JPH05319896A - Nonmagnetic ceramics - Google Patents
Nonmagnetic ceramicsInfo
- Publication number
- JPH05319896A JPH05319896A JP4128615A JP12861592A JPH05319896A JP H05319896 A JPH05319896 A JP H05319896A JP 4128615 A JP4128615 A JP 4128615A JP 12861592 A JP12861592 A JP 12861592A JP H05319896 A JPH05319896 A JP H05319896A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- thermal expansion
- mno
- ferrite
- coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Magnetic Heads (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば、薄膜磁気ヘッ
ド用セラミック基板,各種磁気ヘッド用スライダー,磁
気ヘッドのスペーサ等に使用される非磁性セラミックス
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to non-magnetic ceramics used for, for example, ceramic substrates for thin film magnetic heads, sliders for various magnetic heads and spacers for magnetic heads.
【0002】[0002]
【従来技術】従来、磁気記録媒体の高密度化は急速な進
歩を遂げているが、この高記録密度化に伴い、8mmV
TR,電子スチルカメラ,ビデオフロッピーやデジタル
オーディオ等の高保磁力媒体の記録再生用磁気ヘッドと
して、従来のフェライト等を使用した磁気ヘッドに代わ
って、磁性薄膜を使用した磁気記録の高密度化に効適な
薄膜磁気ヘッドが注目されている。2. Description of the Related Art Conventionally, the density of magnetic recording media has been rapidly increased, but with this increase in recording density, 8 mmV
As a magnetic head for recording / reproducing high coercive force media such as TR, electronic still camera, video floppy and digital audio, it is effective for high density magnetic recording using magnetic thin film instead of the conventional magnetic head using ferrite. A suitable thin film magnetic head is receiving attention.
【0003】このような磁性薄膜を利用した薄膜磁気ヘ
ッドは、例えば、以下のようにして作成される。即ち、
チタン酸バリウム,チタン酸カルシウム,アルミナ系複
合物等を非磁性セラミック基板材料として用い、これら
の材料により形成された基板を鏡面加工し、次いで、ト
リクレンやアセトン等の有機溶剤で洗浄した後、基板上
にFeーNi,FeーAl−Si,Co−NbーZr等
の金属磁性薄膜やアモルファス磁性膜を、真空蒸着法,
スパッタリング法,イオンプレーティング法等の公知の
物理的蒸着法により数μm〜数十μm被着形成すること
により得られる(特開平1−108711号公報参
照)。A thin film magnetic head using such a magnetic thin film is produced, for example, as follows. That is,
Barium titanate, calcium titanate, alumina composite, etc. are used as the non-magnetic ceramic substrate material, the substrate formed by these materials is mirror-finished, then washed with an organic solvent such as trichlene, acetone, etc. A metallic magnetic thin film such as Fe-Ni, Fe-Al-Si, Co-Nb-Zr or an amorphous magnetic film is formed on the upper surface by a vacuum deposition method,
It can be obtained by depositing a few μm to a few tens of μm by a known physical vapor deposition method such as a sputtering method or an ion plating method (see JP-A-1-108711).
【0004】尚、従来のフェライト等を使用した磁気ヘ
ッドとしては、Mn−ZnフェライトやNi−Znフェ
ライトの磁性材料から成るコア部品を使用したものが知
られており、このコア部品が、フロッピーディスクやハ
ードディスク等の各種磁気ヘッド用スライダーや磁気ヘ
ッドに使用されるスペーサ等の非磁性材料から成る構造
部品にガラス溶着されて使用される(特公昭61−58
429号公報参照)。As a conventional magnetic head using ferrite or the like, one using a core part made of a magnetic material such as Mn-Zn ferrite or Ni-Zn ferrite is known, and this core part is a floppy disk. It is used by being glass-welded to structural parts made of non-magnetic materials such as sliders for various magnetic heads such as hard disks and hard disks, and spacers used in magnetic heads (Japanese Patent Publication No. 61-58).
429).
【0005】スライダーやスペーサ等の非磁性材料とし
ては、チタン酸バリウム(BaTiO3 )やチタン酸カ
ルシウム(CaTiO3 )が使用される。Barium titanate (BaTiO 3 ) and calcium titanate (CaTiO 3 ) are used as non-magnetic materials such as sliders and spacers.
【0006】[0006]
【発明が解決しようとする問題点】しかしながら、従来
の磁性薄膜を利用した薄膜磁気ヘッドでは、非磁性セラ
ミック基板上に金属磁性膜を被着した後、この金属磁性
膜の歪を除去し、磁気特性を回復させるために熱処理を
施しているが、上記のようなチタン酸バリウムやチタン
酸カルシウム等を使用した非磁性セラミック基板材料は
100〜700℃における熱膨張係数が100〜120
×10-7/℃であり、また、FeーNi,FeーAl−
Si,Co−NbーZr等の金属磁性薄膜やアモルファ
ス磁性膜の100〜700℃における熱膨張係数が14
0〜150×10-7/℃であり、非磁性セラミック基板
の熱膨張係数が、金属磁性膜やアモルファス磁性膜の熱
膨張係数より小さいため、熱処理により金属磁性膜やア
モルファス磁性膜が非磁性セラミック基板より剥離して
しまうという欠点があった。However, in the conventional thin film magnetic head using the magnetic thin film, the metal magnetic film is deposited on the non-magnetic ceramic substrate, and then the strain of the metal magnetic film is removed to remove the magnetic field. Although heat treatment is performed to restore the characteristics, the non-magnetic ceramic substrate material using barium titanate, calcium titanate or the like has a thermal expansion coefficient of 100 to 120 at 100 to 700 ° C.
× 10 -7 / ° C, and Fe-Ni, Fe-Al-
The coefficient of thermal expansion of a metal magnetic thin film such as Si or Co—Nb—Zr or an amorphous magnetic film at 100 to 700 ° C. is 14
0-150 is a × 10 -7 / ° C., the thermal expansion coefficient of the non-magnetic ceramic substrate, smaller than the thermal expansion coefficient of the metallic magnetic film or an amorphous magnetic film, the magnetic metal film or an amorphous magnetic film nonmagnetic ceramic by heat treatment There was a drawback that it was peeled off from the substrate.
【0007】一方、コア材料として、磁気記録の高密度
化の要求に応えるためNiーZnフェライトに代えて、
透磁率の高いMn−Znフェライトが使用されている
が、このMn−Znフェライトはその熱膨張係数が一般
に125〜135×10-7/℃と大であり、チタン酸バ
リウムやチタン酸カルシウムを使用した非磁性セラミッ
クスにより構成されたスライダーやスペーサ等の構造部
品の熱膨張係数( 100〜120×10-7/℃)と大き
く異なるという問題があった。このため、ガラス溶着す
る際の熱処理によりフェライトコアに応力がかかり、磁
気特性の劣化を引き起こすのみならず、コアにクラック
を生じたり、剥離を生じる等、磁気ヘッドの組立上問題
があった。On the other hand, as a core material, in order to meet the demand for higher density of magnetic recording, Ni--Zn ferrite was used instead of Ni--Zn ferrite.
Although Mn-Zn ferrite having high magnetic permeability is used, the thermal expansion coefficient of this Mn-Zn ferrite is generally as large as 125 to 135 × 10 -7 / ° C, and barium titanate or calcium titanate is used. There is a problem that the thermal expansion coefficient (100 to 120 × 10 −7 / ° C.) of the structural parts such as sliders and spacers made of the non-magnetic ceramics is greatly different. Therefore, there is a problem in assembling the magnetic head such that stress is applied to the ferrite core due to the heat treatment when welding the glass, and not only the magnetic characteristics are deteriorated, but also the core is cracked or peeled.
【0008】[0008]
【問題を解決するための手段】本発明者は、上記の問題
点に対して検討を重ねた結果、MnOと所定の成分を添
加することにより、センダスト,アモルファス,Mn−
Znフェライトなどの磁性材料の熱膨張係数と一致する
ように、非磁性セラミックスの熱膨張係数を制御するこ
とができるとともに、ポアを低減することができ、薄膜
磁気ヘッド用セラミック基板及び各種磁気ヘッド用スラ
イダーやスペーサ等に好適な非磁性セラミックスを得る
ことができることを見出し、本発明に至った。As a result of repeated studies on the above-mentioned problems, the present inventor has found that by adding MnO and a predetermined component, sendust, amorphous, Mn-
The coefficient of thermal expansion of non-magnetic ceramics can be controlled so that it matches the coefficient of thermal expansion of a magnetic material such as Zn ferrite, and pores can be reduced. For ceramic substrates for thin-film magnetic heads and various magnetic heads. The inventors have found that non-magnetic ceramics suitable for sliders, spacers, etc. can be obtained, and completed the present invention.
【0009】即ち、本発明の非磁性セラミックスは、M
nOを91〜99モル%、NiO,ZrO2 ,WO3 ,
Al2 O3 ,SiO2 ,SnO,BaO,CaO,Ba
TiO3 ,CaTiO3 から選ばれる少なくとも一種を
1〜9モル%の割合で含有するものである。That is, the non-magnetic ceramic of the present invention is M
91 to 99 mol% of nO, NiO, ZrO 2 , WO 3 ,
Al 2 O 3 , SiO 2 , SnO, BaO, CaO, Ba
It contains at least one selected from TiO 3 and CaTiO 3 in a proportion of 1 to 9 mol%.
【0010】本発明において、MnOを91〜99モル
%としたのは、MnOが91モル%よりも少ないとポア
発生率が高くなるからである。また、MnOが99モル
%を越えると直径3μmを越えるポアが存在するように
なるからである。さらに、MnOは高い熱膨張係数を有
するものの焼結性が悪く、高密度な非磁性セラミック組
成物が得られないため、MnOの組成は91モル%〜9
9モル%の範囲に限定される。In the present invention, the MnO content is set to 91 to 99 mol% because the MnO content of less than 91 mol% increases the pore generation rate. Also, if MnO exceeds 99 mol%, there will be pores having a diameter exceeding 3 μm. Further, although MnO has a high coefficient of thermal expansion, it has poor sinterability and a high density non-magnetic ceramic composition cannot be obtained. Therefore, the composition of MnO is 91 mol% to 9 mol%.
It is limited to the range of 9 mol%.
【0011】また、NiO,ZrO2 ,WO3 ,Al2
O3 ,SiO2 ,SnO,BaO,CaO,BaTiO
3 ,CaTiO3 から選ばれる少なくとも一種を添加し
たのは、これらの成分を種々組み合わせてMnOに添加
することにより、熱膨張係数を140〜150×10-7
/℃の範囲において適宜設定できるからである。Also, NiO, ZrO 2 , WO 3 , Al 2
O 3 , SiO 2 , SnO, BaO, CaO, BaTiO
3, at least one of the added is selected from CaTiO 3, by adding to the MnO in various combinations of these components, the thermal expansion coefficient of 140 to 150 × 10 -7
This is because it can be appropriately set in the range of / ° C.
【0012】本発明の非磁性セラミックスは、例えば、
MnOと、NiO,ZrO2 ,WO3 ,Al2 O3 等を
秤量混合し、乾燥した後、800〜1200℃で2〜1
0時間仮焼し、これを微粉砕する。これにバインダーを
添加して造粒し、例えば、0.8〜2ton/cm2 の圧力で
成形し、この成形体を窒素雰囲気中で1150〜135
0℃で焼成することにより作成される。そして、焼成
後、更に、焼結体の緻密化を図るため、1350〜15
00℃の温度範囲で、1000〜2000気圧のアルゴ
ン雰囲気中で熱間静水圧加圧処理を行なうことが望まし
い。The nonmagnetic ceramics of the present invention are, for example,
MnO, NiO, ZrO 2 , WO 3 , Al 2 O 3 and the like are weighed and mixed, dried, and then dried at 800 to 1200 ° C. for 2-1.
It is calcined for 0 hour and finely pulverized. A binder is added to this and the mixture is granulated, and molded, for example, at a pressure of 0.8 to 2 ton / cm 2 , and the molded body is made from 1150 to 135 in a nitrogen atmosphere.
It is prepared by firing at 0 ° C. Then, after firing, in order to further densify the sintered body, 1350 to 15
It is desirable to perform hot isostatic pressing in an argon atmosphere at 1000 to 2000 atm in a temperature range of 00 ° C.
【0013】また、係る非磁性セラミック組成物の結晶
相はX線回折測定からMnO相とMn2 O3 相が主であ
り、MnOに対するMn2 O3 の結晶相の第一ピーク強
度比は0.2以下が望ましい。これは、Mn2 O3 の熱
膨張係数はMnOの熱膨張係数より小さく、0.2を越
えると焼結体の熱膨張係数が低下するからである。According to X-ray diffraction measurement, the crystal phase of the nonmagnetic ceramic composition is mainly MnO phase and Mn 2 O 3 phase, and the first peak intensity ratio of the crystal phase of Mn 2 O 3 to MnO is 0. .2 or less is desirable. This is because the thermal expansion coefficient of Mn 2 O 3 is smaller than that of MnO, and if it exceeds 0.2, the thermal expansion coefficient of the sintered body decreases.
【0014】[0014]
【作用】本発明の非磁性セラミックスでは、145×1
0-7/℃と高い熱膨張係数を有するMnOに、熱膨張係
数の低い添加物Al2 O3 , SiO2 , BaO, Ca
O, BaTiO3 ,CaTiO2 ,Nb3 O5 のうち少
なくとも一種を適宜選定し、所定の割合で添加すること
により、センダスト,アモルファス磁性膜の熱膨張係数
にほぼ一致する140〜145×10-7/℃の範囲に制
御することが可能となる。[Function] In the nonmagnetic ceramics of the present invention, 145 × 1
MnO having a high coefficient of thermal expansion of 0 −7 / ° C., and additives of low coefficient of thermal expansion Al 2 O 3 , SiO 2 , BaO, Ca
By properly selecting at least one of O, BaTiO 3 , CaTiO 2 , and Nb 3 O 5 and adding it at a predetermined ratio, the coefficient of thermal expansion of sendust and the amorphous magnetic film is approximately 140 to 145 × 10 −7. It becomes possible to control in the range of / ° C.
【0015】また、特に、MnOに添加する材料とし
て、MnOと同様に高い熱膨張係数を有するNiOを添
加することにより、センダスト,アモルファス磁性膜の
熱膨張係数にほぼ一致する145〜150×10-7/℃
の範囲に制御することが可能となる。In particular, by adding NiO, which has a high coefficient of thermal expansion as MnO, as a material to be added to MnO, the coefficient of thermal expansion of sendust and the amorphous magnetic film is approximately 145 to 150 × 10 −. 7 / ℃
It becomes possible to control in the range of.
【0016】さらに、Mn−Znフェライトの熱膨張係
数(125〜135×10-7/℃)に近づけることがで
きるとともに、このMn−Znフェライトの一般的な硬
度(Hv=650)よりも小さい硬度となり、加工性に
優れた緻密な非磁性セラミックスを得ることができる。Further, the coefficient of thermal expansion of Mn-Zn ferrite (125-135 × 10 -7 / ° C.) can be approximated, and the hardness is smaller than the general hardness (Hv = 650) of this Mn-Zn ferrite. Therefore, it is possible to obtain a dense non-magnetic ceramic having excellent workability.
【0017】[0017]
【実施例】市販されている純度99%以上のMnO(不
純物としてNb2 O5 ,BaO,SiO2 ,SrOを含
む)を使い、酸化カルシウム(CaO)源として塩化カ
ルシウム(CaCl2 )、炭酸カルシウム(CaC
O3 )、酸化アルミニウム(Al2 O3 )などを使い、
表1に示す組成比となるように秤量し、ボールミルを用
いて湿式混合した。EXAMPLE Commercially available MnO having a purity of 99% or more (including Nb 2 O 5 , BaO, SiO 2 , and SrO as impurities) was used, and calcium chloride (CaCl 2 ) and calcium carbonate were used as calcium oxide (CaO) sources. (CaC
O 3 ), aluminum oxide (Al 2 O 3 ) etc. are used,
The composition ratios shown in Table 1 were measured and wet-mixed using a ball mill.
【0018】[0018]
【表1】 [Table 1]
【0019】これを乾燥させ、乾燥後の原料を1000
℃で2時間仮焼を行なった。仮焼後の原料をジルコニア
ボールを使い、平均粒径が1μm 以下となるよう微粉砕
した。この粉砕によりZrO2 が1重量%以下混入する
ことがある。これにバインダーを加えて造粒を行なった
後、2ton/cm2 の圧力で成形した。その後1200℃
で焼成し各試料を得た。This is dried and the raw material after drying is set to 1000
Calcination was performed for 2 hours at ℃. The raw material after calcination was finely pulverized using zirconia balls so that the average particle diameter was 1 μm or less. Due to this pulverization, 1% by weight or less of ZrO 2 may be mixed. A binder was added to this and granulation was performed, followed by molding at a pressure of 2 ton / cm 2 . Then 1200 ° C
Each sample was obtained by firing.
【0020】得られた試料について熱膨張係数, ポアの
評価, 硬度, Mn2 O3 とMnOのピーク強度比につい
て調べ、表2に記した。ポアの評価は、1μmのダイヤ
モンド砥粒により最終ラップ面に占めるポア径を測定
し、ポア平均径が1μm以下を●印、1〜3μm を○
印、3μm以上を×印で示した。またX線回折測定を行
い試料の結晶相を同定し、MnOに対するMn3 O4 の
結晶相の第一ピーク強度比を求めた。結果を表2に示
す。The thermal expansion coefficient, the evaluation of pores, the hardness, and the peak intensity ratio of Mn 2 O 3 and MnO of the obtained sample were investigated and are shown in Table 2. For the evaluation of pores, the diameter of pores occupying the final lap surface was measured with 1 μm diamond abrasive grains, and the average pore diameter was 1 μm or less, marked with ●, and 1-3 μm was marked with ○.
The mark, 3 μm or more, is shown by X. Further, X-ray diffraction measurement was performed to identify the crystal phase of the sample, and the first peak intensity ratio of the crystal phase of Mn 3 O 4 to MnO was obtained. The results are shown in Table 2.
【0021】[0021]
【表2】 [Table 2]
【0022】表1および表2により、本発明の範囲内に
ある試料は、熱膨張係数が140〜148×10-7/℃
で、ポア平均径が3μm以下、また、硬度がMn−Zn
フェライトの一般的な硬度(Hv=650)よりも小さ
いという優れた特性を有していることが判った。According to Tables 1 and 2, the samples within the scope of the present invention have a coefficient of thermal expansion of 140 to 148 × 10 -7 / ° C.
The average pore diameter is 3 μm or less, and the hardness is Mn-Zn.
It has been found that it has excellent characteristics that it is smaller than the general hardness (Hv = 650) of ferrite.
【0023】[0023]
【発明の効果】以上、詳述した通り、本発明によれば、
高い熱膨張係数を有するMnOに、熱膨張係数の低い添
加物Al2 O3 , SiO2 , BaO, CaO, BaTi
O3 ,CaTiO2 ,Nb3 O5 のうち少なくとも一種
を適宜選定し、所定の割合で添加することにより、磁性
膜,センダスト,アモルファス磁性膜の熱膨張係数にほ
ぼ一致する熱膨張係数を得ることができる。また、特
に、MnOに添加する材料として、MnOと同様に高い
熱膨張係数を有するNiOを添加することにより、セン
ダスト,アモルファス磁性膜の熱膨張係数にほぼ一致す
る熱膨張係数を得ることができる。さらに、Mn−Zn
フェライトの熱膨張係数に近づけることができるととも
に、このMn−Znフェライトの硬度よりも小さくな
り、加工性に優れた緻密な非磁性セラミックスを得るこ
とができる。As described above in detail, according to the present invention,
MnO having a high coefficient of thermal expansion is added to the additives Al 2 O 3 , SiO 2 , BaO, CaO, BaTi having a low coefficient of thermal expansion.
Properly selecting at least one of O 3 , CaTiO 2 , and Nb 3 O 5 and adding it in a predetermined ratio to obtain a thermal expansion coefficient that is almost the same as the thermal expansion coefficient of the magnetic film, sendust, or amorphous magnetic film. You can Further, in particular, by adding NiO having a high coefficient of thermal expansion as MnO as a material to be added to MnO, it is possible to obtain a coefficient of thermal expansion that substantially matches the coefficients of thermal expansion of the sendust and the amorphous magnetic film. Furthermore, Mn-Zn
The coefficient of thermal expansion of ferrite can be made close to, and the hardness is smaller than the hardness of this Mn-Zn ferrite, so that a dense non-magnetic ceramic excellent in workability can be obtained.
Claims (1)
O2 ,WO3 ,Al2O3 ,SiO2 ,SnO,Ba
O,CaO,BaTiO3 ,CaTiO3 から選ばれる
少なくとも一種を1〜9モル%の割合で含有することを
特徴とする非磁性セラミックス。1. MnO of 91 to 99 mol%, NiO and Zr
O 2 , WO 3 , Al 2 O 3 , SiO 2 , SnO, Ba
A nonmagnetic ceramic containing at least one selected from O, CaO, BaTiO 3 , and CaTiO 3 in a proportion of 1 to 9 mol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12861592A JP3152740B2 (en) | 1992-05-21 | 1992-05-21 | Non-magnetic ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12861592A JP3152740B2 (en) | 1992-05-21 | 1992-05-21 | Non-magnetic ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05319896A true JPH05319896A (en) | 1993-12-03 |
JP3152740B2 JP3152740B2 (en) | 2001-04-03 |
Family
ID=14989171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12861592A Expired - Fee Related JP3152740B2 (en) | 1992-05-21 | 1992-05-21 | Non-magnetic ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3152740B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114685153A (en) * | 2022-03-30 | 2022-07-01 | 电子科技大学 | Wide-temperature wide-band MnZn power ferrite material and preparation method thereof |
CN114716240A (en) * | 2022-03-30 | 2022-07-08 | 电子科技大学 | Preparation method of high-mechanical-property low-loss MnZn power ferrite material |
-
1992
- 1992-05-21 JP JP12861592A patent/JP3152740B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114685153A (en) * | 2022-03-30 | 2022-07-01 | 电子科技大学 | Wide-temperature wide-band MnZn power ferrite material and preparation method thereof |
CN114716240A (en) * | 2022-03-30 | 2022-07-08 | 电子科技大学 | Preparation method of high-mechanical-property low-loss MnZn power ferrite material |
CN114685153B (en) * | 2022-03-30 | 2022-12-16 | 电子科技大学 | Wide-temperature wide-band MnZn power ferrite material and preparation method thereof |
CN114716240B (en) * | 2022-03-30 | 2023-01-03 | 电子科技大学 | Preparation method of high-mechanical-property low-loss MnZn power ferrite material |
Also Published As
Publication number | Publication date |
---|---|
JP3152740B2 (en) | 2001-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3152740B2 (en) | Non-magnetic ceramics | |
JP3085619B2 (en) | Non-magnetic ceramics | |
JPH06157128A (en) | Nonmagnetic ceramics | |
JP3825079B2 (en) | Manufacturing method of non-magnetic ceramics | |
JP2949297B2 (en) | Porcelain composition for magnetic head | |
JPS63134559A (en) | Non-magnetic ceramics for magnetic head | |
KR0137076B1 (en) | Non-magnetic ceramic substrate for magnetic head | |
KR970006797B1 (en) | Non-magnetic ceramic substrate material for magnetic head | |
JP3309040B2 (en) | Non-magnetic ceramics and method for producing the same | |
JPH0459650A (en) | Nonmagnetic ceramic composition | |
JPH0459264B2 (en) | ||
JPH0329739B2 (en) | ||
JPS60194507A (en) | Ceramic substrate material for magnetic head | |
JPH0459263B2 (en) | ||
JPS63134558A (en) | Non-magnetic ceramics for magnetic head | |
JPH09208301A (en) | Nonmagnetic ceramic for magnetic head and its production | |
JPH0859335A (en) | Production of nickel mono-oxide-calcium-beta-titanate ceramic | |
JPH01108711A (en) | Nonmagnetic substrate material for thin film head | |
JP2001261433A (en) | Nonmagnetic ceramics | |
JPS6252171A (en) | Ceramic composition for magnetic head | |
JPH0633168B2 (en) | Porcelain composition for magnetic head | |
JPH05319895A (en) | Nonmagnetic ceramics for magnetic head | |
JPS59203771A (en) | Non-magnetic ceramic composition for magnetic head | |
JPH0612611A (en) | Nonmagnetic ceramics for magnetic head | |
JPS59213670A (en) | Ceramic composition for magnetic head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |