JPH08208323A - Productionn of nonmagnetic ceramic for magnetic head - Google Patents

Productionn of nonmagnetic ceramic for magnetic head

Info

Publication number
JPH08208323A
JPH08208323A JP7031591A JP3159195A JPH08208323A JP H08208323 A JPH08208323 A JP H08208323A JP 7031591 A JP7031591 A JP 7031591A JP 3159195 A JP3159195 A JP 3159195A JP H08208323 A JPH08208323 A JP H08208323A
Authority
JP
Japan
Prior art keywords
phase
powder
magnetic
magnetic head
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7031591A
Other languages
Japanese (ja)
Inventor
Tatsuya Chiba
龍矢 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7031591A priority Critical patent/JPH08208323A/en
Publication of JPH08208323A publication Critical patent/JPH08208323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

PURPOSE: To obtain such a nonmagnetic ceramic material for a magnetic head that has an almost equal coefft. of thermal expansion to that of a head material, high hardness and excellent sliding characteristics, hardly causes chipping during mechanical processing, and is suitable for an inexpensive slider. CONSTITUTION: A soln. containing complex of amino acids and nitrates of Fe and Zn comprising >=60mol% Fe2 O3 in terms of oxide and the balance ZnO is heated to obtain a powder. The obtd. powder is compacted and the compacted body is sintered to obtain a sintered compact comprising a Fe2 O3 phase and a ZnFe2 O4 phase and having <=5μm average grain diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ヘッド用非磁性セ
ラミックスの製造方法に関し、特に磁気ヘッドの一部に
用いられるスライダーに適する非磁性セラミックスの製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-magnetic ceramic for a magnetic head, and more particularly to a method for manufacturing a non-magnetic ceramic suitable for a slider used in a part of a magnetic head.

【0002】[0002]

【従来の技術】磁気ヘッド用非磁性セラミックスとして
の特性は、熱膨張率がヘッド材と同等であること、硬い
こと、非磁性セラミックスと磁性膜構造体との摺動特性
が優れていること、機械加工時のチッピング欠けが生じ
ないこと等が求められる。
2. Description of the Related Art The characteristics of a non-magnetic ceramic for a magnetic head are that the coefficient of thermal expansion is equivalent to that of the head material, that it is hard, and that the sliding characteristics between the non-magnetic ceramic and the magnetic film structure are excellent. It is required that chipping chipping does not occur during machining.

【0003】つまり、熱膨張率が磁性膜構造体と大きく
異なっていると蒸着した磁性膜構造体が剥離し易く、ま
た熱膨張率の差により応力が発生しクラックが生じる。
That is, when the coefficient of thermal expansion is greatly different from that of the magnetic film structure, the vapor-deposited magnetic film structure is easily peeled off, and stress is generated due to the difference in the coefficient of thermal expansion to cause cracks.

【0004】また、硬度が低いと磁性膜構造体と硬度及
び耐摩耗性が異なり、磁気テープとの摺動により発生す
る摩擦のために偏摩耗等を引き起こし、磁気ヘッド特性
が変化する。
If the hardness is low, the hardness and wear resistance are different from those of the magnetic film structure, and the friction generated by sliding on the magnetic tape causes uneven wear and the like, and the magnetic head characteristics change.

【0005】さらに、硬度が低い場合には、磁気ヘッド
の寿命が短くなるばかりでなく、製造条件次第では、機
械加工時のチッピング欠け等の不具合が生じる。
Further, when the hardness is low, not only the life of the magnetic head is shortened, but also defects such as chipping during machining may occur depending on the manufacturing conditions.

【0006】一般に、磁気ヘッド用非磁性セラミックス
としてはチタン酸バリウム、チタン酸カルシウム、非磁
性フェライト等が使用されている。
Generally, barium titanate, calcium titanate, non-magnetic ferrite and the like are used as non-magnetic ceramics for magnetic heads.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、チタン
酸バリウム、チタン酸カルシウムを用いた場合において
は、磁気テープや、ディスク等との長時間摺動後に摩擦
係数が増大し、摺動特性が悪化するという問題があっ
た。
However, when barium titanate or calcium titanate is used, the friction coefficient increases after a long time sliding with a magnetic tape, a disk, etc., and the sliding characteristics deteriorate. There was a problem.

【0008】他方、非磁性フェライトは、上記材料と比
較し摺動特性に優れているが、例えば、87×10-7
熱膨張係数を有するZnFe24のように、熱膨張係数
が小さいこと、コスト高であること、工程管理が難しい
こと等により実用化が困難となっている。
On the other hand, non-magnetic ferrite is superior in sliding characteristics to the above materials, but has a small coefficient of thermal expansion such as ZnFe 2 O 4 having a coefficient of thermal expansion of 87 × 10 −7. It is difficult to put into practical use due to high cost, difficult process control, and so on.

【0009】コスト高となる原因は、材料の製造プロセ
スが原料の混合、仮焼き、微粉砕、焼成工程という粉末
冶金的な煩雑な工程によるところが大きい。
The reason why the cost is high is that the manufacturing process of the material is largely due to complicated steps of powder metallurgy such as mixing of raw materials, calcination, fine pulverization and firing.

【0010】加えて、一般的に、チッピング特性を改善
するためには、材料の結晶粒径を微細にすることが最良
の方法と言われているが、そのためには、仮焼き後の微
粉砕工程において長時間の微粉砕を行わなければなら
ず、コスト高になることのみならず、工程管理をも困難
としている。
In addition, it is generally said that the finest grain size of the material is the best method for improving the chipping characteristics. For that purpose, fine pulverization after calcination is performed. Since fine pulverization must be performed for a long time in the process, not only the cost becomes high, but also process control becomes difficult.

【0011】本発明は、上記の欠点を解決したもので、
ヘッド材と同等の熱膨張率を有し、硬度が高く、摺動特
性に優れ、機械加工時にチッピングの発生しない、しか
も安価なスライダー材料の製造方法を提供することを目
的とする。
The present invention solves the above-mentioned drawbacks.
An object of the present invention is to provide a slider material manufacturing method which has a coefficient of thermal expansion equivalent to that of a head material, has high hardness, is excellent in sliding characteristics, does not cause chipping during machining, and is inexpensive.

【0012】[0012]

【課題を解決するための手段】本発明者は、種々の検討
を行った結果、酸化物換算組成でFe23が60mol
%以上、残部ZnOとなるFe、Znの硝酸塩とアミノ
酸との錯体を含む溶液を加熱し得られた粉末を圧縮成形
し成形体を得、該成形体を焼成した焼成体がFe23
とZnFe24相からなり、その平均結晶粒径が5μm
以下とすることにより、ヘッド材と同等の熱膨張係数を
有し、摺動特性に優れ、機械加工時にチッピングの生じ
ない磁気ヘッド用非磁性セラミックスが安価に得られる
ことを見いだした。
Means for Solving the Problems As a result of various studies, the present inventor has found that Fe 2 O 3 in an oxide conversion composition is 60 mol.
%, The balance is ZnO, the solution containing Fe, a nitrate of Zn and a complex of an amino acid is heated to obtain a compact, and a compact is obtained, and the compact is a Fe 2 O 3 phase. And ZnFe 2 O 4 phase with an average crystal grain size of 5 μm
By the following, it was found that a non-magnetic ceramic for a magnetic head having a coefficient of thermal expansion equivalent to that of the head material, excellent sliding characteristics, and free from chipping during machining can be obtained at a low cost.

【0013】即ち、本発明は、酸化物換算でFe23
60mol%以上、残部ZnOとなるFe、Znの硝酸
塩とアミノ酸との錯体を含む溶液を加熱し得られた粉末
を焼成し、Fe23相とZnFe24相の混相より成
り、平均結晶粒径が5μm以下である焼成体を得ること
を特徴とする磁気ヘッド用非磁性セラミックの製造方法
である。
That is, according to the present invention, a solution containing Fe 2 O 3 of 60 mol% or more in terms of oxide and the balance ZnO and a complex of nitrate of Fe and Zn and an amino acid is heated, and the obtained powder is fired, A method for producing a non-magnetic ceramic for a magnetic head, characterized in that a fired body comprising a mixed phase of Fe 2 O 3 phase and ZnFe 2 O 4 phase and having an average crystal grain size of 5 μm or less is obtained.

【0014】ここで、酸化物換算組成でFe23が60
mol%以上、残部ZnOとしたのは、ZnOが40m
ol%以上では熱膨張係数が小さくなり、ガラスボンデ
ィング時のクラック発生の原因となるためである。
Here, Fe 2 O 3 is 60 in terms of oxide conversion composition.
ZnO is 40 m because the balance ZnO is more than mol%
This is because if it is ol% or more, the coefficient of thermal expansion becomes small, which causes cracks during glass bonding.

【0015】[0015]

【作用】熱膨張率の高いFe23相をZnFe23相と
混在させることにより、熱膨張係数を向上できる。
The thermal expansion coefficient can be improved by mixing the Fe 2 O 3 phase having a high thermal expansion coefficient with the ZnFe 2 O 3 phase.

【0016】また、一般に、結晶粒径が小さいものほど
チッピング量、チッピングの大きさ等のチッピング特性
に優れていることが知られているが、本発明によれば、
Fe、Znの硝酸塩とアミノ酸との錯体を含む溶液を加
熱し得られた粉末は微細で、かつ、粉末粒度分布がシャ
ープであるため、低温焼成でも十分に緻密化した焼成体
とすることが可能であり、結晶粒径を5μm以下に制御
することが可能となるため、チッピング特性を向上でき
る。
It is generally known that the smaller the crystal grain size, the better the chipping characteristics such as the amount of chipping and the size of chipping. According to the present invention,
The powder obtained by heating the solution containing the complex of nitrate of Fe and Zn and the amino acid is fine, and the particle size distribution of the powder is sharp, so it is possible to obtain a fully densified fired product even at low temperature firing. Therefore, since the crystal grain size can be controlled to 5 μm or less, the chipping characteristics can be improved.

【0017】また、摺動特性が向上する原因について
は、種々検討したが、現在のところ詳細には不明であ
る。しかし、上記のごとく微細、かつシャープな粒度分
布を有する粉末を用いることで、十分な緻密化がなさ
れ、焼成工程においてポアが激減するためと考えられ
る。
Further, various investigations have been made on the cause of the improvement of the sliding characteristics, but at present, it is unclear in detail. However, it is considered that the use of the powder having a fine and sharp particle size distribution as described above allows sufficient densification and drastically reduces pores in the firing step.

【0018】さらに、本発明の粉末製造方法において
は、従来、一般的に行われてきた仮焼き、粉砕といった
工程を必要としないために、製造プロセスを短縮するこ
とができ、また、製造コストを低減することができ、安
価な製品を提供することができる。
Further, in the powder manufacturing method of the present invention, since the steps such as calcination and crushing which have been generally performed conventionally are not required, the manufacturing process can be shortened and the manufacturing cost can be reduced. It is possible to reduce the cost and provide an inexpensive product.

【0019】[0019]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0020】(実施例1)高純度の硝酸鉄、硝酸亜鉛を
酸化物換算組成で、それぞれ90〜60mol%、10
〜40mol%となるよう秤量し、純水中に溶解した。
この溶液にα−アミノ酢酸を20wt%添加し、よく混
合した。
(Example 1) High-purity iron nitrate and zinc nitrate in terms of oxide conversion were 90 to 60 mol% and 10 respectively.
It was weighed to be about 40 mol% and dissolved in pure water.
20 wt% of α-aminoacetic acid was added to this solution and mixed well.

【0021】次に、この溶液を200℃で加熱し、水分
を蒸発させた。水分蒸発後、残留物が自己発火して、粉
末が得られた。この粉末をX線ディフラクトメーターで
生成相を確認したところ、すべての試料でFe23相と
ZnFe24相の複合相であることが確認された。
Next, this solution was heated at 200 ° C. to evaporate the water content. After evaporation of water, the residue self-ignited and a powder was obtained. When the generated phase of this powder was confirmed by an X-ray diffractometer, it was confirmed that all the samples were a composite phase of Fe 2 O 3 phase and ZnFe 2 O 4 phase.

【0022】得られた粉末にPVA系バインダーを1%
添加し、スプレードライヤーにて造粒した。
1% of PVA binder was added to the obtained powder.
It was added and granulated with a spray dryer.

