜
1000℃で15分間〜60分間程度加熱して仮焼成処
理が施される(ステップS3)。
FIG. 1 is a flow chart showing a processing procedure of the method of the present invention, which will be schematically described. First, a mixed powder of metal and ceramics prepared in a predetermined composite ratio is obtained (step S1), and a molded body is molded with this mixed powder (step S2). This molded body has a temperature of 800 ° C. after the molding auxiliary material added at the time of molding is degreased.
A calcination process is performed by heating at 1000 ° C. for about 15 to 60 minutes (step S3).

【0011】この時、金属粉末の粒子は、粉末同士の接
点が体積拡散して癒着されたような状態、所謂、ネック
が生成された状態に維持される。このネックの形成が進
み過ぎると、連なっていた気孔や空隙が閉塞し、後工程
の金属塩溶液や有機金属溶液の含浸が有効に遂行されな
い。また、ネックの生成時に気孔が三次元的に連なって
いる必要がある。このため、粉末の成形荷重を金属の塑
性変形領域まで上げることができず、この成形荷重が1
00MPa〜300MPaに設定される。
At this time, the particles of the metal powder are maintained in a state in which a contact between the powder particles is volume-diffused and adhered, that is, a so-called neck is formed. If the formation of this neck proceeds too much, the continuous pores and voids will be blocked, and impregnation with the metal salt solution or the organic metal solution in the subsequent step will not be effectively performed. In addition, it is necessary that the pores be connected three-dimensionally when the neck is generated. Therefore, the powder forming load cannot be increased to the plastic deformation region of the metal, and the forming load is 1
It is set to 00 MPa to 300 MPa.

【0012】仮焼成後、粒成長促進材が、仮焼成体に導
入される(ステップS4)。この導入は、粒成長促進材
を最小の単位で行うのが最も効果的であり、イオンや単
一分子の形で導入する。具体的には、粒成長促進材が、
水溶液や有機溶媒に分散された形態で仮焼成体の気孔中
に含浸される。なお、原料粉末の混合工程で粒成長促進
材の導入を行うこともできるが、脱脂、焼成中の影響が
あり、焼成パターンの変更等、厳密な管理が必要となっ
てしまうため、好ましくない。一方、仮焼成体への含浸
では、金属粒子のネックが生成されているため、焼成時
の体積拡散がスムーズで焼結への影響が少ない。
After the calcination, the grain growth promoting material is introduced into the calcination body (step S4). This introduction is most effective when the grain growth promoting material is used in the minimum unit, and is introduced in the form of ions or single molecules. Specifically, the grain growth promoting material is
The pores of the calcined body are impregnated in the form of being dispersed in an aqueous solution or an organic solvent. Although it is possible to introduce the grain growth promoting material in the step of mixing the raw material powders, it is not preferable because there is an influence during degreasing and firing and strict control such as change of firing pattern is required. On the other hand, in the impregnation of the pre-baked body, since the neck of the metal particles is generated, the volume diffusion during the baking is smooth and the influence on the sintering is small.

【0013】次いで、溶媒を乾燥除去させた後(ステッ
プS5)、本焼成処理が施される(ステップS6)。こ
の本焼成処理中、焼成温度の上昇に伴って金属の体積拡
散とセラミックス粒子の粒成長が惹起される。セラミッ
クス粒子の粒成長は、吸熱反応であり、仮焼成体の中で
最も早く温度が上がる表面で粒成長が開始される。表面
で吸熱反応が生じると、そこで熱が奪われるために熱勾
配が発生する。
Next, after the solvent is dried and removed (step S5), a main baking process is performed (step S6). During this main calcination process, volume diffusion of metal and grain growth of ceramic particles are caused as the calcination temperature rises. Grain growth of ceramic particles is an endothermic reaction, and grain growth starts on the surface of the pre-fired body where the temperature rises fastest. When an endothermic reaction occurs on the surface, heat is taken away there, resulting in a thermal gradient.

【0014】粒成長促進材は、一種の触媒として作用
し、粒成長中に粒子に若干取り込まれるが、大部分はさ
らに内部に移動して未だ粒成長の小さい部分に集積され
ていく。このように、粒成長の成長度合いは、熱のやり
とりにより決定されるものであり、粒成長部分の厚さお
よびその勾配は、昇温速度や保持時間によって制御可能
である。
The grain growth promoting material acts as a kind of catalyst and is slightly incorporated into the grains during grain growth, but most of them move further to the inside and accumulate in the portion where grain growth is still small. As described above, the growth degree of grain growth is determined by heat exchange, and the thickness of the grain growth portion and its gradient can be controlled by the heating rate and the holding time.

【0015】また、複合材の組成は、表面の粒成長が大
きく進行した部分でセラミックス成分が略100%近く
になる一方、内部深部で初期の複合成分のままか、また
は金属リッチになる。従って、表面側がセラミックスリ
ッチでかつ内部が金属リッチな傾斜機能を有する複合材
を得ることができる。
Further, in the composition of the composite material, the ceramic component becomes approximately 100% at the portion where the grain growth on the surface greatly progresses, while the initial composite component remains or becomes metal-rich at the inner deep portion. Therefore, it is possible to obtain a composite material having a gradient function in which the surface side is ceramics rich and the inside is metal rich.

【0016】さらに、粒成長促進材とセラミックス膜を
形成するものを選択して含浸させたり、表面層をセラミ
ックス膜で覆った後に焼成して粒成長部と被覆層が拡散
層を持つセラミックス被膜を成形することができる。 〈実施例1〉平均粒径が2μmのWC(炭化タングステ
ン)粉末を78wt%、平均粒径が1μmのTaC(炭
化タンタル)粉末を2wt%、および平均粒径が1μm
の金属Co(コバルト)粉末を20wt%の割合で、エ
チルアルコールを分散液媒体として十分混合した。この
混合後に、約100μmに造粒し、150MPaの成形
圧にて22×5×80mmの成形体が成形された。そし
て、450℃で30分間、さらに650℃で30分間真
空中で保持し、その後、1050℃まで昇温してその温
度で60分間保持して仮焼成体を得た。
Further, a grain growth promoting material and a material for forming a ceramics film are selected and impregnated, or the surface layer is covered with a ceramics film and then fired to form a ceramics film having a diffusion layer in the grain growth part and the coating layer. It can be molded. <Example 1> 78 wt% WC (tungsten carbide) powder having an average particle size of 2 μm, 2 wt% TaC (tantalum carbide) powder having an average particle size of 1 μm, and an average particle size of 1 μm
20% by weight of the metal Co (cobalt) powder of 1 was sufficiently mixed with ethyl alcohol as a dispersion medium. After this mixing, granulation was performed to about 100 μm, and a molded body of 22 × 5 × 80 mm was molded at a molding pressure of 150 MPa. And it hold | maintained in vacuum at 450 degreeC for 30 minutes, and also at 650 degreeC for 30 minutes, and after that, it heated up to 1050 degreeC and hold | maintained at that temperature for 60 minutes, and obtained the calcination body.

【0017】次いで、各仮焼成体が、それぞれ硝酸ニッ
ケルの10%水溶液、20%水溶液、30%水溶液およ
び飽和溶液中に超音波振動を付与されながら浸漬され、
これらの仮焼成体中に硝酸ニッケル溶液が含浸された。
付与された超音波振動は16MHz、浸漬時間は10分
間であった。
Next, each of the calcined bodies is dipped in a 10% aqueous solution, a 20% aqueous solution, a 30% aqueous solution and a saturated solution of nickel nitrate while being subjected to ultrasonic vibration,
A nickel nitrate solution was impregnated into these calcined bodies.
The applied ultrasonic vibration was 16 MHz, and the immersion time was 10 minutes.

【0018】これらの仮焼成体は、80℃で12時間の
乾燥処理が施された後、10℃/minの昇温速度で1
000℃まで昇温されて30分間保持され、さらに5℃
/minの昇温速度で1360℃まで昇温されて90分
間真空中で保持された。これにより、本焼成体(複合
材)が得られた。
These pre-baked bodies were dried at 80 ° C. for 12 hours and then dried at a heating rate of 10 ° C./min for 1 hour.
The temperature is raised to 000 ℃ and held for 30 minutes, then 5 ℃
The temperature was raised to 1360 ° C. at a heating rate of / min and held in vacuum for 90 minutes. As a result, a fired body (composite material) was obtained.

【0019】本焼成体は、その表面に鏡面研磨が施され
るとともに、中央部で切断されて鏡面仕上げされ、Hv
硬度および電子顕微鏡による平均粒子径の変化を検出し
た。その結果が、図2および図3に示されている。ま
た、本焼成体を1mmの厚さに切断し、スパン30mm
で抗折強度を測定した。その際、試験片を多数用意して
おき、表面からの距離変化による強度変化が追跡できる
ようにした。この結果は、図4に示されている。さら
に、図5には、抗折強度試験において取り出された試験
片を化学分析し、金属量とセラミックス量の変化を表面
からの距離の変化に対応して示しており、図6には、破
壊靱性値の変化を表面からの距離の変化に対応して示し
ている。
The surface of the fired body is mirror-polished and cut at the center to be mirror-finished to obtain Hv.
Changes in hardness and average particle size were detected by electron microscopy. The results are shown in FIGS. 2 and 3. Also, the main fired body is cut into a thickness of 1 mm, and the span is 30 mm.
The bending strength was measured with. At that time, a large number of test pieces were prepared so that a change in strength due to a change in distance from the surface could be traced. The result is shown in FIG. Further, FIG. 5 shows a chemical analysis of the test piece taken out in the bending strength test, and shows changes in the amounts of metal and ceramics corresponding to changes in the distance from the surface. The change in toughness value is shown corresponding to the change in distance from the surface.

【0020】このように、第1の実施例によれば、本焼
成体の硬度、強度等の物性値がこの本焼成体の深さ方向
に傾斜的に変化し、その変化の成因が粒子成長に基づく
ものであることが判った。また、図5から、セラミック
ス粒子の成長に伴って金属量も内部に向かって傾斜的に
変化していることが判った。さらに、得られた物性値の
中、表面の硬度がHv2500と高く、PVDコーティ
ングやCVDコーティングされたものに匹敵し、強度が
4.5GPaとなって超微粒子超硬最高級品に相当し、
靱性のデータとしての破壊靱性値は、FC材の値に相当
するものであった。従って、セラミックス粒子の粒成長
により、硬度、強度および靱性において、これまでの材
料では到達し得なかった高い値が得られた。 〈実施例2〉複合材を構成する金属およびセラミックス
粒子が、表1の組成になるように調製され、これらが十
分に混合された後、22×5×80mmの試験片が成形
された。試験片は、900℃〜1100℃の温度範囲で
仮焼きされて仮焼成体が得られ、この仮焼成体が、表1
の実験例1〜24に示すように、粒成長促進材として各
種の金属塩および有機金属を含浸し、乾燥後に1360
℃〜1450℃の温度範囲で本焼成処理されて本焼成体
が得られた。この本焼成処理は、窒素雰囲気中、1ba
lの加圧下または0.1〜1Torrの減圧下で行われ
た。
As described above, according to the first embodiment, the physical properties such as hardness and strength of the main fired body are inclined in the depth direction of the main fired body, and the cause of the change is grain growth. It was found to be based on. Further, from FIG. 5, it was found that the amount of metal gradually changed inward as the ceramic particles grew. Furthermore, among the obtained physical property values, the surface hardness is as high as Hv 2500, which is comparable to that of PVD coating or CVD coating, and the strength is 4.5 GPa, which is equivalent to the ultrafine particle superhard top grade product,
The fracture toughness value as toughness data was equivalent to that of the FC material. Therefore, due to the grain growth of the ceramic particles, high values of hardness, strength, and toughness that could not be achieved by conventional materials were obtained. Example 2 The metal and ceramic particles constituting the composite material were prepared so as to have the composition shown in Table 1, and these were sufficiently mixed, and then a 22 × 5 × 80 mm test piece was molded. The test piece was calcined in a temperature range of 900 ° C. to 1100 ° C. to obtain a calcined body.
As shown in Experimental Examples 1 to 24, various metal salts and organic metals are impregnated as a grain growth promoting material, and after being dried, 1360
Main-baking treatment was performed in the temperature range of ℃ to 1450 ℃ to obtain the main-baked body. This main firing process is performed in a nitrogen atmosphere at 1 ba
It was performed under a pressure of 1 or a reduced pressure of 0.1 to 1 Torr.

【0021】[0021]

【表1】 [Table 1]

【0022】そこで、各複合材配合例をそのままに粒成
長促進材を含浸させずに本焼成した比較例A〜Fが用意
された。次いで、各本焼成体は、鏡面研磨が施された
後、その表面から内部に所定の距離ずつ変位した位置で
Hv硬度が測定された。また、本焼成体から厚さが1m
mで4×50mmの曲げ試験用試験片を切断し、スパン
30mmで曲げ強度を測定した。これらの結果が、表2
に示されている。
Therefore, Comparative Examples A to F were prepared in which the composite material examples were directly fired without being impregnated with the grain growth promoting material. Next, each of the main fired bodies was subjected to mirror polishing, and then the Hv hardness was measured at a position displaced from the surface by a predetermined distance. In addition, the thickness from the main fired body is 1 m
A 4 × 50 mm test piece for bending test was cut at m, and the bending strength was measured at a span of 30 mm. These results are shown in Table 2.
Is shown in.

【0023】[0023]

【表2】 [Table 2]

【0024】さらに、試験片の中央断面で、複合材の構
成粒子の大きさの変化をその表面から電子顕微鏡により
測定するとともに、該表面からの距離の変化に対応する
金属量の変化を検出した。これらの結果が、表3、表4
に示されている。
Further, in the central cross section of the test piece, the change in the size of the constituent particles of the composite material was measured from the surface by an electron microscope, and the change in the amount of metal corresponding to the change in the distance from the surface was detected. . These results are shown in Table 3 and Table 4.
Is shown in.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】これらの結果から、第2の実施例では、本
焼成体の表面から内部に向かって物性値が変化している
ことが判った。これは、粒成長によるものであり、ま
た、この粒成長に伴って化学組成も変化した(表3参
照)。これにより、表面側の金属が、複合材の構成成分
であるセラミックス粒子の成長に伴って内部に移動し、
化学組成も傾斜的に変化していることが確認された。
From these results, it was found that in the second example, the physical property values changed from the surface of the main body to the inside. This was due to grain growth, and the chemical composition also changed with this grain growth (see Table 3). As a result, the metal on the surface side moves inward as the ceramic particles that are the constituents of the composite material grow,
It was confirmed that the chemical composition also changed gradually.

【0028】[0028]

【発明の効果】以上のように本発明に係る複合材の製造
方法によれば、以下の効果が得られる。
As described above, according to the method of manufacturing a composite material of the present invention, the following effects can be obtained.

【0029】粒成長促進材が、水溶液や有機溶媒に分散
された形態で仮焼成体に導入された後、本焼成処理が施
されるため、この本焼成処理中、焼成温度の上昇に伴っ
て金属の体積拡散とセラミックス粒子の粒成長が惹起さ
れる。従って、表面側がセラミックスリッチでかつ内部
が金属リッチな傾斜機能を有する複合材を得ることがで
き、簡単かつ安価な作業で、複合材の表面層の耐摩耗
性、摺動性、耐熱性が向上し、しかも前記複合材の内部
の高強度化が可能になる。
After the grain growth promoting material is introduced into the pre-baked body in a form of being dispersed in an aqueous solution or an organic solvent, the main-baking treatment is performed. Therefore, during the main-baking treatment, as the firing temperature increases, Volume diffusion of metal and grain growth of ceramic particles are caused. Therefore, it is possible to obtain a composite material having a gradient function in which the surface side is ceramic-rich and the inside is metal-rich, and the abrasion resistance, slidability, and heat resistance of the surface layer of the composite material are improved by simple and inexpensive work. In addition, it is possible to increase the strength of the inside of the composite material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る製造方法を説明するためのフロー
チャートである。
FIG. 1 is a flowchart for explaining a manufacturing method according to the present invention.

【図2】表面からの距離変化と硬度変化の関係を示す図
である。
FIG. 2 is a diagram showing a relationship between a change in distance from the surface and a change in hardness.

【図3】表面からの距離変化と粒子径変化の関係を示す
図である。
FIG. 3 is a diagram showing a relationship between a change in distance from the surface and a change in particle diameter.

【図4】表面からの距離変化と抗折強度変化の関係を示
す図である。
FIG. 4 is a diagram showing a relationship between a distance change from a surface and a bending strength change.

【図5】表面からの距離変化と金属量変化の関係を示す
図である。
FIG. 5 is a diagram showing a relationship between a distance change from the surface and a metal amount change.

【図6】表面からの距離変化と破壊靱性値変化の関係を
示す図である。
FIG. 6 is a diagram showing a relationship between a change in distance from the surface and a change in fracture toughness value.

フロントページの続き (72)発明者 平賀 一仁 埼玉県狭山市新狭山1−10−1 ホンダ エンジニアリング株式会社内 (58)調査した分野(Int.Cl.7,DB名) B22F 7/06 Front page continued (72) Inventor Kazuhito Hiraga 1-10-1 Shin-Sayama, Sayama City, Saitama Honda Engineering Co., Ltd. (58) Fields investigated (Int.Cl. 7 , DB name) B22F 7/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セラミックス粉末と金属粉末の混合粉末に
より成形体を成形し、この成形体を仮焼成して仮焼成体
を得た後、この仮焼成体に金属塩の溶液を含浸させて本
焼成する複合材の製造方法であって、 前記金属塩溶液は、周期表のVIII族のFe、Ni、
CoとVIIA族のMnとVIA族のCrと有機金属塩
から選択される1種以上あるいはそれらの合金であるセ
ラミックス粒子成長材を有する溶液であることを特徴と
する複合材の製造方法。
1. A molded body is molded from a mixed powder of ceramic powder and metal powder, and the molded body is calcined to obtain a calcined body, and the calcined body is impregnated with a solution of a metal salt. A method of manufacturing a composite material comprising firing, wherein the metal salt solution is Fe, Ni of Group VIII of the periodic table,
A method for producing a composite material, which is a solution containing a ceramic grain growth material which is at least one selected from Co, MIA in the VIIA group, Cr in the VIA group, and an organometallic salt, or an alloy thereof.
【請求項2】請求項1記載の製造方法において、前記金
属塩溶液の塩は、硝酸塩、酢酸塩または塩化物塩である
ことを特徴とする複合材の製造方法。
2. The method for producing a composite material according to claim 1, wherein the salt of the metal salt solution is a nitrate salt, an acetate salt or a chloride salt.
【請求項3】請求項1記載の製造方法において、前記有
機金属塩は、VIII族のFe、Ni、CoとVIIA
族のMnとVIA族のCrから選択される1種以上ある
いはそれらの合金を有することを特徴とする複合材の製
造方法。
3. The manufacturing method according to claim 1, wherein the organic metal salt is Fe, Ni, Co and VIIA of Group VIII.
A method for producing a composite material, comprising at least one selected from Mn of group I and Cr of group VIA or an alloy thereof.
【請求項4】請求項1記載の製造方法において、前記仮
焼成体は、粒子同士が癒着した状態であることを特徴と
する複合材の製造方法。
4. The method for manufacturing a composite material according to claim 1, wherein the pre-baked body is in a state where particles are adhered to each other.
JP26410894A 1994-10-27 1994-10-27 Manufacturing method of composite material Expired - Fee Related JP3370800B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26410894A JP3370800B2 (en) 1994-10-27 1994-10-27 Manufacturing method of composite material
US08/892,996 US5945167A (en) 1994-10-27 1997-07-15 Method of manufacturing composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26410894A JP3370800B2 (en) 1994-10-27 1994-10-27 Manufacturing method of composite material

Publications (2)

Publication Number Publication Date
JPH08127807A JPH08127807A (en) 1996-05-21
JP3370800B2 true JP3370800B2 (en) 2003-01-27

Family

ID=17398620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26410894A Expired - Fee Related JP3370800B2 (en) 1994-10-27 1994-10-27 Manufacturing method of composite material

Country Status (1)

Country Link
JP (1) JP3370800B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887747B2 (en) 2005-09-12 2011-02-15 Sanalloy Industry Co., Ltd. High strength hard alloy and method of preparing the same
EP2184122A1 (en) * 2008-11-11 2010-05-12 Sandvik Intellectual Property AB Cemented carbide body and method
JP2015211099A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Vacuum chuck member and method of manufacturing vacuum chuck

Also Published As

Publication number Publication date
JPH08127807A (en) 1996-05-21

Similar Documents

Publication Publication Date Title
KR100695493B1 (en) Low thermal conductivity hard metal
US7459105B2 (en) Nanostructured titanium monoboride monolithic material and associated methods
US6200526B1 (en) Method of controlling infiltration of complex-shaped ceramic-metal composite articles and the products produced thereby
EP0699642A2 (en) Whisker or fiber reinforced polycrystalline cubic boron nitride and diamond
US5905937A (en) Method of making sintered ductile intermetallic-bonded ceramic composites
US5223195A (en) Sintered ceramic article
JP3370800B2 (en) Manufacturing method of composite material
JP2628200B2 (en) TiCN-based cermet and method for producing the same
US5945167A (en) Method of manufacturing composite material
US5930581A (en) Method of preparing complex-shaped ceramic-metal composite articles and the products produced thereby
JP3618106B2 (en) Composite material and method for producing the same
JPH08104575A (en) Composite material and its production
JP3872653B2 (en) Manufacturing method of composite material
JP2002180107A (en) Method for manufacturing functionally gradient composite material
WO1997019201A1 (en) Process for making complex-shaped ceramic-metal composite articles
JP4445141B2 (en) Manufacturing method of inclined composite material
JPH0881271A (en) Sintered compact of ultrahigh-pressure phase having three-phase structure and its production
JP2511694B2 (en) Surface-tempered sintered alloy, method for producing the same, and coated surface-tempered sintered alloy obtained by coating the alloy with a hard film
JPS61168569A (en) Manufacture of cubic boron nitride sintered body
JP2003113438A (en) Die made from sintered hard metal alloy
JPH0683890B2 (en) Method for manufacturing wear resistant member for molding machine
JP2814452B2 (en) Surface-finished sintered alloy, method for producing the same, and coated surface-finished sintered alloy obtained by coating the alloy with a hard film
JP4143281B2 (en) Method for producing multi-component ceramic powder or sintered body
JPH07172923A (en) Production of hard sintered material having high tenacity for tool
JP3499020B2 (en) Manufacturing method of cutting tool material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees