JPH09208301A - Nonmagnetic ceramic for magnetic head and its production - Google Patents

Nonmagnetic ceramic for magnetic head and its production

Info

Publication number
JPH09208301A
JPH09208301A JP8014489A JP1448996A JPH09208301A JP H09208301 A JPH09208301 A JP H09208301A JP 8014489 A JP8014489 A JP 8014489A JP 1448996 A JP1448996 A JP 1448996A JP H09208301 A JPH09208301 A JP H09208301A
Authority
JP
Japan
Prior art keywords
weight
parts
magnetic head
voids
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8014489A
Other languages
Japanese (ja)
Other versions
JP3591791B2 (en
Inventor
Shinichi Yamaguchi
新一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP01448996A priority Critical patent/JP3591791B2/en
Publication of JPH09208301A publication Critical patent/JPH09208301A/en
Application granted granted Critical
Publication of JP3591791B2 publication Critical patent/JP3591791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a nonmagnetic ceramic for a magnetic head, having a coefficient of thermal expansion close to that of an Mn-Zn-based ferrite, excellent in processability and extremely few in voids. SOLUTION: This nonmagnetic ceramic for a magnetic head comprises 100 pts.wt. of a main component composed of 40-48mol% calculated as CaO of Ca and 60-52mol% calculated as TiO2 of Ti, 0.02-0.20 pt.wt. of Al2 O3 and 0.10-0.30 pts.wt. of SiO2 and has 0.8-2.5μm average crystal particle diameter and 850-900kgf/mm<2> Vickers hardness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コンピューター用
ハードディスク、フロッピーディスク、磁気テープ、オ
ーディオ用レコーダー、ビデオテープレコーダー等の磁
気記録に使用される磁気ヘツド装置において、ヘッドコ
ア等を固定するためのスライダー材料等に好適な非磁性
セラミックスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slider material for fixing a head core or the like in a magnetic head device used for magnetic recording such as a hard disk for computers, floppy disks, magnetic tapes, audio recorders and video tape recorders. For example, the present invention relates to a non-magnetic ceramic.

【0002】[0002]

【従来の技術】近年、磁気ヘッドを用いた磁気記録装置
は、高記録密度化、高容量化が進みつつあり、それに伴
い磁気ヘッドに対しても高線密度および高トラック密度
化が要求されている。そこで従来よりMn−Znフェラ
イト等からなる磁気ヘッドコアを非磁性セラミックス製
のスライダーにガラス等で接着した、いわゆるコンポジ
ット型の磁気ヘツド装置が使用されている。
2. Description of the Related Art In recent years, magnetic recording devices using magnetic heads have been increasing in recording density and capacity, and accordingly, high linear density and high track density are required for magnetic heads. There is. Therefore, a so-called composite type magnetic head device in which a magnetic head core made of Mn-Zn ferrite or the like is adhered to a slider made of non-magnetic ceramic with glass or the like has been conventionally used.

【0003】このコンポジット型磁気ヘッドによれば、
スライダーに接着されるMn−Znフェライトは熱膨張
係数が100〜120×10-7/℃であることから、接
着時の400℃前後の熱履歴に対してフェライトとスラ
イダー材料との熱膨張係数の差から生じる亀裂や残留歪
みの影響で、加工時に剥がれ等の問題を生じないよう
に、フェライトとスライダー材料の熱膨張係数を一致さ
せることが必要とされている。またスライダーを成す非
磁性セラミックスとしては、ボイドが小さく且つ少ない
材料であること、ヘッドの小型化に対応するためにスラ
イダー自身の加工性が優れていることが要求されてい
る。
According to this composite type magnetic head,
Since the Mn-Zn ferrite adhered to the slider has a thermal expansion coefficient of 100 to 120 × 10 −7 / ° C., the thermal expansion coefficient of the ferrite and the slider material is different from the thermal expansion coefficient of about 400 ° C. at the time of adhesion. It is necessary to match the coefficient of thermal expansion of ferrite with that of the slider material so that problems such as peeling during processing do not occur due to the effects of cracks and residual strain that result from differences. In addition, as the non-magnetic ceramics that form the slider, it is required that the material has small voids and few voids, and that the slider itself has excellent workability in order to respond to the miniaturization of the head.

【0004】これら要求特性のうち、熱膨張係数につい
ては、材料組成により決まる因子であり、調整は比較的
容易である。例えば特公昭60−21940号公報等に
は、TiO2 50〜70モル%とCaO50〜30モル
%よりなる主成分100重量部に対してAl2 3 0.
2〜4.0重量部を添加した磁気ヘッド用非磁性セラミ
ックスが示され、主成分を成すTiO2 とCaOの組成
比を調整することによって、所定の熱膨張係数を得るこ
とができる。
Among these required characteristics, the coefficient of thermal expansion is a factor determined by the material composition, and adjustment is relatively easy. For example, in Japanese Examined Patent Publication No. 21940/1985, 100 parts by weight of a main component composed of 50 to 70 mol% of TiO 2 and 50 to 30 mol% of CaO is added to Al 2 O 3 .
A non-magnetic ceramic for a magnetic head added with 2 to 4.0 parts by weight is shown, and a predetermined thermal expansion coefficient can be obtained by adjusting the composition ratio of TiO 2 and CaO which are main components.

【0005】そこで、スライダーを成す磁気ヘッド用セ
ラミックスの最大のポイントとなっているのが上記要求
特性のうち、加工性とボイドである。
Therefore, the most important points of the magnetic head ceramics forming the slider are workability and voids among the required characteristics.

【0006】加工性については、スライダーを形成する
ための加工、特に磁気ヘッドを組み込むための溝をダイ
ヤモンド砥石により加工するときの研削抵抗が大きい
と、加工効率が著しく悪化するため、研削抵抗が小さ
く、かつチッピングの少ない優れた加工性が求められて
いる。一般的には材料硬度が大きくなると研削抵抗は大
きくなりチッピングも増え、加工性は悪化する傾向があ
ることが知られている。
Regarding workability, if the grinding resistance is large when processing for forming a slider, particularly when a groove for incorporating a magnetic head is processed with a diamond grindstone, the processing efficiency is significantly deteriorated, and therefore the grinding resistance is small. In addition, excellent workability with less chipping is required. It is generally known that as the material hardness increases, the grinding resistance increases, chipping also increases, and the workability tends to deteriorate.

【0007】また、ボイドについては、スライダーにボ
イドが多く存在すると、例えば、磁気ヘッドとフロッピ
ーディスク等が接触して走行する場合、ディスクにコー
ティングされた磁性粉がボイドに付着したり、ボイド部
分からチッピングを生じて磁気ヘッドやフロッピーディ
スクを損傷する恐れがある。また、スライダーを研磨す
る時の砥粒や研削粉、あるいは空気中の粉塵がボイドに
入り込み、磁気ヘッドやフロッピーディスクを損傷する
恐れがあるため、ボイドのないことが要求されているの
である。
Regarding voids, if many slider voids are present, for example, when the magnetic head and a floppy disk come into contact with each other to run, the magnetic powder coated on the disk adheres to the voids or from the void portion. There is a risk of chipping and damaging the magnetic head or floppy disk. Further, since there is a possibility that abrasive grains or grinding powder when polishing the slider or dust in the air may enter the voids and damage the magnetic head or the floppy disk, it is required that there be no voids.

【0008】これに対し、上記特公昭60−21940
号公報に示されたような常圧焼結によるものではボイド
のない磁気ヘッド用セラミックスを得ることが極めて困
難であった。そこで、特開平3−261652号公報等
に記載されている様に、HIP(熱間等方加圧成形)法
を用いて製造してボイドを少なくすることが一般に行わ
れている。
On the other hand, the above Japanese Patent Publication No. 60-21940
It was extremely difficult to obtain void-free ceramics for magnetic heads by pressureless sintering as disclosed in Japanese Patent Laid-Open Publication No. Therefore, as described in Japanese Patent Application Laid-Open No. 3-261652, etc., it is generally performed by using a HIP (hot isostatic pressing) method to reduce voids.

【0009】[0009]

【発明が解決しようとする課題】ところが、ボイドをな
くすために磁気ヘッド用セラミックスをHIP法で製造
すると、以下のような問題点があつた。
However, when the magnetic head ceramics are manufactured by the HIP method in order to eliminate the voids, the following problems occur.

【0010】チタン酸系化合物を主成分とするセラミ
ックスは、HIP時にアルゴンガス中で焼成した場合
に、Tiイオンが還元されて体積固有抵抗が低くなり、
また変色を生じやすくなる。そのため、良好な絶縁性を
確保してさらに色むらをなくすためには、HIP処理後
に酸化処理を行わなければならなかった。したがって、
製造工程が煩雑になり、製品コストが高くなるという問
題点があった。
In the ceramics containing a titanic acid-based compound as a main component, when fired in argon gas during HIP, Ti ions are reduced and the volume resistivity becomes low.
In addition, discoloration is likely to occur. Therefore, in order to secure good insulation and further eliminate color unevenness, it was necessary to perform an oxidation treatment after the HIP treatment. Therefore,
There is a problem that the manufacturing process becomes complicated and the product cost increases.

【0011】HIP処理を行うとHIPの際に潰され
たボイドの残留応力が、酸化処理の際に開放されること
により、スライダーとしての信頼性が低下するという問
題点もあった。
When the HIP process is carried out, the residual stress of the voids crushed during the HIP process is released during the oxidization process, so that the reliability of the slider is lowered.

【0012】HIPにより粒成長が進行し粒子間結合
力が向上するため、セラミックスの硬度が高くなり、加
工性を悪化させる場合があるという不具合もあった。
Since HIP promotes grain growth and improves the inter-particle bonding force, the hardness of the ceramics is increased and the workability may be deteriorated.

【0013】そこで本発明は、Mn−Znフェライトと
近似の105〜120×10-7/℃の熱膨張係数を有す
るとともに、上記欠点を解決するために、HIP処理な
しでボイド量を少なくし、さらに硬度を低く抑え優れた
加工性を確保して、低コストで信頼性の高い品質を有す
る磁気ヘッド用非磁性セラミックスを提供することを目
的とする。
Therefore, the present invention has a thermal expansion coefficient of 105 to 120 × 10 -7 / ° C. which is similar to that of Mn-Zn ferrite, and in order to solve the above-mentioned drawbacks, the void amount is reduced without HIP treatment, Further, it is an object of the present invention to provide a non-magnetic ceramic for a magnetic head, which has low hardness and excellent workability, and has low cost and high reliability.

【0014】[0014]

【課題を解決するための手段】本発明者は、上記問題点
に対して検討を重ねた結果、CaをCaO換算で40〜
48モル%と、TiをTiO2 換算で60〜52モル%
の割合からなる主成分100重量部に対して、0.02
〜0.20重量部のAl2 3 と、0.10〜0.30
重量部のSiO2 を含有した組成とし、平均結晶粒径を
0.8〜2.5μm、ビッカース硬度を850〜900
kgf/mm2 に制御することによって優れた特性の磁
気ヘッド用非磁性セラミックスが得られることを知見し
た。
As a result of repeated studies on the above-mentioned problems, the present inventor has calculated that Ca is 40 to 40 in terms of CaO.
48 mol% and 60 to 52 mol% of Ti in terms of TiO 2.
0.02 with respect to 100 parts by weight of the main component consisting of
~ 0.20 parts by weight of Al 2 O 3 and 0.10 to 0.30
The composition contains parts by weight of SiO 2 , the average crystal grain size is 0.8 to 2.5 μm, and the Vickers hardness is 850 to 900.
It was found that non-magnetic ceramics for magnetic heads having excellent characteristics can be obtained by controlling to kgf / mm 2 .

【0015】以下、本発明を詳述する。Hereinafter, the present invention will be described in detail.

【0016】本発明によれば、セラミックスの主成分が
CaとTiの酸化物から実質的に構成され、CaOが4
0〜48モル%、TiO2 が52〜60モル%の組成か
らなることが重要である。
According to the present invention, the main component of ceramics is substantially composed of oxides of Ca and Ti, and CaO is 4
It is important that the composition is 0 to 48 mol% and TiO 2 is 52 to 60 mol%.

【0017】上記組成を限定した理由は、CaOが40
モル%より少なく、TiO2 が60モル%を越えると熱
膨張係数が105×10-7/℃未満となり、Mn−Zn
フェライト用のスライダー材料としては適切でない。逆
にCaOが48モル%を越え、TiO2 が52モル%よ
り少ないと、セラミックス中のTiO2 結晶相が少なく
なり、チタン酸カルシウム(CaTiO3 )結晶の粒成
長を抑制することができないために異常粒成長が発生
し、セラミックス中にボイドが残存する。
The reason for limiting the above composition is that CaO is 40
When the content of TiO 2 is less than 60 mol% and the content of TiO 2 exceeds 60 mol%, the coefficient of thermal expansion becomes less than 105 × 10 −7 / ° C.
Not suitable as a slider material for ferrites. On the other hand, when CaO exceeds 48 mol% and TiO 2 is less than 52 mol%, the TiO 2 crystal phase in the ceramics decreases, and the grain growth of calcium titanate (CaTiO 3 ) crystals cannot be suppressed. Abnormal grain growth occurs and voids remain in the ceramic.

【0018】また、本発明では副成分として0.02〜
0.20重量部のAl2 3 と、0.10〜0.30重
量部のSiO2 を含有する。上記組成を限定した理由
は、これらの成分は焼結促進剤として作用するが、Al
2 3 0.20重量部、SiO2 0.30重量部を越え
ると、結晶粒成長を促し、この結果後述するように結晶
粒界に気孔が集まりこれが凝集しボイドとなるためであ
る。なお、下限値のAl 2 3 0.02重量部、SiO
2 0.10重量部は、一次原料に不可避不純物として含
まれる量である。
Further, in the present invention, as an accessory component, 0.02 to 0.02 is used.
0.20 parts by weight of AlTwoOThreeAnd 0.10 to 0.30
Part of SiOTwo It contains. Reasons for limiting the above composition
, Although these components act as sintering promoters,
TwoOThree0.20 parts by weight, SiOTwoOver 0.30 parts by weight
This promotes crystal grain growth, which results in crystal growth
This is because the pores gather at the grain boundaries and aggregate to form voids.
You. The lower limit of Al TwoOThree0.02 parts by weight, SiO
Two0.10 part by weight is contained as an unavoidable impurity in the primary raw material.
It is the amount to be covered.

【0019】さらに、本発明のセラミックスは、上記成
分以外にFe2 3 ,Nb2 5 ,MgO,P2 3
SrO,BaO,ZrO2 ,NiOをそれぞれ0.5重
量部以下、合計2重量部以下の範囲で含んでいても良
い。
Further, in addition to the above-mentioned components, the ceramic of the present invention contains Fe 2 O 3 , Nb 2 O 5 , MgO, P 2 O 3 ,
SrO, BaO, ZrO 2 , and NiO may be contained in an amount of 0.5 parts by weight or less, respectively, in a range of 2 parts by weight or less in total.

【0020】また、本発明によれば、セラミックスを構
成する結晶の平均粒径が0.8〜2.5μmの範囲であ
ることが重要である。これは、平均結晶粒径が0.8μ
m未満では充分な焼結が行われていないために緻密質の
セラミックスを得ることができず、ボイドが多く存在し
て強度も低くなり、スライダー用材料として用いること
ができないためである。一方、平均結晶粒径が2.5μ
mを超えると結晶粒子の成長とともに粒界相部分に気孔
が集まり、ボイドが発生してしまう。つまり、本発明
は、平均結晶粒径が2.5μmを越えるとボイドが急激
に増加することから、常圧焼成でも平均結晶粒子が2.
5μm以下となるように制御すれば充分にボイドを少な
くできることを見出したのである。
Further, according to the present invention, it is important that the average grain size of the crystals constituting the ceramic is in the range of 0.8 to 2.5 μm. This is because the average crystal grain size is 0.8μ
This is because if it is less than m, it is not possible to obtain a dense ceramics due to insufficient sintering, and there are many voids so that the strength becomes low and it cannot be used as a slider material. On the other hand, the average crystal grain size is 2.5μ
When it exceeds m, pores are gathered in the grain boundary phase portion as the crystal grains grow, and voids are generated. That is, according to the present invention, voids increase rapidly when the average crystal grain size exceeds 2.5 μm.
It was found that the voids can be sufficiently reduced by controlling the thickness to be 5 μm or less.

【0021】さらに、本発明ではセラミックスのビッカ
ース硬度を850〜900kgf/mm2 とするが、こ
れは、850kgf/mm2 未満では耐摩耗性が悪く、
一方900kgf/mm2 を超えると加工性が悪くなる
ためである。
Further, in the present invention, the Vickers hardness of ceramics is set to 850 to 900 kgf / mm 2 , but if it is less than 850 kgf / mm 2 , wear resistance is poor,
On the other hand, if it exceeds 900 kgf / mm 2 , the workability is deteriorated.

【0022】次に本発明の磁気ヘッド用非磁性セラミッ
クスは、上記組成範囲となるように調合、粉砕した原料
を、所定形状に成形した後、1150〜1250℃の常
圧下で焼成する工程から製造することを特徴とする。
Next, the non-magnetic ceramics for magnetic head of the present invention is manufactured from a step of forming raw materials prepared and pulverized to have the above composition range into a predetermined shape, and then firing at a normal pressure of 1150 to 1250 ° C. It is characterized by doing.

【0023】まず、焼成によりCaOやTiO2 を生成
する原料粉末、例えば、CaCO3粉末やTiO2 粉末
等を用意し、場合によつては一部仮焼等を行う。これら
の原料粉末に必要に応じてAl2 3 、SiO2 を添加
して前述した割合になるように秤量、混合する。
First, a raw material powder for producing CaO or TiO 2 by firing, such as CaCO 3 powder or TiO 2 powder, is prepared and, in some cases, partially calcined. If necessary, Al 2 O 3 and SiO 2 are added to these raw material powders, and they are weighed and mixed so as to have the above-mentioned ratio.

【0024】この時、重要なことは、最終的なAl2
3 、SiO2 の含有量がそれぞれ0.20重量部、0.
30重量部を超えないようにすることである。そのため
には、CaCO3 粉末やTiO2 粉末等として高純度の
ものを用い、また混合粉砕時の粉砕ボールやライナーと
してアルミナボールの代わりに例えばジルコニアボール
を用いることが好ましい。
At this time, it is important that the final Al 2 O
3 and SiO 2 contents are 0.20 parts by weight and 0.
It should not exceed 30 parts by weight. For that purpose, it is preferable to use CaCO 3 powder, TiO 2 powder, or the like with high purity, and to use, for example, zirconia balls instead of alumina balls as the crushing balls and liner during the mixed crushing.

【0025】このようにして得られた原料を所望の成形
手段によって成形し焼成するが、焼成時には、最終焼結
体の平均結晶粒径が前述の範囲になるように焼成温度や
焼成時間を調整することが必要である。具体的には、1
150〜1250℃の大気中常圧下で1〜2時間焼成す
れば良い。
The raw material thus obtained is shaped by a desired shaping means and fired. At the time of firing, the firing temperature and firing time are adjusted so that the average crystal grain size of the final sintered body falls within the above range. It is necessary to. Specifically, 1
It suffices to carry out calcination in the atmosphere at 150 to 1250 ° C under atmospheric pressure for 1 to 2 hours.

【0026】ここで、焼成温度を上記範囲としたのは、
1150℃未満では完全に焼結させることが困難であ
り、1250℃を超えると平均結晶粒径が大きくなって
しまうためである。また、常圧下で焼成するのは、前述
したようにHIP処理を行えば得られた焼結体の硬度が
高くなって加工性が悪化し、製造工程も煩雑なものとな
るためである。
Here, the firing temperature is set within the above range because
This is because if the temperature is lower than 1150 ° C, it is difficult to completely sinter, and if the temperature exceeds 1250 ° C, the average crystal grain size becomes large. Further, the reason why the firing is performed under normal pressure is that the hardness of the obtained sintered body becomes high and the workability deteriorates and the manufacturing process becomes complicated if the HIP treatment is performed as described above.

【0027】このようにして得られた本発明の磁気ヘッ
ド用非磁性セラミックスは、結晶相としてチタン酸カル
シウム(CaTiO3 )相とルチル構造の酸化チタン
(TiO2 )相の2相が生成し、酸化チタン相がチタン
酸カルシウム相の結晶の成長を抑制する効果を有する。
The non-magnetic ceramic for magnetic head of the present invention thus obtained has two phases, ie, a calcium titanate (CaTiO 3 ) phase and a rutile-structured titanium oxide (TiO 2 ) phase as crystal phases. The titanium oxide phase has the effect of suppressing the crystal growth of the calcium titanate phase.

【0028】以上のように、本発明は、焼結促進剤とし
て作用するAl2 3 とSiO2 の添加量を減らすこと
によって、焼成時の結晶成長を抑制し、平均結晶粒径を
小さくしてボイドの発生を抑えるようにしたものであ
る。そのため、HIP処理を行わずに常圧焼成でボイド
の少ないセラミックスを得ることができる。
As described above, the present invention suppresses the crystal growth during firing and reduces the average crystal grain size by reducing the addition amounts of Al 2 O 3 and SiO 2 which act as sintering accelerators. This is to prevent the generation of voids. Therefore, ceramics with few voids can be obtained by normal pressure firing without HIP treatment.

【0029】[0029]

【実施例1】チタン酸カルシウム(CaTiO3 )粉末
と酸化チタン(TiO2 )粉末を第1表に示す組成比と
なるように秤量し、ジルコニアボールを用いたミルでA
23 やSiO2 の混入を抑えて、平均粒径が0.6
μm以下になるように湿式混合粉砕した。なお、上記原
料粉末中には、主成分100重量部に対して、不純物と
してAl2 3 が0.02重量部、SiO2 が0.10
重量部含まれていた。
Example 1 Calcium titanate (CaTiO 3 ) powder and titanium oxide (TiO 2 ) powder were weighed so that the composition ratio shown in Table 1 was obtained, and A was measured with a mill using zirconia balls.
By suppressing the mixture of l 2 O 3 and SiO 2 , the average particle size is 0.6
It was wet-mixed and pulverized so as to have a particle size of not more than μm. In the raw material powder, Al 2 O 3 was 0.02 parts by weight and SiO 2 was 0.10 parts by weight with respect to 100 parts by weight of the main component.
Parts by weight were included.

【0030】この原料にバインダーを加えて造粒を行っ
た後、0.8〜2.0ton/cm2 の圧力で成形し
た。その後1150〜1250℃の大気中常圧下で1〜
2時間焼成して第1表に示す焼結体を得た。
A binder was added to this raw material for granulation, and then the raw material was molded under a pressure of 0.8 to 2.0 ton / cm 2 . After that, 1 to 1250 to 1250 ℃ under atmospheric pressure
It was fired for 2 hours to obtain a sintered body shown in Table 1.

【0031】得られた焼結体に対して、平均結晶粒径と
加工性を次の方法で測定した。
The average crystal grain size and workability of the obtained sintered body were measured by the following methods.

【0032】平均結晶粒径は得られた焼結体を鏡面研磨
後エッチングし、1500倍の走査電子顕微鏡(SE
M)写真を撮り、この写真上に任意の8cmの直線を3
本引き、この直線上にある結晶粒の数をNとして、 平均結晶粒径(μm)=80000×3÷1500÷N により算出した。
The average crystal grain size was obtained by mirror-polishing the obtained sintered body and then etching it to obtain a 1500 times scanning electron microscope (SE).
M) Take a picture and draw an arbitrary 8 cm straight line on this picture.
This was calculated by the following: average crystal grain size (μm) = 80000 × 3 ÷ 1500 ÷ N 2, where N is the number of crystal grains on this straight line.

【0033】加工性は平面研削盤を用いて、ダイヤモン
ドホィールで深さ2mmの溝を加工した時にダイヤモン
ドホィールの主軸に加わる最大負荷電力と溝加工後のエ
ッジ部に発生するチッピングサイズで加工性を評価し
た。最大負荷電流、チッビングサイズともに小さい程加
工性に優れることを意味しおり、最大負荷電流が100
W以下、チッピングサイズが50μm以下を○、それ以
上を×とした。
The workability is determined by the maximum load power applied to the main spindle of the diamond wheel and the chipping size generated at the edge portion after the groove processing when a groove having a depth of 2 mm is processed by the diamond wheel using a surface grinder. evaluated. The smaller the maximum load current and the chipping size, the better the workability.
W or less and chipping size of 50 μm or less were evaluated as ◯, and chipping sizes of 50 μm or more were evaluated as x.

【0034】また得られた焼結体に対して、嵩比重、4
0〜400℃における熱膨張係数、ボイド率について調
べた。ボイド率は1μmのダイヤモンド砥粒による最終
ラップ面に占める5μm以上のボイド個数を測定するこ
とにより評価し、3080μm2 当たりのボイド個数が
50個以上を×、10〜50個を△、10個以下を○で
示した。
The bulk density of the obtained sintered body is 4
The coefficient of thermal expansion and the void rate at 0 to 400 ° C. were examined. The void ratio is evaluated by measuring the number of voids of 5 μm or more occupied in the final lap surface by the diamond abrasive grains of 1 μm, and the number of voids per 3080 μm 2 is x or more, 10 to 50 is Δ, and 10 or less. Is indicated by a circle.

【0035】各測定結果は第1表に示す通りである。こ
れらのうち、No.1、21、22は主成分の組成比が
本発明の範囲外であるため、熱膨張係数が求める範囲外
であるか又はボイド率が悪かった。またNo.2、9、
17、19は焼成温度が1250℃よりも高く平均結晶
粒径が2.5μmを超えているため、ボイド率が悪く、
一方No.8、15は焼成温度が1150℃よりも低く
平均結晶粒径が0.8μm未満であるため、気孔率が高
く完全に焼結していなかった。さらに、No.16は比
較例として1250℃焼成後、1100℃の2000気
圧下でHIP処理したものであり、ボイド率は優れてい
たが、硬度が高くなるため加工性が悪かった。
The results of each measurement are shown in Table 1. Of these, Since the composition ratios of the main components of Nos. 1, 21, and 22 were out of the range of the present invention, the coefficient of thermal expansion was out of the desired range or the void ratio was poor. No. 2, 9,
In Nos. 17 and 19, since the firing temperature was higher than 1250 ° C and the average crystal grain size was more than 2.5 µm, the void ratio was poor,
On the other hand, no. In Nos. 8 and 15, since the firing temperature was lower than 1150 ° C. and the average crystal grain size was less than 0.8 μm, the porosity was high and the sintering was not completed. In addition, No. As Comparative Example 16, as a comparative example, it was subjected to HIP treatment at 1100 ° C. under 2000 atm after firing at 1250 ° C. The void ratio was excellent, but the workability was poor because the hardness was high.

【0036】これらに対し、焼成温度を1150〜12
50℃として平均結晶粒径を0.8〜2.6μmの範囲
内とした本発明実施例であるNo.3〜7、10〜1
4、18、20では、いずれも105〜120×10-7
/℃の熱膨張係数を有し、気孔率が0.3%以下とほぼ
完全に焼結しており、加工性、ボイド率ともに優れた結
果であった。
On the other hand, the firing temperature is 1150 to 12
The average crystal grain size was set to 50 ° C. and the average crystal grain size was set in the range of 0.8 to 2.6 μm. 3-7, 10-1
In 4, 18, and 20, all are 105 to 120 × 10 −7
It had a coefficient of thermal expansion of / ° C and a porosity of 0.3% or less, which was almost completely sintered, and was an excellent result in terms of workability and void rate.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【実施例2】チタン酸カルシウム(CaTiO3 )粉
末、酸化チタン(TiO2 )粉末、アルミナ(Al2
3 )粉末、シリカ(SiO2 )粉末を、最終組成が表2
に示す比となるように秤量し、ミルを用いて不純物の混
入を抑え、平均粒径が0.6μm以下になるように湿式
混合粉砕した。この原料にバインダーを加えて造粒を行
った後、0.8〜2.0ton/cm2 の圧力で成形し
た。その後1150〜1250℃の大気中常圧下で1〜
2時間焼成し、表2の焼結体を得た。
Example 2 Calcium titanate (CaTiO 3 ) powder, titanium oxide (TiO 2 ) powder, alumina (Al 2 O)
3 ) powder, silica (SiO 2 ) powder, the final composition is shown in Table 2.
The mixture was weighed so as to have the ratio shown in Table 1, and the mixture was pulverized by wet mixing so that the mixture of impurities was suppressed by using a mill and the average particle diameter was 0.6 μm or less. A binder was added to this raw material for granulation, and then the raw material was molded at a pressure of 0.8 to 2.0 ton / cm 2 . After that, 1 to 1250 to 1250 ℃ under atmospheric pressure
It was fired for 2 hours to obtain a sintered body of Table 2.

【0039】得られた焼結体に対して、ビツカース硬
度、加工性、ボイド率を測定した。ビッカース硬度は、
ビッカース硬度計にて荷重500gをかけて10カ所測
定し、その平均値をビッカース硬度とした。加工性、ボ
イド率は実施例1と同じである。
The Vickers hardness, workability and void ratio of the obtained sintered body were measured. Vickers hardness is
A load of 500 g was applied with a Vickers hardness meter to measure 10 points, and the average value was taken as the Vickers hardness. The workability and void rate are the same as in Example 1.

【0040】結果を表2に示す。この結果よりAl2
3 とSiO2 の含有量がそれぞれ0.20重量部、0.
30重量部を超えるNo.25、28、31では、結晶
成長のためにボイド率が悪かった。これらに対し、Al
2 3 とSiO2 の含有量が本発明の範囲内であるN
o.23、24、26、27、29、30では、結晶成
長を抑えられるためにボイド率を優れたものとでき、加
工性も優れていた。
The results are shown in Table 2. From this result, Al 2 O
3 and SiO 2 contents are 0.20 parts by weight and 0.
No. over 30 parts by weight. In Nos. 25, 28 and 31, the void ratio was poor due to crystal growth. On the other hand, Al
N having a content of 2 O 3 and SiO 2 within the range of the present invention
o. In Nos. 23, 24, 26, 27, 29 and 30, crystal growth was suppressed, so that the void ratio could be made excellent and the workability was also excellent.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】以上のように本発明によれば、CaをC
aO換算で40〜48モル%と、TiをTiO2 換算で
60〜52モル%の割合からなる主成分100重量部に
対して、0.02〜0.20重量部のAl2 3 と、
0.10〜0.30重量部のSiO2 を含有し、平均結
晶粒径を0.8〜2.5μm、ビッカース硬度を850
〜900kgf/mm2 としたことによって、Mn−Z
n系フェライトと近似した熱膨張係数を有し、加工性に
優れ、ボイドが極めて少ない磁気ヘッド用非磁性セラミ
ックスを得ることができる。
As described above, according to the present invention, Ca is changed to C
0.02 to 0.20 parts by weight of Al 2 O 3 with respect to 100 parts by weight of the main component consisting of 40 to 48 mol% in terms of aO and 60 to 52 mol% of Ti in terms of TiO 2 .
It contains 0.10 to 0.30 parts by weight of SiO 2, has an average crystal grain size of 0.8 to 2.5 μm and a Vickers hardness of 850.
By was ~900kgf / mm 2, Mn-Z
It is possible to obtain a non-magnetic ceramic for a magnetic head, which has a coefficient of thermal expansion similar to that of an n-type ferrite, is excellent in workability, and has very few voids.

【0043】また、本発明の磁気ヘッド用非磁性セラミ
ックスは、上記組成範囲となるように調合、粉砕した原
料を、所定形状に成形した後、1150〜1250℃の
常圧下で焼成する工程から製造することによって、HI
P処理を行うことなく、簡単な工程でボイドの少ないセ
ラミックスを得ることができる。
The non-magnetic ceramics for magnetic head of the present invention is manufactured from a process in which raw materials prepared and pulverized to have the above composition range are molded into a predetermined shape and then fired under a normal pressure of 1150 to 1250 ° C. By doing
Ceramics with few voids can be obtained in a simple process without performing P treatment.

【0044】そのため、この磁気ヘッド用非磁性セラミ
ックスを用いて磁気ヘッドのスライダーを構成すれば、
磁気記録装置の高密度化に対応でき、寿命が長く、磁気
メディアに悪影響を及ぼさない高性能の磁気ヘッドを提
供することができる。
Therefore, if a slider for a magnetic head is constructed using this non-magnetic ceramic for magnetic head,
It is possible to provide a high-performance magnetic head which can cope with high density of the magnetic recording device, has a long life, and does not adversely affect the magnetic medium.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】CaをCaO換算で40〜48モル%と、
TiをTiO2 換算で60〜52モル%の割合からなる
主成分100重量部に対して、0.02〜0.20重量
部のAl2 3 と、0.10〜0.30重量部のSiO
2 を含有し、平均結晶粒径が0.8〜2.5μm、ビッ
カース硬度が850〜900kgf/mm2 であること
を特徴とする磁気ヘッド用非磁性セラミックス。
1. Ca is 40 to 48 mol% in terms of CaO,
Ti is 0.02 to 0.20 parts by weight of Al 2 O 3 and 0.10 to 0.30 parts by weight with respect to 100 parts by weight of the main component composed of 60 to 52 mol% in terms of TiO 2 . SiO
A non-magnetic ceramic for a magnetic head, containing 2, having an average crystal grain size of 0.8 to 2.5 μm and a Vickers hardness of 850 to 900 kgf / mm 2 .
【請求項2】CaをCaO換算で40〜48モル%と、
TiをTiO2 換算で60〜52モル%の割合からなる
主成分100重量部に対して、0.02〜0.20重量
部のAl2 3 と、0.10〜0.30重量部のSiO
2 を含有するように調合、粉砕した原料を、所定形状に
成形した後、1150〜1250℃の常圧下で焼成する
工程からなる磁気ヘッド用非磁性セラミックスの製造方
法。
2. Ca is 40 to 48 mol% in terms of CaO,
Ti is 0.02 to 0.20 parts by weight of Al 2 O 3 and 0.10 to 0.30 parts by weight with respect to 100 parts by weight of the main component composed of 60 to 52 mol% in terms of TiO 2 . SiO
A method for producing a non-magnetic ceramic for a magnetic head, which comprises a step of forming a raw material which is prepared and pulverized so as to contain 2 , into a predetermined shape, and then firing the material under a normal pressure of 1150 to 1250 ° C.
JP01448996A 1996-01-30 1996-01-30 Manufacturing method of non-magnetic ceramics for magnetic head Expired - Fee Related JP3591791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01448996A JP3591791B2 (en) 1996-01-30 1996-01-30 Manufacturing method of non-magnetic ceramics for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01448996A JP3591791B2 (en) 1996-01-30 1996-01-30 Manufacturing method of non-magnetic ceramics for magnetic head

Publications (2)

Publication Number Publication Date
JPH09208301A true JPH09208301A (en) 1997-08-12
JP3591791B2 JP3591791B2 (en) 2004-11-24

Family

ID=11862472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01448996A Expired - Fee Related JP3591791B2 (en) 1996-01-30 1996-01-30 Manufacturing method of non-magnetic ceramics for magnetic head

Country Status (1)

Country Link
JP (1) JP3591791B2 (en)

Also Published As

Publication number Publication date
JP3591791B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
JPH062615B2 (en) Magnetic head slider material
JPS6222411A (en) Nonmagnetic substrate material and magnetic head
JPH09208301A (en) Nonmagnetic ceramic for magnetic head and its production
JPH0543311A (en) Ceramics material and ceramics substrate for thin film magnetic head
JP3600646B2 (en) Non-magnetic ceramics for magnetic head and method of manufacturing the same
JP3441300B2 (en) Non-magnetic black ceramics
JP2949297B2 (en) Porcelain composition for magnetic head
JP3825079B2 (en) Manufacturing method of non-magnetic ceramics
JPH05319896A (en) Nonmagnetic ceramics
JPS63134559A (en) Non-magnetic ceramics for magnetic head
JP2968736B2 (en) Ceramic material for magnetic head slider
JPH03261652A (en) Porcelain composition for magnetic head
JP3085619B2 (en) Non-magnetic ceramics
JPH04321555A (en) Ceramic material and its production
JP2859016B2 (en) Porcelain for slider of magnetic head
JPS6158428B2 (en)
JPH01252565A (en) Non-magnetic porcelain material for magnetic head and production thereof
JPS6252172A (en) Ceramic composition for magnetic head
JPH06290409A (en) Non-magnetic substrate material for magnetic head
JPS63134558A (en) Non-magnetic ceramics for magnetic head
JPH1079308A (en) Hematite material for magnetic head and manufacture thereof
JP2001261433A (en) Nonmagnetic ceramics
JPH0712976B2 (en) Porcelain sintered body for magnetic head and manufacturing method thereof
JPH0786022A (en) Ferrite material
JPH0818861B2 (en) Ceramic material and magnetic head manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees