JPH0633168B2 - Porcelain composition for magnetic head - Google Patents
Porcelain composition for magnetic headInfo
- Publication number
- JPH0633168B2 JPH0633168B2 JP19289185A JP19289185A JPH0633168B2 JP H0633168 B2 JPH0633168 B2 JP H0633168B2 JP 19289185 A JP19289185 A JP 19289185A JP 19289185 A JP19289185 A JP 19289185A JP H0633168 B2 JPH0633168 B2 JP H0633168B2
- Authority
- JP
- Japan
- Prior art keywords
- thermal expansion
- ferrite
- composition
- slider
- magnetic head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はフロッピーディスク等の磁気ヘッドに使用され
る磁極片(フェライトコア)を支持する磁気ヘッド用磁
器(以下磁器ヘッド用スライダと称す)の磁器組成物に
関するものであり、さらに詳しくはMn−Znフエライトに
適した磁器ヘッド用スライダの磁器組成物に関する。The present invention relates to a magnetic head porcelain (hereinafter referred to as a porcelain head slider) that supports a magnetic pole piece (ferrite core) used in a magnetic head such as a floppy disk. The present invention relates to a porcelain composition, and more particularly to a porcelain composition for a slider for a porcelain head suitable for Mn-Zn ferrite.
(背景技術) 図に示す如く前記スライダ1は一般にフェライトコア2
を接着ガラス3を介して熱処理により接着され磁気ヘッ
ドを構成している。したがって、これらスライダ及びフ
ェライトコアの各々に大きな熱膨張差があると熱処理時
の熱履歴により、これら材料に亀裂や残留歪が生じ組付
け工程中にガラスハガレ等を生じる。そのためスライダ
はその磁器組成及び組成比を選択してフェライトコアの
熱膨張係数に一致させなければならない。(Background Art) As shown in the figure, the slider 1 is generally a ferrite core 2
Are bonded by heat treatment through the adhesive glass 3 to form a magnetic head. Therefore, if there is a large difference in thermal expansion between the slider and the ferrite core, cracks or residual strains will occur in these materials due to the thermal history during heat treatment, and glass peeling or the like will occur during the assembly process. Therefore, the slider must have its ceramic composition and composition ratio selected to match the coefficient of thermal expansion of the ferrite core.
また、フェライトコアにはその用途に応じ各種のグレー
ドが存在し、熱膨張係数もこのグレードにより105 〜12
5 ×10-7/℃の広い範囲に適用される必要がある。その
ためスライダもその組成比を変化させることにより105
〜125 ×10-7/℃の広い範囲の熱膨張係数を容易に選択
されることが望まれている。There are various grades of ferrite cores depending on the application, and the thermal expansion coefficient is 105 to 12 depending on this grade.
It needs to be applied to a wide range of 5 × 10 -7 / ° C. Therefore, by changing the composition ratio of the slider, 105
It is desired that a wide range of thermal expansion coefficient of up to 125 × 10 −7 / ° C. be easily selected.
また、このスライダはその磁器焼結体にポアが出来るだ
け少ないことが要求される。フロッピーディスクに接触
する焼結体表面にポアが多く存在すると、該ディスク表
面にコーティングされた磁性粉末がポア内に付着し易く
なり、付着した磁性粉の存在により記録・再生時の磁器
特性に障害をもたらす。Further, this slider is required to have as few pores as possible in the porcelain sintered body. If there are many pores on the surface of the sintered body that comes into contact with the floppy disk, the magnetic powder coated on the disk surface will easily adhere to the pores, and the existence of the adhered magnetic powder will impair the porcelain characteristics during recording and reproduction. Bring
また、このスライダはその磁器が充分に焼結し緻密化し
ていなければならない。焼結が不充分で強度や靭性が劣
っていると磁器にチッピングやクラックが生じ、フロッ
ピーディスクへ走行させた場合ディスク自体を損傷させ
るという重大な欠陥をまねく。In addition, the porcelain of the slider must be sufficiently sintered and densified. If the sintering is insufficient and the strength and toughness are inferior, chipping and cracks will occur in the porcelain, leading to a serious defect that the disk itself will be damaged when running on a floppy disk.
一方、磁器ヘッドのコアとしては従来からNi−Znフェラ
イトが使用されていたがフロッピーディスク用フェライ
トコアとしては現在Ni−ZnよりもMn−Znフェライト
の方が磁性特性、特に抗磁力が優れていることから、Mn
−Znフェライトに移行しつつある。On the other hand, Ni-Zn ferrite has been conventionally used as a core of a porcelain head, but as a ferrite core for a floppy disk, Mn-Zn ferrite is now superior to Ni-Zn in magnetic characteristics, particularly in coercive force. From that, Mn
-It is shifting to Zn ferrite.
(従来技術の説明) 従来、Ni−Znフェライトに適用されるスライダ組成物と
してはこの熱膨張係数90〜98×10-7/℃とほぼ同程度の
フォルステライトやチタン酸バリウムが知られている。
しかしながら、Mn−Znフェライトにこれら磁器を適用す
る場合、Mn−Znフェライトの熱膨張係数が105 〜125 ×
10-7/℃であり熱膨張差が大きすぎこれら磁器を適用す
ることは困難である。(Explanation of Prior Art) Forsterite and barium titanate having a thermal expansion coefficient of about 90 to 98 × 10 −7 / ° C. are known as slider compositions applied to Ni—Zn ferrite. .
However, when these porcelains are applied to Mn-Zn ferrite, the thermal expansion coefficient of Mn-Zn ferrite is 105 to 125 ×
Since it is 10 −7 / ° C. and the difference in thermal expansion is too large, it is difficult to apply these porcelains.
一方、Mn−Znフェライトに適用するスライダ組成物とし
ては従来からチタン酸塩系化合物を主体とする例えばチ
タン酸カルシウム、チタン酸マグネシウム及びチタン酸
ストロンチウム等がMn−Znフェライトの熱膨張係数とほ
ぼ同程度であることが知られている。しかしながら、Mn
−Znフェライトは要求特性に応じて105 〜125 ×10-7/
℃の広い範囲で多種多様のグレードが存在するが、従来
からこの広い範囲の熱膨張係数を組成比を変更するのみ
で直線的に変化させ各種グレードの熱膨張係数に容易に
一致させる磁気ヘッド用スライダ組成物が見出されてい
ない。On the other hand, as a slider composition applied to Mn-Zn ferrite, for example, calcium titanate, magnesium titanate, and strontium titanate, which are mainly composed of a titanate compound, have almost the same thermal expansion coefficient as that of Mn-Zn ferrite. It is known to be degree. However, Mn
-Zn ferrite is 105 to 125 × 10 -7 / depending on required characteristics
There are a wide variety of grades in a wide range of ℃, but for the magnetic head that has been conventionally used to linearly change the thermal expansion coefficient of this wide range only by changing the composition ratio and easily match the thermal expansion coefficient of various grades. No slider composition has been found.
一方、前記チタン酸塩化合物を主体とする組成において
は例えばアルゴンガス中で焼成した場合にTiイオンが
還元されるため極端に磁器の色調が変化する。この場合
変化した磁器の色を元に戻す処理が必要となる。On the other hand, in the composition containing the titanate compound as a main component, when fired in, for example, argon gas, Ti ions are reduced, so that the color tone of the porcelain is extremely changed. In this case, it is necessary to restore the changed color of the porcelain.
さらに、前記チタン酸塩化合物を主体とする焼結体は鏡
面加工時に結晶粒の脱離が問題となることから、脱粒及
び選択研摩(軟弱な粒が選択的に研摩されること)のな
い加工性に優れた磁気ヘッドスライダの組成物が望まれ
ている。Further, since the desorption of crystal grains becomes a problem during mirror-finishing in the sintered body mainly composed of the titanate compound, there is no need for de-graining and selective polishing (soft grains are selectively polished). A magnetic head slider composition having excellent properties is desired.
(本発明が解決しようとする問題点) 本発明者は上記現状に鑑み鋭意研究の結果、Mn−Znフェ
ライトの熱膨張係数に近いCaO−SiO2系化合物の主成分
に対し、特定量のTiO2を添加したことにより、SiO2成分
をガラス相以外のケイ酸カルシウム(CaSiO3)化合物と
チタン酸カルシウム(CaTiO3)との均一仮焼物からなる
安定な結晶とし、且つこれらの混合比を調整することに
より、Mn−Znフェライトの熱膨張係数105 〜125 ×
10-7/℃の広い範囲に適用することができ、しかも焼結
性が良好でポアの発生が少なく、還元雰囲気処理による
色むらの発生を防止できると共に鏡面加工性が優れた磁
気ヘッド用スライダ組成物が得られることを知見した。(Present invention is a problem to be solved) The present inventors whereas the main component of the current result of intensive research in view of the, Mn-Zn CaO-SiO 2 compound close to the thermal expansion coefficient of the ferrite, the specific amount of TiO By adding 2 , the SiO 2 component becomes a stable crystal consisting of a uniform calcined product of calcium silicate (CaSiO 3 ) compound other than the glass phase and calcium titanate (CaTiO 3 ), and the mixing ratio of these is adjusted. The thermal expansion coefficient of Mn-Zn ferrite is 105 to 125 ×
A slider for a magnetic head that can be applied to a wide range of 10 -7 / ° C, has good sinterability, has few pores, can prevent color unevenness due to reducing atmosphere treatment, and has excellent mirror surface workability. It was found that a composition was obtained.
(発明の目的) したがって、本発明はケイ酸カルシウム(CaSiO3)化合
物とチタン酸カルシウム(CaTiO3)とからなるガラス成
分の少ない緻密質の焼結体であり、且つMn−Znフェライ
トの熱膨張係数の広い範囲に適用でき、焼結性が良好で
ポアの発生が少なく、さらに還元雰囲気処理による色む
らの発生を防止できると共に、鏡面仕上性に優れた磁気
ヘッド用スライダ組成物を提供することを目的とする。(Object of the invention) Therefore, the present invention is a dense sintered body containing a calcium silicate (CaSiO 3 ) compound and calcium titanate (CaTiO 3 ) with a small glass component, and the thermal expansion of Mn-Zn ferrite. To provide a slider composition for a magnetic head, which can be applied to a wide range of coefficients, has good sinterability, has few pores, can prevent color unevenness due to a reducing atmosphere treatment, and has excellent mirror finish. With the goal.
(問題を解決するための手段) 本発明によれば、SiO2を22〜50モル%と、TiO2を2〜30
モル%と、CaOを45〜57モル%とから成る磁気ヘッド用
磁器組成物が提供される。(Means for Solving the Problem) According to the present invention, SiO 2 is 22 to 50 mol%, and TiO 2 is 2 to 30%.
There is provided a porcelain composition for a magnetic head, which is composed of mol% and CaO of 45 to 57 mol%.
上記組成範囲から成る磁気組成物はその適正焼成温度に
おいては主としてCaSiO3相又はCa3Si2O7相の1種以上
とCaTiO3相から成る微細な均一混在組織を有し、従来の
フォルステライト等のMgO−SiO2系磁器よりも焼結性が
向上し、緻密質の焼結体が得られる。The magnetic composition having the above composition range has a fine uniform mixed structure composed mainly of one or more of CaSiO 3 phase or Ca 3 Si 2 O 7 phase and CaTiO 3 phase at an appropriate firing temperature, and has a conventional forsterite structure. Sinterability is improved as compared with MgO-SiO 2 porcelains such as, and a dense sintered body can be obtained.
さらに、上記組成範囲から成る磁器組成物においてはCa
SiO3相又はCa3Si2O7相とCaTiO3相の均一混在組織が主
体となり、ガラス成分が少ないため、粒界に存在するガ
ラス成分が原因で生じる鏡面加工時の脱粒及び選択研摩
が少なくなる。また、CaSiO3相やCa3Si2O7相の存在に
より従来のチタン酸系スライダ材質よりも硬度がよりM
n−Znフェライトに近づき、ガラス溶着後のヘッド保
証面(フロッピーディスクへ接触する側の面)の平担度
を維持し易くなる。また、CaSiO3とCaTiO3との均一仮焼
物からなる安定な結晶相を有するので、熱膨張係数105
〜125 ×10-7/℃の広い範囲において組成比を変化させ
ることにより熱膨張係数を直線的に変化させることがで
き、所望の熱膨張率を有するスライダを得ることができ
る。Further, in the porcelain composition having the above composition range, Ca
The uniform composition of SiO 3 phase or Ca 3 Si 2 O 7 phase and CaTiO 3 phase is the main constituent, and the glass component is small, so there is little shedding and selective polishing during mirror finishing caused by the glass component existing at the grain boundaries. Become. In addition, due to the presence of the CaSiO 3 phase and the Ca 3 Si 2 O 7 phase, the hardness is M more than that of the conventional titanate-based slider material.
It approaches the n-Zn ferrite, and it becomes easy to maintain the flatness of the head guarantee surface (the surface on the side that contacts the floppy disk) after glass welding. Further, since it has a stable crystal phase composed of a uniform calcined product of CaSiO 3 and CaTiO 3, it has a thermal expansion coefficient of 105
The coefficient of thermal expansion can be linearly changed by changing the composition ratio in a wide range of up to 125 × 10 −7 / ° C., and a slider having a desired coefficient of thermal expansion can be obtained.
SiO2が22モル%未満ではCaO添加量の多い側で焼結体
の緻密化が阻害され、TiO2添加量の多い側で焼結体の緻
密化は良好であるが還元による色調変化・色むらが発生
し易くなる。SiO2が50モル%を超えるとSiO2が単独で存
在しガラス相が形成され易くなるのでポアが発生して充
分な緻密化が果し得ない。TiO2が2モル%未満ではCaSi
O3及びCa3Si2O7の焼結を充分促進させ得ないため、ポ
アの発生を充分抑制することができない。TiO2が30モル
%を超えると、CaO添加の多い側で、CaTiO3相の生成
が増加するため、還元雰囲気下での影響が顕著になり、
色むらが発生し易くなり、SiO2添加の多い側でCaTiSiO5
相(熱膨張係数は65×10-7/℃)が生成するため熱膨張
係数が極端に低くなる。CaOが45モル%未満ではSiO2添
加の多い側でSiO2を主成分とするガラス相が生成し易く
なり焼結体の緻密性が悪化し、TiO2添加が多い側で前記
熱膨張係数の低いCaTiSiO5相が生成する領域となり、極
端に熱膨張係数が低下する。CaOが57モル%を超える
と、CaOが未反応状態で存在し易くなり、水和性を有し
耐水性が悪くなり一般的に磁気ヘッド用スライダとして
不適切なものとなる。If the SiO 2 content is less than 22 mol%, the densification of the sintered body is hindered on the side where the amount of CaO is large, and the densification of the sintered body is good on the side where the amount of TiO 2 added is large, but the color tone changes / color due to reduction. The unevenness is likely to occur. When SiO 2 exceeds 50 mol%, SiO 2 exists alone and a glass phase is easily formed, so that pores are generated and sufficient densification cannot be achieved. If TiO 2 is less than 2 mol%, CaSi
Since the sintering of O 3 and Ca 3 Si 2 O 7 cannot be promoted sufficiently, the generation of pores cannot be suppressed sufficiently. When the content of TiO 2 exceeds 30 mol%, the CaTiO 3 phase is increased on the side where CaO is added a lot, so that the effect in a reducing atmosphere becomes remarkable,
Easily color unevenness occurs, CaTiSiO 5 with more sides of SiO 2 added
Since a phase (coefficient of thermal expansion is 65 × 10 -7 / ° C) is generated, the coefficient of thermal expansion becomes extremely low. CaO denseness of the glass phase is generated tends sintered body mainly composed of SiO 2 with large side of SiO 2 added is deteriorated is less than 45 mol%, of the thermal expansion coefficient in TiO 2 added is large sides This is a region where a low CaTiSiO 5 phase is formed, and the coefficient of thermal expansion drops extremely. When CaO exceeds 57 mol%, CaO is likely to exist in an unreacted state, has hydration properties and has poor water resistance, and is generally unsuitable as a magnetic head slider.
CaSiO3及びCa3Si2O7相は純粋組成比(CaO:SiO2=50:5
0モル%及び60:40モル%)からの調合では緻密な焼結
体を得るのが困難であるが、TiO2の添加によりCaSiO3及
びCa3Si2O7相の形成に助剤効果を果し、両相が従来のTi
O2−CaO系よりも比較的低温の仮焼温度、即ち従来10
00〜1150℃程度であったものが約900 〜1100℃程度で結
晶形成が進行し、本焼成時に均一な結晶成長がおこり、
異常粒成長を抑制することができる。The CaSiO 3 and Ca 3 Si 2 O 7 phases have a pure composition ratio (CaO: SiO 2 = 50: 5).
Although it is difficult to obtain a dense sintered body with the formulation of 0 mol% and 60:40 mol%), the addition of TiO 2 has an auxiliary effect on the formation of CaSiO 3 and Ca 3 Si 2 O 7 phases. After all, both phases are conventional Ti
The calcination temperature is lower than that of the O 2 -CaO system, that is, 10
What had been about 00 to 1150 ° C, crystal formation proceeds at about 900 to 1100 ° C, and uniform crystal growth occurs during main firing.
Abnormal grain growth can be suppressed.
以下、実施例により本発明を詳細に説明する。本発明に
おいて磁気ヘッド用スライダを製作する方法は、所定の
組成比に原料を秤量し、混合粉砕後仮焼し、次いでこの
仮焼物を微粉砕し、有機バインダを添加して造粒し、所
定形状に成形後焼成する通常の方法が採用される。Hereinafter, the present invention will be described in detail with reference to examples. In the present invention, a method of manufacturing a slider for a magnetic head is as follows: the raw materials are weighed to a predetermined composition ratio, mixed and pulverized and then calcined, and then the calcined product is finely pulverized, and an organic binder is added to granulate the mixture. A usual method of firing after shaping into a shape is adopted.
(実施例) 市販の工業原料(純度98%以上)で、シリカ源としてシ
リカ(SiO2)、チタニア源として酸化チタン(TiO2)、
カルシア源として炭酸カルシウム(CaCO3)又は水酸化
カルシウム(Ca(OH)2)などを選び、それぞれ第1表
に示す組成比となるように秤量し、ボールミルを用いて
湿式混合し、乾燥後900 〜1100℃で1〜2時間仮焼を行
なった。仮焼後不純物の混入を抑えて微粉砕し、有機バ
インダ等を添加して造粒後1.0 〜2.0t/cm2で加圧成形
をした。その後、1250〜1380℃で大気中で焼成し第1表
に示す試料No.1〜15を得た。(Example) Commercially available industrial raw material (purity of 98% or more), silica (SiO 2 ) as a silica source, titanium oxide (TiO 2 ) as a titania source,
Calcium carbonate (CaCO 3 ) or calcium hydroxide (Ca (OH) 2 ) is selected as the calcia source, weighed so that the composition ratios shown in Table 1 are obtained, wet mixed using a ball mill, and dried 900 Calcination was performed at ~ 1100 ° C for 1-2 hours. After calcination, the mixture of impurities was suppressed and finely pulverized, an organic binder and the like were added, and after granulation, pressure molding was performed at 1.0 to 2.0 t / cm 2 . Then, it baked at 1250-1380 degreeC in air | atmosphere, and obtained sample No. 1-15 shown in Table 1.
得られた焼結体の結晶相はX線回折法によって同定し
た。生成量比の判定はピーク比で行ない、同時に画像解
析装置により試料鏡面をXMA装置を用いて各結晶相に
よる光の反射率の違いから面積比を測定して体積比率を
換算して評価した。なおこの値はX線回折法によって求
めた量比とほぼ一致した。硬度は荷重1kg(Hv(1.0)
で示す)のビッカース硬度で示した。測定算出はJISZ22
44に準拠し、単位はkg/mm2で示した。焼結体の緻密性
は吸水率2%を超えるものを×印で、○%のものを○印
で、その中間を△印で示した。色むらは還元雰囲気処理
後の焼結体の内部を観察し、表面との色の差異があるか
どうかで評価した。The crystal phase of the obtained sintered body was identified by the X-ray diffraction method. The production ratio was determined by the peak ratio, and at the same time, the area ratio was measured from the difference in the light reflectance due to each crystal phase of the sample mirror surface using the XMA device by the image analyzer, and the volume ratio was converted to the evaluation. It should be noted that this value almost coincided with the quantity ratio obtained by the X-ray diffraction method. Hardness is a load of 1 kg (Hv (1.0)
It shows with the Vickers hardness. Measurement calculation is JIS Z22
According to 44, the unit is kg / mm 2 . Regarding the compactness of the sintered body, those having a water absorption of more than 2% are indicated by x, those having o% are indicated by o, and the middle thereof is indicated by Δ. Color unevenness was evaluated by observing the inside of the sintered body after the reducing atmosphere treatment and whether there was a difference in color from the surface.
第1表から理解される様に、試料No.1,8,9,10,1
1及び13は本発明の組成範囲外のものであり、試料No.1
及び8はTiO2量が少ないため焼結が充分促進されて
いない。試料No.9及び10はSiO2量が少ない系であ
り、CaO量の多い側(試料No.9)では焼結体の緻密化が
阻害され、TiO2量の多い側(試料No.10)では色むらが
発生している。試料No.11はTiO2量が多い系であり、SiO
2添加が比較的多い側で熱膨張係数の低いCaTiSiO5相が
生成されており熱膨張係数が65×10-7/℃と極端に低い
ことが分かる。試料No.13はSiO2量が若干多くなってい
るためSiO2が単独で存在しガラス相を形成されておりポ
アの発生のため充分に緻密化していない。試料No.14は
従来のTiO2−CaO系組成物でCaTiO3相及びTiO2相の2相
から構成されれ典型的例であり、色むらを生じ硬度がMn
−Znフェライトの硬度約650kg/mm2より相当大きくなり
鏡面加工時にMn−Znフェライト側が選択研摩され易くな
る。試料15は従来のフォルステライト磁器であり、熱膨
張係数が小さく、且つ硬度が大き過ぎMn−Znフェラ
イト用のスライダとして適用することができない。 As can be seen from Table 1, sample Nos. 1, 8, 9, 10, 1
Sample Nos. 1 and 13 are out of the composition range of the present invention.
In Nos. 8 and 8, since the amount of TiO 2 was small, the sintering was not sufficiently promoted. Samples No.9 and 10 are SiO 2 amount is small based, CaO intensive side (sample No.9) in densification of the sintered body is inhibited, TiO 2 intensive side (sample No.10) The color unevenness has occurred. Sample No. 11 is a system with a large amount of TiO 2 ,
2 The CaTiSiO 5 phase with a low coefficient of thermal expansion is generated on the side with a relatively large amount of addition, and it can be seen that the coefficient of thermal expansion is extremely low at 65 × 10 -7 / ° C. In sample No. 13, the amount of SiO 2 was slightly increased, so that SiO 2 was present alone and a glass phase was formed, and pores were generated, so that it was not sufficiently densified. Sample No. 14 is a typical example of a conventional TiO 2 —CaO composition composed of two phases, a CaTiO 3 phase and a TiO 2 phase, and is a typical example.
The hardness of -Zn ferrite is considerably larger than about 650 kg / mm 2 , and it becomes easy to selectively polish the Mn-Zn ferrite side during mirror finishing. Sample 15 is a conventional forsterite porcelain, which has a small coefficient of thermal expansion and is too hard to be applied as a slider for Mn-Zn ferrite.
これに対し試料No.2〜7及び12は本発明の範囲内の
ものであり、熱膨張係数がMn−Znフェライトに適用でき
る105 〜125 ×10-7/℃の範囲内で選択されており、磁
器の硬度及び焼結性が良好で緻密質な焼結体が得られて
いると共に、色むらの発生がない。On the other hand, sample Nos. 2 to 7 and 12 are within the range of the present invention, and the thermal expansion coefficient is selected within the range of 105 to 125 × 10 -7 / ° C applicable to Mn-Zn ferrite. A dense sintered body having good porcelain hardness and sinterability is obtained, and color unevenness does not occur.
さらに試料No.14と本発明の範囲内である各試料No.2〜
7の仮焼温度を比較してみると従来のTiO2−CaO系より
比較的低温であることが理解される。Further, sample No. 14 and each sample No. 2 within the scope of the present invention
Comparing the calcination temperatures of Nos. 7 and 7, it is understood that the calcination temperature is comparatively lower than that of the conventional TiO 2 —CaO system.
上述の如く本発明はSiO2−TiO2−CaO系としてこれらを
特定の組成比とすることによりMn−Znフェライトの熱膨
張係数の広い範囲に適用でき、焼結体の緻密化が充分で
ポアの発生が少なく、さらに還元雰囲気処理による色む
らの発生を防止できると共に、鏡面化工性に優れた磁器
ヘッド用スライダ組成物が得られる。The present invention as described above can be applied to a wide range of thermal expansion coefficient of the Mn-Zn ferrite by a specific composition ratio of these as SiO 2 -TiO 2 -CaO-based, fully a pore densification of the sintered body It is possible to obtain a slider composition for a porcelain head, which is less likely to cause the occurrence of color unevenness due to the treatment in a reducing atmosphere and has excellent mirror-finishing processability.
図面はフロッピーディスクに使用される磁気ヘッドの斜
視図である。The drawing is a perspective view of a magnetic head used for a floppy disk.
Claims (1)
%と、CaOを45〜57モル%とからなる磁気ヘッド用磁器
組成物。1. A magnetic head porcelain composition comprising 22 to 50 mol% of SiO 2 , 2 to 30 mol% of TiO 2 , and 45 to 57 mol% of CaO.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19289185A JPH0633168B2 (en) | 1985-08-30 | 1985-08-30 | Porcelain composition for magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19289185A JPH0633168B2 (en) | 1985-08-30 | 1985-08-30 | Porcelain composition for magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6252172A JPS6252172A (en) | 1987-03-06 |
JPH0633168B2 true JPH0633168B2 (en) | 1994-05-02 |
Family
ID=16298694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19289185A Expired - Lifetime JPH0633168B2 (en) | 1985-08-30 | 1985-08-30 | Porcelain composition for magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0633168B2 (en) |
-
1985
- 1985-08-30 JP JP19289185A patent/JPH0633168B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6252172A (en) | 1987-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH062615B2 (en) | Magnetic head slider material | |
JPH0633168B2 (en) | Porcelain composition for magnetic head | |
JPH0335257B2 (en) | ||
JPH0345024B2 (en) | ||
JPS6224380B2 (en) | ||
JPH05319896A (en) | Nonmagnetic ceramics | |
JP3600646B2 (en) | Non-magnetic ceramics for magnetic head and method of manufacturing the same | |
JPH0633167B2 (en) | Porcelain composition for magnetic head | |
JP3322228B2 (en) | Tools for firing | |
JP2002173366A (en) | Cordierite based ceramic material | |
JP2917527B2 (en) | Non-magnetic ceramic material and method of manufacturing the same | |
JP3591791B2 (en) | Manufacturing method of non-magnetic ceramics for magnetic head | |
JP2853340B2 (en) | Non-magnetic ceramic material for magnetic head and method of manufacturing the same | |
JP2622078B2 (en) | Manufacturing method of non-magnetic ceramics for magnetic head | |
JP2949297B2 (en) | Porcelain composition for magnetic head | |
JPS63134559A (en) | Non-magnetic ceramics for magnetic head | |
JPS60194507A (en) | Ceramic substrate material for magnetic head | |
JPS6251224B2 (en) | ||
KR970006797B1 (en) | Non-magnetic ceramic substrate material for magnetic head | |
JPH0530792B2 (en) | ||
KR0137076B1 (en) | Non-magnetic ceramic substrate for magnetic head | |
JPH0633166B2 (en) | Porcelain composition for magnetic head | |
JPH01252565A (en) | Non-magnetic porcelain material for magnetic head and production thereof | |
JPH0310209B2 (en) | ||
JPH06316459A (en) | Structural nonmagnetic ceramics material |