JPH01252565A - Non-magnetic porcelain material for magnetic head and production thereof - Google Patents

Non-magnetic porcelain material for magnetic head and production thereof

Info

Publication number
JPH01252565A
JPH01252565A JP63079568A JP7956888A JPH01252565A JP H01252565 A JPH01252565 A JP H01252565A JP 63079568 A JP63079568 A JP 63079568A JP 7956888 A JP7956888 A JP 7956888A JP H01252565 A JPH01252565 A JP H01252565A
Authority
JP
Japan
Prior art keywords
magnetic
thermal expansion
magnetic head
mixture
bao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63079568A
Other languages
Japanese (ja)
Other versions
JPH0776125B2 (en
Inventor
Mitsuo Tamura
光男 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63079568A priority Critical patent/JPH0776125B2/en
Publication of JPH01252565A publication Critical patent/JPH01252565A/en
Publication of JPH0776125B2 publication Critical patent/JPH0776125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title material of high thermal expansion coefficient, outstanding in wear resistance, smooth, few in voids, suitable as a slider for magnetic head, comprising BaO, TiO2 and NiO in specified proportion. CONSTITUTION:The objective porcelain material >=120X10<-7>/ deg.C in thermal expansion coefficient, comprising (A) 0.8-8mol% of BaO, (B) 6-33mol% of TiO2 and (C) the rest of virtually NiO. Said material is pref. further incorporated with, as subcomponent(s), 0-10wt.% (except 0) of at least one kind of substance selected from Al2O3, SiO2, MgO, SnO, ZrO2, Nb2O5, MnO and ZnO. Said material can be obtained by the following process: the first raw material containing BaO and TiO2 are mixed, ground and preliminarily calcined at 800-1200 deg.C. The resultant mixture is mixed with the second raw material incorporated with NiO followed by grinding the resultant mixture to produce the second mixture, which is then put to hydraulic press forming and sintering at 1200-1300 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 従来フロッピーディスクヘッド、ハードディスクヘッド
及びオーディオヘッド等に用いられる磁気ヘッド用非磁
性磁器材料及びその製造方法に関し、特にスライダー材
料及びその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This field relates to non-magnetic ceramic materials for magnetic heads conventionally used in floppy disk heads, hard disk heads, audio heads, etc. and methods for manufacturing the same, and in particular to slider materials and methods for manufacturing the same. It is.

[従来の技術] 従来、フロッピーディスクヘッド、ハードディスクヘッ
ド、オーディオヘッド等に用いられる磁気ヘッド用非磁
性磁器材料としてはMaO−T101系及びCa0−T
iO□系を主とするチタニア系の磁器が用いられてきた
。これらの磁器に共通する性質は、ヴイカース硬度が7
00〜900にQ / mn ’でフェライトに近い硬
度を有し、その焼結体が緻密で平滑な研磨面が得られる
ことである。また熱膨張係数が化学組成を調整すること
により、90 X 10−7/℃〜97xl□−7(B
 a OT i O2系)、90×10−7/℃〜11
7 X 10−7/”C(Cao  T i 02系)
と自由に調整できること等である。ヴイカース硬度はそ
の材料の耐摩耗性を表し、上記した値は磁気ヘッドのコ
ア材・とじて用いられるN1−ZnフェライトやMn−
Znフェライトの牽粍性に比較的に近似するため、スラ
イダー材として要求される条件を満たすものである。
[Prior Art] Conventionally, MaO-T101 series and Ca0-T are used as non-magnetic ceramic materials for magnetic heads used in floppy disk heads, hard disk heads, audio heads, etc.
Titania-based porcelain, mainly iO□-based, has been used. The common property of these porcelains is that their Vikers hardness is 7.
It has a hardness close to that of ferrite at Q/mn' of 00 to 900, and its sintered body is dense and a smooth polished surface can be obtained. In addition, by adjusting the chemical composition, the thermal expansion coefficient can be changed from 90 x 10-7/℃ to 97xl□-7 (B
a OT i O2 system), 90 x 10-7/°C ~ 11
7 X 10-7/”C (Cao Ti 02 series)
and can be adjusted freely. Vikers hardness represents the wear resistance of the material, and the above values are for N1-Zn ferrite and Mn-
Since the tensile strength is relatively similar to that of Zn ferrite, it satisfies the conditions required for a slider material.

また、平滑なる研磨面は磁気記録媒体と常に接触し摺動
する磁気ヘッドの構造体としては、記録媒体との摩擦を
少くし記録媒体に傷をつけないための基本的な条件であ
る。
In addition, a smooth polished surface is a basic condition for the structure of a magnetic head that constantly slides in contact with a magnetic recording medium to reduce friction with the recording medium and prevent scratches on the recording medium.

更に、熱膨張係数の調整は磁気ヘッドのコア材とガラス
ボンディングで接合する際の熱膨張係数の差から生ずる
熱応力によってコアに発生するしと割れを阻止し残留応
力による磁気特性の劣化と動作時の温度変化による熱応
力の発生とそれに伴う磁気ヘッドの性能劣化を防止する
ために必要なものである。
Furthermore, adjustment of the coefficient of thermal expansion prevents cracks that occur in the core due to thermal stress caused by the difference in coefficient of thermal expansion when joining the core material of the magnetic head with glass bonding, and prevents deterioration of magnetic properties and operation due to residual stress. This is necessary to prevent the occurrence of thermal stress due to temperature changes over time and the accompanying performance deterioration of the magnetic head.

このようにBad−Ti12系及びCa0−T i O
2系磁器は磁気ヘッドのスライダー材として要求される
基本的な条件を一応満足するために、現在磁気ヘッド用
のスライダー材の大部分はBaO−TiO2系もしくは
Ca OT i Oを系の磁器材料である。
In this way, Bad-Ti12 system and Ca0-T i O
In order to satisfy the basic requirements for slider materials for magnetic heads, most of the slider materials for magnetic heads are currently made of BaO-TiO2-based or CaOTiO-based porcelain materials. be.

[発明が解決しようとする課題〕 しかしながら年ごとに磁気記録密度(B  )の向上す
るすう勢から設計上磁気ヘッドのコア材に用いるフェラ
イトにはできるだけ大きな磁束密度B を要求されるよ
うになってきた。ことにMn−Znフェライト系で高磁
束密度B を得るには、組成比を調整することが必要で
、この場合にMn−Znフェライトの成分系の性質から
必然的に熱膨張係数が大きくなり120xlO−7/℃
〜145X10−7/’Cのような磁気ヘッド用Mn−
Znフェライトが得られ、このような高熱膨張係数を有
する。Mn−Znフェライトが使用されるようになった
。このため従来用いられてきたB a OT L 02
系、Ca OT i Of系磁器材料は組成を調整して
も熱膨張係数はせいぜい117X10−’〜/℃程度で
あるため高磁束密度を達成したフェライトコアにこれら
旧来のスライダー材を用いる場合には、両者の熱膨張係
数の不一致に起因した製造工程中のコアのヒビ割れと磁
気ヘッドの性能の低下を招く不都合を生じた。
[Problem to be solved by the invention] However, as the magnetic recording density (B) increases year by year, the ferrite used as the core material of the magnetic head is required to have as large a magnetic flux density B as possible in its design. . In particular, in order to obtain a high magnetic flux density B in the Mn-Zn ferrite system, it is necessary to adjust the composition ratio. -7/℃
Mn- for magnetic heads such as ~145X10-7/'C
Zn ferrite is obtained and has such a high coefficient of thermal expansion. Mn-Zn ferrite came into use. For this reason, the conventionally used B a OT L 02
Even if the composition is adjusted, the coefficient of thermal expansion of CaOTiOf type and CaOTiOf type ceramic materials is at most about 117X10-'~/℃, so when using these conventional slider materials for a ferrite core that has achieved a high magnetic flux density, However, due to the mismatch in thermal expansion coefficients between the two, the core cracked during the manufacturing process and the performance of the magnetic head deteriorated.

そこで、本発明の技術的課題は、これらの欠点を除去す
るたメB ao  T i Ox −N i O系の磁
器材料の化学組成を調整し、従来のBa0−T i O
2系、Ca OT i O2系の磁器で不可能であった
120X10−7/℃以上の熱膨張係数を実現し、更に
、磁気ヘッド用スライダー材としての基本的条件である
耐鷹耗性、及び平滑なボイドの少ない磁気ヘッド用非磁
性磁器材料及びその製造方法を提供することである。
Therefore, the technical problem of the present invention is to adjust the chemical composition of BaoTiOx-NiO-based porcelain material in order to eliminate these drawbacks, and to
It has achieved a thermal expansion coefficient of 120X10-7/℃ or higher, which was impossible with CaOTiO2-based porcelain. It is an object of the present invention to provide a smooth non-magnetic ceramic material for a magnetic head with few voids and a method for manufacturing the same.

[課題を解決すための手段] 本発明によれば、モル百分率でBaOが0.8〜8モル
%、T i O2が6〜33モル%、残部が実質的にN
iOよりなる主成分を含有し、熱膨張係数が120X1
0−7/℃以上であることを特徴とする磁気ヘッド用非
磁性磁器材料が得られる。
[Means for Solving the Problems] According to the present invention, BaO is 0.8 to 8 mol%, TiO2 is 6 to 33 mol%, and the balance is substantially N.
Contains a main component consisting of iO and has a thermal expansion coefficient of 120X1
A non-magnetic ceramic material for a magnetic head, which is characterized by a temperature of 0-7/°C or higher, is obtained.

また、本発明によれば、上記した主成分に、副成分とし
てAj、O,、SiO□、MgO。
Further, according to the present invention, in addition to the main components described above, Aj, O, SiO□, and MgO are added as subcomponents.

SnO,ZrO2,Nbt Os 、MnO,ZnOの
中から選択された少くとも1種を重量百分率で0〜10
wt%(0は含ます)含有することを特徴とする磁気ヘ
ッド用非磁性磁器材料が得られる。
At least one selected from SnO, ZrO2, NbtOs, MnO, ZnO in a weight percentage of 0 to 10
A non-magnetic ceramic material for a magnetic head is obtained, which is characterized in that it contains wt% (0 is included).

また、本発明によれば、BaOとT i O2を含有す
る第1の原料を混合し粉砕し、第1の混合物を得る第1
の混合物を800℃〜1200℃の範囲内の温度で予焼
する予焼工程と、予焼上りの第1の混合物にNiOを含
有する第2の原料を混合・粉砕し、第2の混合物を得る
第2の混合工程と、第2の混合物を油圧プレス成形し成
形体を得る圧縮成形工程と、この成形体を1000℃〜
1300℃の範囲内の温度で焼成する焼成工程とを有す
ることを特徴とする磁気ヘッド用非磁性磁器材料の製造
方法が得られる。
Further, according to the present invention, a first raw material containing BaO and T i O2 is mixed and pulverized to obtain a first mixture.
A pre-firing step of pre-firing a mixture of a second mixing step to obtain a molded product, a compression molding step to obtain a molded product by hydraulic press molding the second mixture, and a compression molding step to obtain a molded product at 1000°C to
A method for manufacturing a non-magnetic ceramic material for a magnetic head is obtained, which comprises a firing step of firing at a temperature within a range of 1300°C.

さらに本発明によれば、上記した焼成工程の後に焼成し
た成形体を熱間プレスする熱間プレス工程を有すること
を特徴とする磁気ヘッド用非磁性磁器材料の製造方法が
得られる。
Furthermore, according to the present invention, there is obtained a method for manufacturing a non-magnetic ceramic material for a magnetic head, which comprises a hot pressing step of hot pressing the fired compact after the above-described firing step.

ここで、第2の混合物は、AI 20B 。Here, the second mixture is AI 20B.

5iOz 、MgO,SnO,ZrO2゜N b 20
 s 、 M n O、Z n Oの中から選択された
少くとも1種を重量百分率で、0〜10wt%(0は含
まず)含有することが望ましく、Bad。
5iOz, MgO, SnO, ZrO2°N b 20
It is desirable to contain at least one selected from s, MnO, and ZnO in a weight percentage of 0 to 10 wt% (excluding 0), which is Bad.

TiO2,NiOの成分のモル比は、それぞれ0゜8〜
8モル%、:6〜33モル%であることが望ましい。
The molar ratio of TiO2 and NiO components is 0°8~
8 mol%, preferably 6 to 33 mol%.

[作 用] 次に以下図面を参照しながら本発明の作用について説明
する。第1図は複数の結晶相を有する磁気の微m構造を
示す、この図において斜線を施した結晶相をA層、斜線
の無いものをB層とする。
[Function] Next, the function of the present invention will be explained below with reference to the drawings. FIG. 1 shows a magnetic microstructure having a plurality of crystal phases. In this figure, the shaded crystal phases are referred to as A layer, and those without diagonal lines are referred to as B layer.

今A層の熱膨張係数をαa、B相の熱膨張係数をα8と
し、夫々が一定の体積当りで占める体積比率をλ、、λ
あとすると2相の混合体で成る物質の熱膨張係数αは(
1)式で推定することができる。
Now let the thermal expansion coefficient of the A layer be αa, and the thermal expansion coefficient of the B phase be α8, and the volume ratios occupied by each of them per a certain volume are λ, λ
Then, the coefficient of thermal expansion α of a substance consisting of a mixture of two phases is (
It can be estimated using equation 1).

α=λ、α、+λ−αb  ・・・(1)従って所望の
磁器材料の熱膨張係数がα、とαゎの間にあれば2相の
混合比率を調整してλ、。
α=λ, α, +λ−αb (1) Therefore, if the thermal expansion coefficient of the desired porcelain material is between α and αゎ, adjust the mixing ratio of the two phases to λ.

λ、を適当な値に調節すれば所要のαを実現することが
できる。ただしこの場合混合する2つの結晶相の間で新
しい反応生成物が生じこの物質の熱膨張係数がα、、α
bとかけ離れた値であるときは(1)式の関係は成立し
ない。
By adjusting λ to an appropriate value, the required α can be achieved. However, in this case, a new reaction product is created between the two crystalline phases that are mixed, and the coefficient of thermal expansion of this material is α, α
When the value is far from b, the relationship in equation (1) does not hold.

第2図はBaO−TiO2系磁器のT i O2のモル
%と熱膨張係数の関係を示す、この図において、T i
 O2がBaOより大なるにつれて、熱膨張係数が単調
に減少することが認められる。この化学組成付近ではB
a2Ti*Ot。の相とT i O2の相の混在し、B
aOとT i O2の組み合わせにって両方相の割合が
異なる組織が得られる。
Figure 2 shows the relationship between the mol% of T i O2 and the thermal expansion coefficient of BaO-TiO2-based porcelain.
It is observed that the coefficient of thermal expansion decreases monotonically as O2 becomes larger than BaO. Around this chemical composition, B
a2Ti*Ot. phase and T i O2 phase are mixed, B
Depending on the combination of aO and T i O2, structures with different proportions of both phases can be obtained.

したがってB a OT i Oi系の熱膨張係数はB
 a2T i 902G相の熱膨張係数とTiO2相の
熱膨張係数によって(1)式の関係で決定される。
Therefore, the thermal expansion coefficient of the B a OT i Oi system is B
It is determined by the relationship of equation (1) based on the thermal expansion coefficient of the a2T i 902G phase and the thermal expansion coefficient of the TiO2 phase.

(1)式の原理に基づくと、熱膨張係数が120X 1
0−7/’C以上の磁器材料を得るためには、αが12
0X10−7/’C以上の物質を微細構造の中に分散さ
せることで実現できる。この為にはできるだけ熱膨張係
数が大きく且つ主成分のBa0−T i Oを系と混合
した際になじみが良く主成分のB a OT i O2
系の特質である平滑な研磨面、適度の硬度、良好な加工
性、非磁性等の性質を失わない第゛3の物質の選定が必
要である。
Based on the principle of equation (1), the coefficient of thermal expansion is 120X 1
In order to obtain a porcelain material of 0-7/'C or higher, α must be 12
This can be achieved by dispersing a substance of 0x10-7/'C or higher into the fine structure. For this purpose, it is necessary to make the thermal expansion coefficient as large as possible and to have good compatibility when the main component Ba0-T i O is mixed with the system.
It is necessary to select a third material that does not lose the characteristics of the system, such as a smooth polished surface, appropriate hardness, good workability, and nonmagnetism.

本発明はこの目的のなめに種々の物質を検討した結果(
NiO酸化ニッケル)を第3成分として混合したB a
o  T i 02  B i O系の磁器が磁気ヘッ
ド用非磁性材料として基本的に必要な全ての条件を具備
していることと熱膨張係数が所望する120〜140 
X−7/℃の間で゛調整できることを発見した。
The present invention was developed as a result of studying various substances for this purpose (
B a mixed with NiO (nickel oxide) as the third component
o T i 02 B i O-based porcelain meets all the basically necessary conditions as a non-magnetic material for a magnetic head, and has a desired thermal expansion coefficient of 120 to 140.
It was discovered that the temperature could be adjusted between X-7/°C.

更に主成分に副成分としてAJ20m。Furthermore, AJ20m is added to the main component as a subcomponent.

5in2.MgO,SnO,ZrO2+Nbz Os 
、MnO,ZnOの中から選ばれた少なくとも1種以上
を添加することにより主成分から生ずるB az T 
l e O2o相、’rtot相、MnO相の結晶粒径
の成長を抑制し、気孔率を減少させるため磁気材料の機
械的強度が向上し、加工時の耐チッピング性等を向上で
きることを発見した。
5in2. MgO, SnO, ZrO2+NbzOs
, MnO, and ZnO.
It was discovered that by suppressing the growth of crystal grain sizes of the O2O phase, 'rtot phase, and MnO phase and reducing the porosity, the mechanical strength of magnetic materials can be improved and chipping resistance during processing can be improved. .

更に付記すべきことはB a OT i O2−NiO
系の磁器材料は基本的に濃緑がら黒の色を呈し今日の磁
気ヘッド用非磁性材料の製造ではきわめて一般的である
熱間静水圧プレス(HIP)処理に際し還元による着色
がなく製造ラインにおける色の不安定さを生じない利点
を有している。
What should be added further is that B a OT i O2−NiO
This type of porcelain material basically exhibits a dark green to black color, and does not undergo coloration due to reduction during the hot isostatic pressing (HIP) process, which is extremely common in the production of non-magnetic materials for magnetic heads today, and the color remains unchanged on the production line. This has the advantage of not causing instability.

[実施例] 以下本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

第1表は、本発明の実施例に係る磁気ヘッド用非磁性材
料の基本特性を示す。
Table 1 shows the basic characteristics of nonmagnetic materials for magnetic heads according to examples of the present invention.

以下余白 この表においてBad、Ti0z 、NiOをそれぞれ
1〜10%、5〜40%残部として含有する磁器材料k
l〜k10の焼結密度、熱膨張係数、ヴイカース硬度、
抗折温度についてそれぞれ調べなものである。
Margin below In this table, porcelain materials containing Bad, TiOz, and NiO as the balance of 1 to 10% and 5 to 40%, respectively
Sintered density of l~k10, coefficient of thermal expansion, Vikers hardness,
The bending temperature is investigated.

焼結体の密度は、NiOが増えると増加す&傾向を示す
The density of the sintered body shows a tendency to increase as NiO increases.

更にBa0−TiOz−NiO系においては従来B10
−Ti0□系において実現できなかった熱膨張係数12
0X10−7/℃以上が予測通り実現できたと同時に基
本的な機械的性質であるヴイカース硬度、抗折強度、加
工性は従来のBa0−T i Ox系に近く磁気ヘッド
用非磁性材料としてこの系が基本的に充分な特性を備え
ていることが判明した。
Furthermore, in the Ba0-TiOz-NiO system, conventional B10
-Thermal expansion coefficient 12 that could not be achieved in the Ti0□ system
0x10-7/°C or higher was achieved as predicted, and at the same time, the basic mechanical properties such as Vikers hardness, bending strength, and workability are close to those of the conventional Ba0-T i Ox system, and this system can be used as a non-magnetic material for magnetic heads. was found to have basically sufficient characteristics.

NiOが60モル%以下の材料については熱膨張係数は
従来よりあるCaOTiO2系の上限と等しくなる。
For materials containing 60 mol % or less of NiO, the coefficient of thermal expansion is equal to the upper limit of the conventional CaOTiO2 system.

一方、NiOが92モル%以上になるとヴイカース硬度
が下り耐摩耗性及び機械的強度が劣る。
On the other hand, if the NiO content is 92 mol% or more, the Vikers hardness decreases and wear resistance and mechanical strength are poor.

BaOとT i O2のモル比においてT i O2/
BaOが3より小になるとB a T i 40 *相
が生じ易くなり機械的強度が低下する(第4の材料)。
In the molar ratio of BaO and T i O2, T i O2/
When BaO is less than 3, a B a T i 40 * phase is likely to occur, resulting in a decrease in mechanical strength (fourth material).

同時にTiO2/BaOが5より大になると微細構造内
でBaOTiO2で構成している結晶相の熱膨張係数が
T192相の増加に伴って90X10−’/”Cを下ま
わり(1)式における全体への寄与率が小さくなり好ま
しくない(第5の材料)。
At the same time, when TiO2/BaO becomes larger than 5, the thermal expansion coefficient of the crystalline phase composed of BaOTiO2 in the microstructure decreases below 90X10-'/''C as the T192 phase increases and decreases to the overall value in equation (1). (fifth material).

結果としてBaOの全体に占めるモル%は0,8〜8モ
ル%、T i O2は6〜33モル%の範囲にあれば機
械的強度にすぐれ、熱膨張係数も良いことが判った。
As a result, it was found that if the mol% of BaO in the whole is in the range of 0.8 to 8 mol% and the TiO2 content is in the range of 6 to 33 mol%, the material has excellent mechanical strength and a good coefficient of thermal expansion.

以上の結果、本発明の実施例における最適な基本構成は
第3図に示すように、 BaO0,8〜8モル% TiO26〜33モル% NIO60〜90モル% 実線1内に囲まれる範囲である。
As a result of the above, the optimum basic configuration in the embodiment of the present invention is the range surrounded by the solid line 1, as shown in FIG.

原料として市販の試薬がである純度97%以上の二酸化
チタン炭酸バリウムを所定の化学組成になるように秤量
し、樹脂ボールミル及び高強度ジルコニアボールと純水
で20時間以上混合した。
Titanium dioxide barium carbonate with a purity of 97% or more, which is a commercially available reagent, was weighed as a raw material to give a predetermined chemical composition, and mixed in a resin ball mill, high-strength zirconia balls, and pure water for more than 20 hours.

次に濾過乾煉後アルミナ匣鉢に入れて800℃〜120
0℃の間で2時間以上予焼した。
Next, after filtering and drying, put it in an alumina sagger and heat it to 800℃~120℃.
Prebaking was performed at 0°C for 2 hours or more.

次に樹脂製ボールミルを用いてBaO−TiO2系の予
焼上り粉末と所定量の酸化ニッケルを秤量して高強度ジ
ルコニアボールと純水で20時間以上混合と湿式粉砕を
同時に行った。
Next, using a resin ball mill, BaO-TiO2-based prefired powder and a predetermined amount of nickel oxide were weighed and mixed and wet-pulverized at the same time using high-strength zirconia balls and pure water for over 20 hours.

−過乾燥後PVA8%溶液を10wt%ライカイキで混
入し28メツシユのふるいを通し水分調整後油圧プレス
機にて1tOn/aaの圧力でプレスしたて4市、よこ
50面、高さ10市の成形体を得た。続いて、この成形
体大気中にて1200〜1300℃の間で2時間以上焼
成磁器材料を得た。
- After over-drying, mix 8% PVA solution with 10wt% Laikaiki, pass through a 28-mesh sieve, adjust the moisture content, and press with a hydraulic press at a pressure of 1 ton/aa to form 4 squares, 50 sides horizontally, and 10 squares high. I got a body. Subsequently, this compact was fired in the atmosphere at 1200 to 1300° C. for 2 hours or more to obtain a porcelain material.

(第1〜第10の磁器材料) 実施例2゜ 本発明の実施例2について説明する。(1st to 10th porcelain materials) Example 2゜ Example 2 of the present invention will be described.

第2表は、本発明の実施例2に係る磁気ヘッド材料の基
本特性を示す。
Table 2 shows the basic characteristics of the magnetic head material according to Example 2 of the present invention.

以下余白 この表において、実施例1で得られた磁気ヘッド用非磁
性材料NQ3.Nc6.NO3について、HIP上りを
施したものである。
Margin below: In this table, nonmagnetic material for magnetic head NQ3 obtained in Example 1. Nc6. Regarding NO3, HIP uplink is applied.

熱膨張係数は、実施例1に係る材料と変わらない、一方
焼結密度、ヴイカース硬度、抗折強度はともに上昇して
いることが、認められた。
It was found that the coefficient of thermal expansion was the same as that of the material according to Example 1, while the sintered density, Vikers hardness, and bending strength were all increased.

本発明の実施例2に係る磁気ヘッド材料は次のように製
造された。実施例1で得られた第3.第6および第8の
材料を熱間静水圧プレス(HIP)装置を用いて110
0℃〜1300℃にて、1000 kg/cdの圧力で
、−時間〜3時間のHIP処理を施し、第3′、第6′
、第8′の磁気へ・ラド用非磁性材料を得た。
A magnetic head material according to Example 2 of the present invention was manufactured as follows. No. 3 obtained in Example 1. The sixth and eighth materials were heated to 110° C. using a hot isostatic pressing (HIP) device.
HIP treatment was performed at 0° C. to 1300° C. under a pressure of 1000 kg/cd for − hours to 3 hours, and the 3′ and 6′
, a non-magnetic material for the 8th magnetic field was obtained.

第2表は、この第3′、第6′、第8′の非磁性材料に
ついて測定したものである。
Table 2 shows measurements made on the 3', 6', and 8' nonmagnetic materials.

実施例3゜ 本発明の実施例2について説明する。Example 3゜ Example 2 of the present invention will be described.

第3表は、本発明の実施例3に係る磁気ヘッド材料の基
本特性を示す、実施例1の非磁性材料を主成分とし混合
段階で、添加物を添加し、実施例1の製造プロセスに従
って得た第11〜第43の材料の基本的物性を測定した
ものである。
Table 3 shows the basic characteristics of the magnetic head material according to Example 3 of the present invention, in which the non-magnetic material of Example 1 is the main component, additives are added in the mixing stage, and the manufacturing process of Example 1 is followed. The basic physical properties of the obtained 11th to 43rd materials were measured.

以下余白 この表から明らかなようにAjliOs。Margin below As is clear from this table, AjliOs.

5iOz 、MgO,SnO,ZnO,Y20s 。5iOz, MgO, SnO, ZnO, Y20s.

Nbx Os 、MnOのいずれかを適量添加すること
により平均粒径を細かくして抗折力及びヴイカース硬度
の向上させることが確められた。
It has been confirmed that by adding an appropriate amount of either Nbx Os or MnO, the average particle size can be made finer and transverse rupture strength and Vikers hardness can be improved.

更に適量の添加では加工時のチッピングが著しく抑制で
きることが確認できた。また、上記しないずれの添加物
においても、添加量が5〜10wt%を越えると加工に
際しチッピングが生じ易くもろくなることが認められた
Furthermore, it was confirmed that chipping during processing can be significantly suppressed by adding an appropriate amount. Furthermore, it has been found that for any of the above-mentioned additives, if the amount added exceeds 5 to 10 wt%, chipping tends to occur during processing, resulting in brittleness.

従って、実施例3と前記の主成分に加えてAj20s 
、S i O2,MgO,SnO,ZnO。
Therefore, in addition to Example 3 and the above main components, Aj20s
, S i O2, MgO, SnO, ZnO.

Nb2O3,MnOの中から選ばれた少くとも1種を1
0wt%以下添加することにより強度の向上とチッピン
グ抑制でができることが判明した。
At least one selected from Nb2O3 and MnO
It has been found that adding 0 wt% or less can improve strength and suppress chipping.

[発明の効果] 以上詳述したように本発明によれば高密度記録に必要な
高磁束密度のフェライトに対応できる従来のBad−T
i12系、Cab−Ti12系で実現できなかった熱膨
張係数120xlO−7/’C以上の磁気ヘッド磁性材
料及びそのI!!遣方法が提供できることになり、この
ことは工業的にきわめて有用である。
[Effects of the Invention] As detailed above, according to the present invention, the conventional Bad-T can be used for ferrite with high magnetic flux density required for high-density recording.
A magnetic head magnetic material with a thermal expansion coefficient of 120xlO-7/'C or more, which could not be achieved with the i12 series and Cab-Ti12 series, and its I! ! This is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は複数の結晶相からなる非磁性磁器材料の微細構
造のモデルを示す図、第2図はBa0−T i Oを系
におけるBaOとTiO□のモル比と熱膨張係数の関係
を示す図である。第3図は本発明の実施例に係る磁気ヘ
ッド用非磁性磁器材料の化学組成を示す図である。
Figure 1 shows a model of the microstructure of a non-magnetic ceramic material consisting of multiple crystal phases, and Figure 2 shows the relationship between the molar ratio of BaO and TiO□ and the coefficient of thermal expansion in a Ba0-TiO system. It is a diagram. FIG. 3 is a diagram showing the chemical composition of a nonmagnetic ceramic material for a magnetic head according to an embodiment of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 1.モル百分率でBaOが0.8〜8モル%、TiO_
2が6〜33モル%、残部が実質的にNiOよりなる主
成分を含有し熱膨張係数が120×10^−^7/℃以
上であることを特徴とする磁気ヘッド用非磁性磁器材料
1. BaO in molar percentage is 0.8-8 mol%, TiO_
1. A nonmagnetic ceramic material for a magnetic head, characterized in that the main component is 6 to 33 mol% of NiO2 and the remainder is substantially NiO, and has a coefficient of thermal expansion of 120 x 10^-^7/°C or more.
2.上記主成分に、副成分としてAl_2O_3,Si
O_2,MgO,SnO,ZrO_2,Nb_2O_3
,MnO,ZnOの中から選択された少くとも1種を、
0〜10wt%(0は含まず)含有することを特徴とす
る第1の請求項記載の磁気ヘッド用非磁性磁器材料。
2. In addition to the above main components, Al_2O_3 and Si are added as subcomponents.
O_2, MgO, SnO, ZrO_2, Nb_2O_3
, MnO, and ZnO,
The non-magnetic ceramic material for a magnetic head according to claim 1, characterized in that it contains 0 to 10 wt% (excluding 0).
3.BaOとTiO_2を含有する第1の原料を混合し
、粉砕し、第1の混合物を得る第1の混合工程と、上記
第1の混合物を800℃〜1200℃の範囲内の温度で
予焼する予焼工程と、 予焼上りの第1の混合物にNiOを含有する第2の原料
を混合・粉砕し第2の混合物を得る第2の混合工程と、 上記第2の混合物を油圧プレス成形し成形体を得る圧縮
成形工程と、 上記成形体を1200〜1300℃の範囲内の温度で焼
成する焼成工程とを有することを特徴とする磁気ヘッド
用非磁性磁器材料の製造方法。
3. A first mixing step of mixing and pulverizing a first raw material containing BaO and TiO_2 to obtain a first mixture, and pre-firing the first mixture at a temperature within the range of 800°C to 1200°C. a pre-firing step; a second mixing step of mixing and pulverizing a second raw material containing NiO into the pre-baked first mixture to obtain a second mixture; and hydraulic press molding of the second mixture. A method for manufacturing a non-magnetic ceramic material for a magnetic head, comprising: a compression molding step for obtaining a molded body; and a firing step for firing the molded body at a temperature within a range of 1200 to 1300°C.
4.上記焼成工程の後に焼成した成形体を熱間プレスす
る熱間プレス工程を有することを特徴とする第3の請求
項記載の磁気ヘッド用非磁性磁器材料の製造方法。
4. 4. The method of manufacturing a nonmagnetic ceramic material for a magnetic head according to claim 3, further comprising a hot pressing step of hot pressing the fired compact after the firing step.
JP63079568A 1988-03-31 1988-03-31 Non-magnetic porcelain material for magnetic head and manufacturing method thereof Expired - Lifetime JPH0776125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63079568A JPH0776125B2 (en) 1988-03-31 1988-03-31 Non-magnetic porcelain material for magnetic head and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63079568A JPH0776125B2 (en) 1988-03-31 1988-03-31 Non-magnetic porcelain material for magnetic head and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01252565A true JPH01252565A (en) 1989-10-09
JPH0776125B2 JPH0776125B2 (en) 1995-08-16

Family

ID=13693608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63079568A Expired - Lifetime JPH0776125B2 (en) 1988-03-31 1988-03-31 Non-magnetic porcelain material for magnetic head and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0776125B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146457A (en) * 1989-10-30 1991-06-21 Kyocera Corp Porcelain composition for magnetic head
US7403356B1 (en) * 2004-04-29 2008-07-22 Seagate Technology Llc Disk drive including slider mover having low thermal coefficient of resistivity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146977A (en) * 1983-12-19 1984-08-23 日立金属株式会社 Non-magnetic ceramics for magnetic head
JPS60264363A (en) * 1984-06-12 1985-12-27 ティーディーケイ株式会社 Non-magnetic ceramic material for magnetic head
JPS62143857A (en) * 1985-12-17 1987-06-27 株式会社トーキン Non-magnetic material for magnetic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59146977A (en) * 1983-12-19 1984-08-23 日立金属株式会社 Non-magnetic ceramics for magnetic head
JPS60264363A (en) * 1984-06-12 1985-12-27 ティーディーケイ株式会社 Non-magnetic ceramic material for magnetic head
JPS62143857A (en) * 1985-12-17 1987-06-27 株式会社トーキン Non-magnetic material for magnetic head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03146457A (en) * 1989-10-30 1991-06-21 Kyocera Corp Porcelain composition for magnetic head
US7403356B1 (en) * 2004-04-29 2008-07-22 Seagate Technology Llc Disk drive including slider mover having low thermal coefficient of resistivity

Also Published As

Publication number Publication date
JPH0776125B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
JPH01252565A (en) Non-magnetic porcelain material for magnetic head and production thereof
JPS6021940B2 (en) Non-magnetic ceramics for magnetic heads
JPH0345024B2 (en)
JP2914554B2 (en) Method for producing high permeability MnZn ferrite
JPS6156185B2 (en)
JPS62259207A (en) Nonmagnetic material for magnetic head
JPH0628607A (en) Nonmagnetic material for magnetic head
KR970006797B1 (en) Non-magnetic ceramic substrate material for magnetic head
JPH0469103B2 (en)
JP3353379B2 (en) Non-magnetic ceramic material for magnetic head
JP2949297B2 (en) Porcelain composition for magnetic head
JPH0633166B2 (en) Porcelain composition for magnetic head
JP3441300B2 (en) Non-magnetic black ceramics
JP2917527B2 (en) Non-magnetic ceramic material and method of manufacturing the same
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPS63134559A (en) Non-magnetic ceramics for magnetic head
JPS60194507A (en) Ceramic substrate material for magnetic head
JPS6251224B2 (en)
JPS6029669B2 (en) Non-magnetic ceramics for magnetic heads
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
JPS63134558A (en) Non-magnetic ceramics for magnetic head
JP3591791B2 (en) Manufacturing method of non-magnetic ceramics for magnetic head
JPH03261652A (en) Porcelain composition for magnetic head
JPH05319896A (en) Nonmagnetic ceramics
JPH06316462A (en) Structural nonmagnetic ceramic material