【0023】造粒粉を1〜3ton/cm2の圧力で成
形し、大気中にて1100℃で3時間加熱し焼成を行っ
た。
The granulated powder was molded at a pressure of 1 ton / cm 2 and heated in the air at 1100 ° C. for 3 hours for firing.

【0024】焼成後、Arガス雰囲気にて1050℃に
加熱しつつ、1000kg/cm2の圧力にて2時間熱
間静水圧プレス処理を行った。
After firing, while hot at 1050 ° C. in an Ar gas atmosphere, hot isostatic pressing was carried out at a pressure of 1000 kg / cm 2 for 2 hours.

【0025】以上のようにして、本実施例による磁気ヘ
ッド用非磁性セラミックスの試料1〜5が得られた。
As described above, samples 1 to 5 of non-magnetic ceramics for magnetic heads according to this example were obtained.

【0026】比較品としてFe23、ZnOをそれぞれ
50mol%、50mol%となるよう秤量し、ボール
ミルで20時間混合した。
As comparative products, Fe 2 O 3 and ZnO were weighed to be 50 mol% and 50 mol%, respectively, and mixed in a ball mill for 20 hours.

【0027】混合後、PVAを1%添加し、スプレード
ライヤーで造粒し、900℃で2時間仮焼きを行った。
After mixing, 1% of PVA was added, the mixture was granulated with a spray dryer, and calcined at 900 ° C. for 2 hours.

【0028】仮焼き粉末をボールミルで60時間微粉砕
し、スラリーにPVA系バインダーを1%添加し、スプ
レードライヤーにて造粒した。
The calcined powder was finely pulverized by a ball mill for 60 hours, 1% of PVA type binder was added to the slurry, and granulated by a spray dryer.

【0029】造粒後、造粒粉を1〜3ton/cm2
圧力で成形し、大気中にて1250℃で3時間加熱し焼
成を行った。
After the granulation, the granulated powder was molded under a pressure of 1 ton / cm 2 and heated in the air at 1250 ° C. for 3 hours for firing.

【0030】この焼成体をX線ディフラクトメーターで
生成相を確認したところ、ZnFe24単一相であるこ
とが確認された。
When the produced phase of this fired product was confirmed with an X-ray diffractometer, it was confirmed to be a ZnFe 2 O 4 single phase.

【0031】焼成後、Arガス雰囲気にて1050℃に
加熱しつつ、1000kg/cm2の圧力にて2時間熱
間静水圧プレス処理を行った。
After firing, while hot at 1050 ° C. in an Ar gas atmosphere, hot isostatic pressing was performed for 2 hours at a pressure of 1000 kg / cm 2 .

【0032】表1に、本発明品と比較品の熱膨張係数、
ヴィッカース硬度、抗折強度、結晶粒径、最大チッピン
グ径、相対摺動係数を示した。相対摺動係数は、摺動直
後の比較品の摩擦係数を1とし、摺動を始めてから10
5秒後の摩擦係数の比として示した。
Table 1 shows the thermal expansion coefficients of the product of the present invention and the comparative product,
The Vickers hardness, transverse rupture strength, crystal grain size, maximum chipping diameter, and relative sliding coefficient are shown. The relative sliding coefficient is set to 10 after the start of sliding, assuming that the friction coefficient of the comparative product immediately after sliding is 1.
It is shown as the ratio of the friction coefficient after 5 seconds.

【0033】[0033]

【表1】 [Table 1]

【0034】表1より、本発明品は、比較品と比べると
全試料で熱膨張係数が高く、チッピング径が小さく、相
対摺動係数が低いことがわかる。また、ヴィッカース硬
度、抗折強度のいずれにおいても比較品とほぼ同程度の
特性を有することがわかる。
From Table 1, it can be seen that the product of the present invention has a higher coefficient of thermal expansion, a smaller chipping diameter, and a lower coefficient of relative sliding than the comparative product. Further, it can be seen that the Vickers hardness and the bending strength have almost the same characteristics as the comparative product.

【0035】(実施例2)高純度の硝酸鉄、硝酸亜鉛を
酸化物換算組成でそれぞれ70mol%、30mol%
となるよう秤量し、純水中に溶解した。この溶液にα−
アミノ酢酸を20wt%添加しよく混合した。
(Example 2) High-purity iron nitrate and zinc nitrate in terms of oxides were 70 mol% and 30 mol%, respectively.
Was weighed so that it was dissolved in pure water. Α-
20 wt% of aminoacetic acid was added and mixed well.

【0036】次に、この溶液を200℃で加熱し、水分
を蒸発させた。水分蒸発後残留物が自己発火して、粉末
が得られた。
Next, this solution was heated at 200 ° C. to evaporate the water content. After evaporation of water, the residue self-ignited and a powder was obtained.

【0037】この粉末をX線ディフラクトメーターで生
成相を確認したところ、すべての試料でFe23相とZ
nFe24相の複合相であることが確認された。
When the produced phase of this powder was confirmed by an X-ray diffractometer, it was found that the Fe 2 O 3 phase and Z
It was confirmed to be a composite phase of the nFe 2 O 4 phase.

【0038】得られた粉末にPVA系バインダーを1%
添加し、スプレードライヤーにて造粒した。
1% of PVA-based binder was added to the obtained powder.
It was added and granulated with a spray dryer.

【0039】造粒粉を1〜3ton/cm2の圧力で成
形し、大気中にて1000℃〜1200℃で3時間加熱
し、焼成を行った。
The granulated powder was molded at a pressure of 1 ton / cm 2 and heated in the air at 1000 ° C. to 1200 ° C. for 3 hours to be fired.

【0040】焼成後、Arガス雰囲気にて1050℃で
加熱しつつ、1000kg/cm2の圧力で2時間熱間
静水圧プレス処理を行った。
After firing, while hot at 1050 ° C. in an Ar gas atmosphere, hot isostatic pressing was performed for 2 hours at a pressure of 1000 kg / cm 2 .

【0041】以上のようにして、本実施例による磁気ヘ
ッド用非磁性セラミックスの試料1A〜3Aが得られ
た。
As described above, samples 1A to 3A of the non-magnetic ceramics for magnetic head according to this example were obtained.

【0042】表2に、本発明品と比較品の熱膨張係数、
ヴィッカース硬度、抗折強度、結晶粒径、最大チッピン
グ径、相対摺動係数を示す。
Table 2 shows the thermal expansion coefficients of the product of the present invention and the comparative product.
Vickers hardness, transverse rupture strength, crystal grain size, maximum chipping diameter, and relative sliding coefficient are shown.

【0043】[0043]

【表2】 [Table 2]

【0044】表2より、本発明品は、比較品と比べると
全試料で熱膨張係数が高く、チッピング径が小さく、相
対摺動係数が低いことがわかる。また、ヴィッカース硬
度、抗折強度のいずれにおいても比較品とほぼ同程度の
特性を有することがわかる。
It can be seen from Table 2 that the product of the present invention has a higher coefficient of thermal expansion, a smaller chipping diameter, and a lower coefficient of relative sliding than the comparative product. Further, it can be seen that the Vickers hardness and the bending strength have almost the same characteristics as the comparative product.

【0045】[0045]

【発明の効果】以上、実施例で述べたごとく、本発明の
製造方法によれば、酸化物換算組成でFe23が60m
ol%以上、残部ZnOとなるFe、Znの硝酸塩とア
ミノ酸との錯体を含む溶液を加熱し、得られた粉末を圧
縮成形し成形体を得、該成形体を焼成した焼成体がFe
23相とZnFe24相から成り、その平均結晶粒径が
5μm以下とすることにより、ヘッド材と同等の熱膨張
係数を有し、摺動特性に優れ、機械加工時にチッピング
の生じない磁気ヘッド用非磁性セラミックスが安価に供
給可能となった。
As described in the above examples, according to the manufacturing method of the present invention, Fe 2 O 3 is 60 m in terms of oxide conversion composition.
A solution containing Fe, Zn nitrate and a complex of an amino acid, which is ol% or more and the balance is ZnO, is heated, the obtained powder is compression-molded to obtain a molded body, and the sintered body obtained by firing the molded body is Fe.
It consists of 2 O 3 phase and ZnFe 2 O 4 phase, and its average crystal grain size is 5 μm or less, so it has the same coefficient of thermal expansion as the head material, excellent sliding characteristics, and chipping during machining. Non-magnetic ceramics for non-magnetic heads can now be supplied at low cost.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G11B 5/60 C B 21/21 101 K L ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G11B 5/60 CB 21/21 101 KL

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物換算でFe23が60mol%以
上、残部ZnOとなるFe、Znの硝酸塩とアミノ酸と
の錯体を含む溶液を加熱し得られた粉末を焼成し、Fe
23相とZnFe24相の混相より成り、平均結晶粒径
が5μm以下である焼成体を得ることを特徴とする磁気
ヘッド用非磁性セラミックスの製造方法。
1. A solution obtained by heating a solution containing Fe 2 O 3 in an amount of 60 mol% or more in terms of an oxide and the balance ZnO and a complex of a nitrate of Zn and an amino acid, and calcining the powder to obtain Fe.
A method for producing a non-magnetic ceramic for a magnetic head, comprising obtaining a fired body which is composed of a mixed phase of 2 O 3 phase and ZnFe 2 O 4 phase and has an average crystal grain size of 5 μm or less.
JP7031591A 1995-01-26 1995-01-26 Productionn of nonmagnetic ceramic for magnetic head Pending JPH08208323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7031591A JPH08208323A (en) 1995-01-26 1995-01-26 Productionn of nonmagnetic ceramic for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7031591A JPH08208323A (en) 1995-01-26 1995-01-26 Productionn of nonmagnetic ceramic for magnetic head

Publications (1)

Publication Number Publication Date
JPH08208323A true JPH08208323A (en) 1996-08-13

Family

ID=12335439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7031591A Pending JPH08208323A (en) 1995-01-26 1995-01-26 Productionn of nonmagnetic ceramic for magnetic head

Country Status (1)

Country Link
JP (1) JPH08208323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175801A (en) * 2015-03-20 2016-10-06 日本碍子株式会社 Connection body, honeycomb structure, method for producing connection body and coating body
JP2018525216A (en) * 2016-03-28 2018-09-06 エルジー・ケム・リミテッド Method for producing zinc ferrite catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175801A (en) * 2015-03-20 2016-10-06 日本碍子株式会社 Connection body, honeycomb structure, method for producing connection body and coating body
JP2018525216A (en) * 2016-03-28 2018-09-06 エルジー・ケム・リミテッド Method for producing zinc ferrite catalyst
US10456775B2 (en) 2016-03-28 2019-10-29 Lg Chem, Ltd. Method of preparing zinc ferrite catalyst

Similar Documents

Publication Publication Date Title
JPH08208323A (en) Productionn of nonmagnetic ceramic for magnetic head
JP2708160B2 (en) Ferrite manufacturing method
JPH08217543A (en) Production of nonmagnetic ceramics for magnetic head
JP3131537B2 (en) Alumina jig for firing
JP3239439B2 (en) Ferrite manufacturing method
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JP3696959B2 (en) Tetragonal stabilized zirconia / lanthanum hexaferrite composite sintered body
KR100191350B1 (en) High density mn-zn magnetic powder producing method
JPS60194507A (en) Ceramic substrate material for magnetic head
JPH08180306A (en) Nonmagnetic substrate for magnetic head
JPH05283231A (en) Manufacture of material powder for nonmagnetic board
KR0137076B1 (en) Non-magnetic ceramic substrate for magnetic head
JPS62105986A (en) Process for blackening zirconia ceramics
JPS60260467A (en) High density sintered ferrite
JP3008566B2 (en) Manufacturing method of oxide magnetic material
JP2622078B2 (en) Manufacturing method of non-magnetic ceramics for magnetic head
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPH06251926A (en) Manufacture of nickel-zinc ferrite
JPS60171267A (en) Manufacture of ni-zn ferrite
JPH04269808A (en) Manufacture of nonmagnetic substrate for magnetic head
JPH05319896A (en) Nonmagnetic ceramics
JPH06316459A (en) Structural nonmagnetic ceramics material
JPH0717765A (en) Production of cao-tio2 series ceramic

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees