JPS63236756A - Polycrystal artificial ruby and manufacture - Google Patents

Polycrystal artificial ruby and manufacture

Info

Publication number
JPS63236756A
JPS63236756A JP62072671A JP7267187A JPS63236756A JP S63236756 A JPS63236756 A JP S63236756A JP 62072671 A JP62072671 A JP 62072671A JP 7267187 A JP7267187 A JP 7267187A JP S63236756 A JPS63236756 A JP S63236756A
Authority
JP
Japan
Prior art keywords
oxide
chromium
fine powder
artificial ruby
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62072671A
Other languages
Japanese (ja)
Other versions
JPH0583511B2 (en
Inventor
浩一 林
健士 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP62072671A priority Critical patent/JPS63236756A/en
Priority to KR1019880003112A priority patent/KR910009894B1/en
Priority to EP88302680A priority patent/EP0284418B1/en
Priority to DE3887999T priority patent/DE3887999T2/en
Priority to US07/173,445 priority patent/US4952537A/en
Publication of JPS63236756A publication Critical patent/JPS63236756A/en
Publication of JPH0583511B2 publication Critical patent/JPH0583511B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はボンディングキャピラリー、光コネクタ−、ワ
イヤーガイド、或いは装飾品として用いる人造ルビー及
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an artificial ruby used as a bonding capillary, an optical connector, a wire guide, or an ornament, and a method for manufacturing the same.

(従来の技術) 半導体チップ表面の電極とリードフレームのフィンガー
とをつなぐ金ワイヤーのキャリアー等として従来から多
結晶人造ルビーを用いている。
(Prior Art) Polycrystalline synthetic rubies have been used as carriers for gold wires connecting electrodes on the surface of semiconductor chips and fingers of lead frames.

斯かる多結晶人造ルビーは酸化アルミニウム及び酸化ク
ロムに、MgO,SrO,Y2O5及びLa2O5等を
焼結助剤として混合し、これを成形した後に所定の雰囲
気で焼結するようにしていたが、雰囲気制御が困難で焼
結助剤が多数必要となるため、酸化アルミニウム、酸化
クロム及び酸化マグネシウムの混合物を成形した後、1
0−’Torr以上の真空中で1400〜2000℃の
温度で焼結する方法が特開昭59−97572号として
提案されている。
Such polycrystalline artificial ruby was made by mixing aluminum oxide and chromium oxide with MgO, SrO, Y2O5, La2O5, etc. as sintering aids, and sintering it in a predetermined atmosphere after molding it. Since it is difficult to control and requires a large amount of sintering aid, after forming the mixture of aluminum oxide, chromium oxide and magnesium oxide,
A method of sintering at a temperature of 1,400 to 2,000° C. in a vacuum of 0-' Torr or more has been proposed in Japanese Patent Application Laid-Open No. 59-97572.

(発明が解決しようとする問題点) 上述した従来法によって得られた人造ルビーは、平均結
晶粒径が大きく、透光性の点で劣り、また硬度も200
0HV以上となりに<<シたがって加工性及び耐久性の
面でも問題がある。
(Problems to be Solved by the Invention) The artificial ruby obtained by the conventional method described above has a large average crystal grain size, poor translucency, and a hardness of 200%.
As the voltage exceeds 0HV, there are problems in terms of workability and durability.

(問題点を解決するための手段) 上記問題点を解決すべく本発明は、0.7〜3wtkの
酸化クロム、 0〜0.05wtXの酸化マグネシウム
及び残部を酸化アルミニウムとした酸化物の混合微粉末
を用意し、この酸化物の混合微粉末に有機バインダーを
加えて所定形状に成形し、この成形体を1280〜13
50℃で焼結した後、1300〜1310℃且つ100
0〜2000atmの条件下で熱間静水圧プレスをかけ
るようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a mixture of 0.7 to 3 wtk of chromium oxide, 0 to 0.05 wt. of magnesium oxide, and the balance of aluminum oxide. Prepare a powder, add an organic binder to the mixed fine powder of the oxide, mold it into a predetermined shape, and give this molded body a 1280-13
After sintering at 50℃, 1300-1310℃ and 100℃
Hot isostatic pressing was applied under conditions of 0 to 2000 atm.

(作用) 上述した条件で行うことで、平均結晶粒径が2.0μm
以下で4μm以上の粗大粒子を含まず且つボアの径が0
.1μm以下の透光性、硬度、曲げ  ゛強度に優れた
人造ルビーが製造される。
(Effect) By performing under the above conditions, the average crystal grain size is 2.0 μm.
Contains no coarse particles of 4 μm or more and has a bore diameter of 0.
.. Artificial rubies with excellent translucency of 1 μm or less, hardness, and bending strength are produced.

(実施例) 以下に本発明の実施例を添付図面を参照しつつ説明する
(Example) Examples of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明方法を工程順に示したブロック図であり
、本発明にあっては出発原料として噴霧乾燥後に熱分解
すると純度99.9情以上の酸化アルミニウムになるア
ルミニウム塩、噴霧乾燥後に熱分解すると純度99.9
9に以上の酸化クロムになるクロム塩及び噴霧乾燥後に
熱分解すると純度99.994に以上の酸化マグネシウ
ムになるマグネシウム塩を用意する。具体例を挙げると
、アルミニウム塩としてはアンモニウム明ばん、或いは
、アルミニウム・アンモニウム・カーボナイト・ハイド
ロオキサイド(^^C)I:NH4^j! COs (
OH) 2)を用い、クロム塩としては硝酸クロムCr
 (NOs) s・9)20、マグネシウム塩としては
硝酸マグネシウムMg(NOs)s・6H20を用いる
FIG. 1 is a block diagram showing the method of the present invention in the order of steps. When decomposed, purity is 99.9
A chromium salt that becomes chromium oxide with a purity of 9 or higher and a magnesium salt that becomes magnesium oxide with a purity of 99.994 or higher when thermally decomposed after spray drying are prepared. To give a specific example, the aluminum salt is ammonium alum or aluminum ammonium carbonite hydroxide (^^C)I:NH4^j! COs (
OH) 2) is used, and the chromium salt is chromium nitrate Cr.
(NOs)s・9)20, and magnesium nitrate Mg(NOs)s・6H20 is used as the magnesium salt.

そして上記の多塩を秤量しこれらを樹脂ボールを入れた
樹脂ポットでもって一旦懸濁水溶液とし、噴霧乾燥法に
よって乾燥せしめた後、500〜800℃の温度で熱分
解し、酸化アルミニウム、酸化クロム及び酸化マグネシ
ウムを均一に混合してなる酸化物の混合微粉末を得る。
Then, the above polysalts are weighed and suspended in an aqueous solution in a resin pot containing a resin ball, dried by a spray drying method, and then thermally decomposed at a temperature of 500 to 800°C to produce aluminum oxide and chromium oxide. and magnesium oxide are uniformly mixed to obtain a mixed fine powder of oxide.

そして、この混合微粉末を更にエタノール等の溶剤中で
湿式粉砕して凝集体をほぐし、再び噴霧乾燥法によって
乾燥して微粉末体とする。ここで混合微粉末を構成する
各酸化物の割合は、酸化クロムを0.7〜3wt零、酸
化マグネシウムを0〜0.05wt4 、酸化アルミニ
ウムを残部とする。つまり酸化マグネシウムについては
全く添加しなくともよい。
Then, this mixed fine powder is further wet-pulverized in a solvent such as ethanol to loosen aggregates, and is again dried by spray drying to obtain a fine powder. Here, the proportions of each oxide constituting the mixed fine powder are 0.7 to 3 wt zero for chromium oxide, 0 to 0.05 wt4 for magnesium oxide, and the balance for aluminum oxide. In other words, it is not necessary to add magnesium oxide at all.

また酸化物の混合微粉末を得るには第2図に示すように
多塩を熱分解して酸化アルミニウム、酸化クロム及び酸
化マグネシウムを別々に形成した後、これらを秤量して
混合するようにしてもよい。
In addition, to obtain a mixed fine powder of oxides, as shown in Figure 2, polysalts are thermally decomposed to form aluminum oxide, chromium oxide, and magnesium oxide separately, and then these are weighed and mixed. Good too.

以上の如くして酸化物の混合微粉末を得たならば、この
混合微粉末に熱可塑性樹脂を主体とする有機バインダー
を加え、所望形状にインジェクション成形する。
Once the mixed fine powder of the oxide is obtained as described above, an organic binder mainly composed of a thermoplastic resin is added to the mixed fine powder, and the mixture is injection molded into a desired shape.

次いでインジェクション成形によって得た成形体を脱脂
後焼結する。焼結の条件は1280〜1300tの大気
中、1280〜1300℃で10−’〜10−’Tor
rの真空中或いは1300〜1350℃でN2 * A
 r又はN2の雰囲気中で行うものとし、大気中で行う
場合は、例えば昇温速度を200℃/hとして800℃
及び1295℃それぞれ1時間保持する。
Next, the molded body obtained by injection molding is degreased and then sintered. The sintering conditions are 1280-1300t in the atmosphere, 1280-1300℃ and 10-'-10-' Tor.
N2*A in vacuum at r or at 1300-1350℃
It shall be carried out in an atmosphere of r or N2, and if carried out in the air, the temperature will be increased to 800°C with a heating rate of 200°C/h, for example.
and 1295°C for 1 hour each.

以上のようにして得られた焼結体に熱間静水圧プレスを
かける。この時の条件としては1300〜1310℃、
圧力1000〜2000atmでアルゴン7囲中で1時
間行なう。このようにして得られた製品にダイヤモンド
精密研削及び精密研磨を施して最終製品を得る。
The sintered body obtained as described above is subjected to hot isostatic pressing. The conditions at this time are 1300-1310℃,
The reaction is carried out for 1 hour in an argon atmosphere at a pressure of 1000 to 2000 atm. The product thus obtained is subjected to diamond precision grinding and precision polishing to obtain a final product.

(発明の効果) 第3図は酸化クロムと酸化マグネシウムの割合を変えて
製造した本発明品(NO,1〜B)及び比較例(NO,
7〜9)の耐久性等を示した図示である。尚、比較例(
NO,9)についてのみ出発原料をバイヤー法の酸化ア
ルミニウムとし、この原料に対し1575℃X lhr
で真空焼結を行い、次いで1500℃X 100[at
m x 1hr(in AJの条件下で熱間静水圧プレ
スをかけた。
(Effect of the invention) Figure 3 shows the products of the present invention (NO, 1 to B) manufactured by changing the ratio of chromium oxide and magnesium oxide and comparative examples (NO,
7 to 9) are illustrations showing the durability, etc. In addition, a comparative example (
For NO, 9), the starting material was aluminum oxide by the Bayer method, and the temperature was 1575°C
vacuum sintering at 1500°C x 100 [at
Hot isostatic pressing was performed under conditions of m x 1 hr (in AJ).

また、耐久性試験はウルトラソニックタイプのボンディ
ングキャピラリーを試作し、20000回ワイヤーボン
ディングを繰り返した後に王水洗浄して先端使用面の状
態を電子顕微鏡(400倍)で観察し、全く変化がない
場合をA、多少の摩耗がある場合を81脱落やチッピン
グが認められた場合をCとした。
In addition, for durability testing, we prototyped an ultrasonic type bonding capillary, and after repeating wire bonding 20,000 times, we cleaned it with aqua regia and observed the condition of the tip using an electron microscope (400x magnification), and if there was no change at all. The case where there was some wear was rated A, and the case where 81 falling off or chipping was observed was rated C.

また、加工性試験は60rpmで回転する摺り合せ精密
研削・精密研磨機に荷重500gをかけて以下の精密研
削及び精密研磨を行った。
Further, in the workability test, the following precision grinding and polishing were performed by applying a load of 500 g to a sliding precision grinding/polishing machine rotating at 60 rpm.

研肖り  水 ・ 湿式200リタルポンドダイヤモン
ド・ 砥石  10m1n研磨  オイル・湿式 8μ
の ダイヤモンドペースト・ 陶板上10m1n研磨 
 オイル・湿式 1μm ダイヤモンドペースト・ 銅
板上20m1n研磨  オイル・湿式 0,5μm ダ
イヤモンドペーストバフ上  10m1nそして、精密
研削・精密研磨後に鏡面となった場合なA、一部に傷が
残っている場合をB、チッピングが著しい場合をCとし
た。
Grinding Water/Wet 200 Rital Pound Diamond Whetstone 10m1n Polishing Oil/Wet 8μ
Diamond paste/10m1n polishing on ceramic plate
Oil/wet method 1μm Diamond paste/20m1n polishing on copper plate Oil/wet method 0.5μm Diamond paste buffing 10m1n Then, if the mirror surface is obtained after precision grinding/precision polishing, A is the case, and if some scratches remain, B is the case. The case where chipping was significant was rated C.

また、透光性の良否については、得られた焼結体を厚さ
0.3mmにスライス研磨したものを通して、tcm 
*れた新聞紙面上の文字が見えるか否かで判定した。
In addition, regarding the quality of translucency, the obtained sintered body was sliced and polished to a thickness of 0.3 mm, and the tcm
* Judgment was made based on whether the characters on the newspaper were visible.

第3図から明らかなように、酸化クロムh旬、7〜3.
0*tl、酸化マグネシウムがO〜0.05wt%i 
テあれば各種特性に優れた人造ルビーを得ることができ
る。
As is clear from FIG. 3, chromium oxide, 7 to 3.
0*tl, magnesium oxide is O~0.05wt%i
If you can, you can obtain artificial rubies with excellent properties.

以上まとめれば本発明により以下の如ぎ効果を発揮する
To summarize the above, the present invention exhibits the following effects.

先ず、出発原料に金属塩を用いたことにより低い温度で
焼結させることができる。即ち金属塩を熱分解して得た
高純度酸化物は表面が活性化しているため、低い温度で
焼結を完了させることができる。そして焼結温度が低い
と仮りに酸化マグネシウムを添加しなくとも異常粒成長
が生じにくく均一で微細な結晶粒となる。したがって酸
化マグネシウムは必須の材料ではないが、添加すること
により焼結性は向上する。
First, by using a metal salt as a starting material, sintering can be performed at a low temperature. That is, since the high purity oxide obtained by thermally decomposing a metal salt has an activated surface, sintering can be completed at a low temperature. If the sintering temperature is low, even if magnesium oxide is not added, abnormal grain growth is less likely to occur, resulting in uniform and fine crystal grains. Therefore, although magnesium oxide is not an essential material, its addition improves sinterability.

また、混合方法として噴霧乾燥法を用いているため各種
酸化物等を均一に混合せしめることができ、熱間静水圧
プレスを施すため製品の硬度を高めることができる。特
に焼結温度を12110℃以上、熱間静水圧プレスを1
300℃以上且つ11000at以上としたため0.1
μm以上のボアが残ることがなく、焼結温度を1350
℃以下、熱間静水圧プレスを1310℃以下且つ200
0atm以下としたため4μm以上の異常粒成長がない
Furthermore, since a spray drying method is used as a mixing method, various oxides, etc. can be mixed uniformly, and since hot isostatic pressing is performed, the hardness of the product can be increased. In particular, the sintering temperature is 12110℃ or higher, and the hot isostatic press is
0.1 because the temperature was 300℃ or more and 11000at or more
No bores larger than μm remain, and the sintering temperature is 1350℃.
℃ or less, hot isostatic press at 1310℃ or less and 200℃
Since it was set to 0 atm or less, there was no abnormal grain growth of 4 μm or more.

また、熱間静水圧プレスをかけたことにより結晶に力学
的格子ひずみが生じ、これが製品の硬度を高めることと
なる。
In addition, hot isostatic pressing causes mechanical lattice strain in the crystal, which increases the hardness of the product.

更に本発明はクロムを添加しており、このクロムは物質
表面に自己拡散しやすく、セラミックスの表面にクロム
リッチな酸化被膜を形成するため、炭素の付着が阻止さ
れ、硬度及び耐食性が向上する。ただし、酸化クロムの
割合が0.7wt!6以下だと所望の硬度や耐食性が得
られず、3wtt以上となると熱間静水圧プレス後の製
品に0.1 am以上のボアが残り、所望の靭性と強度
が期待できなくなるため、酸化クロム(クロム塩の場合
は酸化クロムに換算する)の割合(酸化アルミニウム、
酸化クロム及び酸化マグネシウムの混合物を100とす
る)は0.7〜3wt1とすることが好ましい。
Further, in the present invention, chromium is added, and this chromium easily self-diffuses onto the surface of the material, forming a chromium-rich oxide film on the surface of the ceramic, thereby preventing carbon adhesion and improving hardness and corrosion resistance. However, the proportion of chromium oxide is 0.7wt! If it is less than 6, the desired hardness and corrosion resistance cannot be obtained, and if it is more than 3wtt, a bore of more than 0.1 am will remain in the product after hot isostatic pressing, and the desired toughness and strength cannot be expected. (For chromium salts, convert to chromium oxide) ratio (aluminium oxide,
(100% of the mixture of chromium oxide and magnesium oxide) is preferably 0.7 to 3wt1.

そして、クロムイオンの半径とアルミニウムイオンの半
径とは略々等しい(約1296の差)ためクロムイオン
とアルミニウムイオンとが焼結時に置換し、その結果結
晶に格子ひずみが生じ、この格子ひずみにより前記同様
製品の硬度が向上する。
Since the radius of the chromium ion and the radius of the aluminum ion are approximately equal (difference of about 1296), the chromium ion and aluminum ion replace each other during sintering, resulting in lattice strain in the crystal, and this lattice strain causes the above-mentioned Similarly, the hardness of the product is improved.

したがって本発明方法によれば、透光性に優れ、結晶粒
径が均質となり、緻密で且つ微細な組織となり強度、硬
度、耐久性及び加工性に優れた人造ルビーを得ることが
できる。
Therefore, according to the method of the present invention, it is possible to obtain an artificial ruby that has excellent light transmittance, has a uniform crystal grain size, has a dense and fine structure, and has excellent strength, hardness, durability, and workability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を工程順に示したブロック図、第2
図は別実施例の工程を示す図、第3図は強度及び硬度等
を比較した図表である。
Figure 1 is a block diagram showing the method of the present invention in the order of steps;
The figure is a diagram showing the process of another example, and FIG. 3 is a chart comparing strength, hardness, etc.

Claims (4)

【特許請求の範囲】[Claims] (1)酸化アルミニウムに0.7〜3.0wt%の酸化
クロムが固溶した平均粒径2.0μm以下の結晶又は酸
化アルミニウムに0.7〜3.0wt%の酸化クロム及
び0.05wt%以下の酸化マグネシウムが固溶した平
均粒径2.0μm以下の結晶からなり、内部に存在する
ボアの径が0.1μm以下で4μm以上の粗大粒が存在
せず、硬度が2000HV以上であることを特徴とする
多結晶人造ルビー。
(1) Crystals with an average particle size of 2.0 μm or less in which 0.7 to 3.0 wt% chromium oxide is dissolved in aluminum oxide or 0.7 to 3.0 wt% chromium oxide and 0.05 wt% in aluminum oxide Consists of crystals with an average particle size of 2.0 μm or less in which the following magnesium oxide is dissolved, the internal bore diameter is 0.1 μm or less, there are no coarse particles of 4 μm or more, and the hardness is 2000 HV or more. A polycrystalline artificial ruby characterized by
(2)酸化クロムを0.7〜3.0wt%、酸化マグネ
シウムを0〜0.05wt%、酸化アルミニウムを残部
とした酸化物の混合微粉末に有機バインダーを加えて所
望の形状に成形し、この成形体を1280〜1350℃
で焼結し、次いでこの焼結体に1300〜1310℃且
つ1000〜2000atmの条件下で熱間静水圧プレ
スをかけるようにしたことを特徴とする多結晶人造ルビ
ーの製造方法。
(2) An organic binder is added to a fine powder mixture of oxides containing 0.7 to 3.0 wt% of chromium oxide, 0 to 0.05 wt% of magnesium oxide, and the balance is aluminum oxide, and the mixture is molded into a desired shape. This molded body was heated to 1280 to 1350℃.
1. A method for producing a polycrystalline artificial ruby, characterized in that the sintered body is subjected to hot isostatic pressing at a temperature of 1300 to 1310°C and 1000 to 2000 atm.
(3)前記酸化物の混合微粉末は、アルミニウム塩、ク
ロム塩及びマグネシウム塩を秤量して懸濁水溶液とし、
この懸濁水溶液を噴霧乾燥法にて乾燥して微粉末とし、
この微粉末を加熱分解することで得るようにしたことを
特徴とする特許請求の範囲第2項記載の多結晶人造ルビ
ーの製造方法。
(3) The mixed fine powder of the oxide is prepared by weighing an aluminum salt, a chromium salt, and a magnesium salt to form an aqueous suspension solution;
This suspended aqueous solution is dried using a spray drying method to form a fine powder.
The method for producing polycrystalline artificial ruby according to claim 2, characterized in that the fine powder is obtained by thermal decomposition.
(4)前記成形体の焼結は大気中、10^−^3〜10
^−^6Torrの真空中若しくはN_2,Ar又はH
_2の雰囲気中で行うことを特徴とする特許請求の範囲
第2項記載の多結晶人造ルビーの製造方法。
(4) The molded body is sintered in the atmosphere at 10^-^3~10
^-^6 Torr vacuum or N_2, Ar or H
_2. The method for producing a polycrystalline artificial ruby according to claim 2, wherein the method is carried out in the atmosphere described in claim 2.
JP62072671A 1987-03-26 1987-03-26 Polycrystal artificial ruby and manufacture Granted JPS63236756A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62072671A JPS63236756A (en) 1987-03-26 1987-03-26 Polycrystal artificial ruby and manufacture
KR1019880003112A KR910009894B1 (en) 1987-03-26 1988-03-23 Ceramic products and process for producing the same
EP88302680A EP0284418B1 (en) 1987-03-26 1988-03-25 Ceramic products and process for producing the same
DE3887999T DE3887999T2 (en) 1987-03-26 1988-03-25 Ceramic products and processes for their manufacture.
US07/173,445 US4952537A (en) 1987-03-26 1988-03-25 Ceramic products and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072671A JPS63236756A (en) 1987-03-26 1987-03-26 Polycrystal artificial ruby and manufacture

Publications (2)

Publication Number Publication Date
JPS63236756A true JPS63236756A (en) 1988-10-03
JPH0583511B2 JPH0583511B2 (en) 1993-11-26

Family

ID=13496054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072671A Granted JPS63236756A (en) 1987-03-26 1987-03-26 Polycrystal artificial ruby and manufacture

Country Status (1)

Country Link
JP (1) JPS63236756A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237965A (en) * 1994-02-28 1995-09-12 Kyocera Corp Ceramics guide member and production thereof
JP2006273701A (en) * 2005-03-30 2006-10-12 Masaji Miyake Synthetic jewel production process
JP2019512451A (en) * 2016-03-15 2019-05-16 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Opaque red polycrystalline ceramics
JP2020510189A (en) * 2017-02-09 2020-04-02 エッセンリックス コーポレーション Assays that use different spacing heights

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238514A (en) * 1975-09-23 1977-03-25 Sumitomo Electric Industries Manufacture of alumina ceramic materials
JPS57100976A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Industries Tenacious ceramic material
JPS5997572A (en) * 1982-11-22 1984-06-05 科学技術庁無機材質研究所長 Manufacture of polycrystal artificial ruby
JPS61291449A (en) * 1985-06-19 1986-12-22 並木精密宝石株式会社 Manufacture of alumina sintered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5238514A (en) * 1975-09-23 1977-03-25 Sumitomo Electric Industries Manufacture of alumina ceramic materials
JPS57100976A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Industries Tenacious ceramic material
JPS5997572A (en) * 1982-11-22 1984-06-05 科学技術庁無機材質研究所長 Manufacture of polycrystal artificial ruby
JPS61291449A (en) * 1985-06-19 1986-12-22 並木精密宝石株式会社 Manufacture of alumina sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07237965A (en) * 1994-02-28 1995-09-12 Kyocera Corp Ceramics guide member and production thereof
JP2006273701A (en) * 2005-03-30 2006-10-12 Masaji Miyake Synthetic jewel production process
JP2019512451A (en) * 2016-03-15 2019-05-16 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Opaque red polycrystalline ceramics
JP2020147498A (en) * 2016-03-15 2020-09-17 ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド Opaque red polycrystalline ceramic
JP2020510189A (en) * 2017-02-09 2020-04-02 エッセンリックス コーポレーション Assays that use different spacing heights

Also Published As

Publication number Publication date
JPH0583511B2 (en) 1993-11-26

Similar Documents

Publication Publication Date Title
KR910009894B1 (en) Ceramic products and process for producing the same
JP2729204B2 (en) Polycrystalline ceramic product and method for producing the same
JPS63236756A (en) Polycrystal artificial ruby and manufacture
JPS63239154A (en) Colored light-permeable polycrystal ceramics product and manufacture
JP3000685B2 (en) Translucent yttria sintered body and method for producing the same
US6194336B1 (en) Highly toughened alumina sintered bodies and their manufacturing process
JP2004203639A (en) Formed blank product of silica glass, its polished product, and method of manufacturing them
JPS63236757A (en) Polycrystal ceramic product and manufacture
JPH06122563A (en) Ceramic composite material and its production
US5352533A (en) Ceramic composite body, process for producing a ceramic composite
CN1657486A (en) Preparation method of aluminium oxide base ceramic composite
JPS63236755A (en) Composite ceramics and manufacture
JPH08245259A (en) Polycrystalline ceramics and its production
JP3910850B2 (en) Conductive whetstone and manufacturing method thereof
JPH08127807A (en) Production of composite material
JPS6395155A (en) Composite sintered body comprising carbide and oxide
JPH05220668A (en) Highly hard powder for coating and its manufacture
JPH08217543A (en) Production of nonmagnetic ceramics for magnetic head
JPS60260464A (en) Ceramic sintered body and manufacture
JPH05319910A (en) Ceramic composite material and its production
JPH0827571A (en) Production of storontium titanate target
JPS60186470A (en) Manufacture of silicon nitride sintered body
JPH02180761A (en) Aluminum nitride sintered body
JPH03112844A (en) Production of composite sintered ceramic
JPH0422864B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 14