JPS60171267A - Manufacture of ni-zn ferrite - Google Patents

Manufacture of ni-zn ferrite

Info

Publication number
JPS60171267A
JPS60171267A JP59023949A JP2394984A JPS60171267A JP S60171267 A JPS60171267 A JP S60171267A JP 59023949 A JP59023949 A JP 59023949A JP 2394984 A JP2394984 A JP 2394984A JP S60171267 A JPS60171267 A JP S60171267A
Authority
JP
Japan
Prior art keywords
ferrite
powder
treatment
present
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59023949A
Other languages
Japanese (ja)
Other versions
JPS6358781B2 (en
Inventor
長山 幸雄
克彦 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP59023949A priority Critical patent/JPS60171267A/en
Publication of JPS60171267A publication Critical patent/JPS60171267A/en
Publication of JPS6358781B2 publication Critical patent/JPS6358781B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は高密度フェライトの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing high-density ferrite.

〔従来技術〕[Prior art]

フェライトはオーディオ用磁気ヘッド、 VTR用磁気
ヘッド及びコンピュータ用磁気ヘッド等に広く用いられ
ているが、近年、高品質化及び高密度記録化の進展に伴
って、高磁気特性を持つと共に、ヘッド及び媒体損傷等
の原因となる気孔の少い加工性の良い緻密なフェライト
が要求されるようになってきた。
Ferrite is widely used in audio magnetic heads, VTR magnetic heads, computer magnetic heads, etc., but in recent years, with the progress of higher quality and higher density recording, ferrite has high magnetic properties and has been used in heads and There is a growing demand for dense ferrite with good workability and fewer pores that can cause media damage.

従来高密度フェライトを製造する方法としてハ、ラバー
プレス法、ホットプレス法及び熱間静水圧プレス法(以
下HIP法と略称する。)等が知られているが、気孔消
滅効果が大きく、かつ生産性の良いHIP法が他の方法
よシも優れている。また、上記HIP法により高密度フ
ェライトを製造する方法は、たとえば特公昭54−27
558号公報、特公昭5B−14050号公報等により
知られている。
Conventional methods for producing high-density ferrite include the rubber press method, hot press method, and hot isostatic press method (hereinafter referred to as HIP method), but these methods have a large pore elimination effect and are difficult to produce. The HIP method has better properties than other methods. In addition, the method of producing high-density ferrite by the above-mentioned HIP method is, for example,
It is known from Japanese Patent Publication No. 558, Japanese Patent Publication No. 5B-14050, etc.

I(IP法により高密度Ni−Znフェライトを製造す
る方法は、所定の成分に配合されたFe2O3゜NiO
及びZnOの各酸化物をボールミルにて湿式混合し、濾
過、乾燥したあと、後工程の成形及び1次焼結工程を安
定に進めるため、900℃〜1100℃の温度にて予焼
し、70%以上のスピネル相に変化させている。その後
ボールミル又はアトライター等にて所定時間湿式粉砕し
、最適な粉末を得る。さらに結合剤を添加した後、所定
の形状に成形し9θチ以上の相対密度を有するように1
次焼結し、閉塞気孔状態にした焼結体素材をArガス雰
囲気中にて高圧高温処理を施シ、緻密なNi−Znフェ
ライトを製造する方法であるが2粒径の不均一成長1粒
内気孔、 ZnOの析出相等の問題が残っているのが現
状である。
I (The method of producing high-density Ni-Zn ferrite by the IP method is to
After wet-mixing ZnO and ZnO oxides in a ball mill, filtering, and drying, in order to stably proceed with the subsequent molding and primary sintering steps, the mixture was pre-fired at a temperature of 900°C to 1100°C. % or more of the spinel phase. Thereafter, the powder is wet-pulverized for a predetermined time using a ball mill or an attritor to obtain the optimum powder. After further adding a binder, it is molded into a predetermined shape and 1
This is a method for producing dense Ni-Zn ferrite by subjecting the sintered material, which has been sintered and made into a closed pore state, to high-pressure and high-temperature treatment in an Ar gas atmosphere. At present, problems such as internal pores and precipitated ZnO phases remain.

従って緻密でかつ均一で小さな粒径を持ち而も優れた磁
気特性を持つフェライトを製造するためには、1次焼結
及びHIP条件だけでなく、前工程の粉末製造工程にも
十分考慮を払わなければならなかった。つまシ仮焼状態
1粒径及び粒度分布等の制御を極めて正確に行なわなけ
ればならず、而もその結果が必ずしも充分満足すべきも
のではなかった。
Therefore, in order to produce ferrite that is dense, uniform, small particle size, and has excellent magnetic properties, sufficient consideration must be given not only to the primary sintering and HIP conditions, but also to the previous powder manufacturing process. I had to. In the calcined state of the toms, the particle size, particle size distribution, etc. must be controlled extremely accurately, and the results are not always completely satisfactory.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の問題に鑑みて、緻密で均一な小
粒径を有しかつ高磁気特性を有するNt−Znフェライ
トを確実に提供する製造方法を提供するにある。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a manufacturing method that reliably provides Nt--Zn ferrite having a dense, uniform, small grain size and high magnetic properties.

〔発明の構成〕[Structure of the invention]

本発明の方法は、予焼工程における粉末の反応性、いわ
ゆるスピネル相の量と、粉砕工程における粉末特性、い
わゆる粒径と粒度分布の関係が、 HIP処理工程を有
するNi−Znフェライトの結晶粒組織と磁気特性に大
きく影響をもつことに注目し、フェライト原料の混合粉
末を仮焼する前にロールミルにて圧縮9通過させること
によシ、緻密で均一な小粒径を有する粒組織を得るよう
にしたものである。
The method of the present invention improves the relationship between the reactivity of the powder in the pre-firing step, the amount of so-called spinel phase, and the powder properties in the pulverization step, so-called particle size and particle size distribution, in the Ni-Zn ferrite crystal grains with the HIP treatment step. Focusing on the fact that it has a large effect on the structure and magnetic properties, by passing the mixed powder of ferrite raw materials through compression in a roll mill before calcining, a grain structure with a dense and uniform small particle size is obtained. This is how it was done.

すなわち本発明によれば、鉄、ニッケル、及び亜鉛の酸
化物を主成分とする粉末原料を、混合、予焼、粉砕、プ
レス成型、焼結、および熱間静水圧プレス処理して高密
度フェライトを製造する方法において、前記混合処理と
予焼処理の間にロールミル圧縮処理を施すようにしたこ
とを特徴とするNi −Znフェライト材の製造方法が
得られる。
That is, according to the present invention, powder raw materials containing iron, nickel, and zinc oxides as main components are mixed, pre-sintered, pulverized, press-molded, sintered, and hot isostatically pressed to produce high-density ferrite. There is obtained a method for producing a Ni--Zn ferrite material, characterized in that a roll mill compression treatment is performed between the mixing treatment and the pre-baking treatment.

〔実施例〕〔Example〕

はじめに本発明によるロールミル処理を行ったフェライ
ト混合粉末が従来のものよW低温でして説明するものを
そのまま用いた。このフェライト混合粉末をまずボール
ミルで40時間処理し9次にこれをロールミルにより3
000に9/cIlの圧力で圧縮通過させてから予焼処
理に付す。従来の場合はこのロールミルによる圧縮通過
工程を行うことなく予焼処理に付している。
First, the ferrite mixed powder that had been subjected to the roll mill treatment according to the present invention was used as it was, as compared to the conventional one, which was treated at a lower temperature. This ferrite mixed powder was first treated with a ball mill for 40 hours, and then processed with a roll mill for 3 hours.
000 at a pressure of 9/cIl and then subjected to pre-firing treatment. In the conventional case, the material is subjected to pre-firing treatment without performing this compression passage step using a roll mill.

第1図は上記の予焼工程を1時間行った場合における予
焼温度とX線回折法によシ決められるスピネル量との関
係を9本発明の製法と従来の製法につき対比して示した
図である。この第1図からすぐ分るように、予焼処理時
間を実用的にみて妥当な1時間とした場合、従来のもの
では900℃ないし1100℃でなければスピネル単一
組が得られないのに対し9本発明のものでは800℃と
いう低温で得られるので、実用的に極めて有効である。
Figure 1 shows the relationship between the pre-firing temperature and the amount of spinel determined by X-ray diffraction when the above-mentioned pre-firing process is carried out for one hour, comparing the manufacturing method of the present invention and the conventional manufacturing method. It is a diagram. As can be easily seen from Figure 1, if the preheating treatment time is set to 1 hour, which is reasonable from a practical point of view, a single spinel set cannot be obtained with the conventional method unless the temperature is 900°C to 1100°C. On the other hand, 9 of the present invention can be obtained at a low temperature of 800°C, so it is extremely effective practically.

これはロールミルで圧縮通過させられた粉末が大きな圧
縮歪を持ち、低温で容易にスピネル単一組になるものと
理解される。
This is understood to be because the powder compressed through a roll mill has a large compression strain and easily becomes a single spinel set at low temperatures.

なお上記においてロールミルの圧縮圧力は一例として3
000KP/cI/lを用いたが、勿論これに限られる
ものではなく相当の上下幅を有している。
In addition, in the above, the compression pressure of the roll mill is 3 as an example.
000KP/cI/l is used, but of course it is not limited to this and has a considerable vertical width.

しかし実験によれば、ロールミルの圧縮圧力が1000
KV/d程度では得られるスピネル量は従来法による場
合とあまり違わず、又5000に1/d以上では篩通し
による整粉が容易に出来ない状態となシ、好ましくない
。父上記のX線回折によるスピ坏ル量は、γ線回折角(
2θ)が60°〜90゜の範囲中に検出されたスピネル
相の回折強度の総和と、スピネル相とα−Fe 203
の回折強度の総和との百分率で決められる。
However, according to experiments, the compression pressure of the roll mill is 1000
At about KV/d, the amount of spinel obtained is not much different from that obtained by the conventional method, and at 1/d or more, the powder cannot be easily sized by passing through a sieve, which is not preferable. The amount of spin by the above X-ray diffraction is determined by the gamma-ray diffraction angle (
2θ) is the sum of the diffraction intensities of the spinel phase detected in the range of 60° to 90°, and the spinel phase and α-Fe 203
It is determined as a percentage of the total diffraction intensity.

次に上記の予焼処理で得られた粉末を続くボールミル処
理(第2回)に付し、その結果得られる粉砕粉末の粒度
分布について本発明のものと従来のものにつき対比して
説明する。使用した原材料及び第1回のボールミル処理
は前述の第1図の場合と同じである。原料粉末の予焼処
理は、先に得た結果を用いて1本発明の場合850℃、
従来の場合については1000℃で行った。
Next, the powder obtained by the above-mentioned pre-calcination treatment is subjected to a subsequent ball mill treatment (second time), and the particle size distribution of the resulting pulverized powder will be explained by comparing the particle size distribution of the present invention and the conventional one. The raw materials used and the first ball milling were the same as in the case of FIG. 1 above. The pre-calcination treatment of the raw material powder was performed at 850°C in the case of the present invention using the results obtained previously.
In the conventional case, the temperature was 1000°C.

この予焼した粉末をボールミルで12時時間式粉砕を行
った(第2回)。
This prefired powder was pulverized for 12 hours in a ball mill (second time).

第2図はこのようにして得られた粉砕粉末の粒度分布を
示した図であって9粒径が従来の場合約0.6μmであ
るのに対し9本発明の場合は約0.2μmと小さく、而
も分布形が狭くなっている。
FIG. 2 is a diagram showing the particle size distribution of the pulverized powder obtained in this way.9 The particle size is about 0.6 μm in the conventional case, while it is about 0.2 μm in the case of the present invention. It is small, and the distribution shape is narrow.

この本発明によるものが小さいのは、前工程である予焼
処理の温度が本発明において低く粉末の粒成長が抑圧さ
れていることによるものであり、この結果粉砕され易く
、フルボリュームの低いプレス性の良い粉末を得ること
ができる。
The reason why the powder according to the present invention is small is because the temperature of the pre-baking treatment, which is a pre-process, is low in the present invention and the grain growth of the powder is suppressed. A powder with good properties can be obtained.

そしてこの粉末を次のプレス処理に付した場合。And when this powder is subjected to the next pressing treatment.

相対密度が96−以上のものが得られる。なおNi−Z
n系でない他の成分系のフェライトにおいてロールミル
処理を施してもNi−Zn系フェライトにおけると同じ
ような効果を示さないことなどからみて、 ZnOが大
きな役割を果しているように考えられる。
A product having a relative density of 96- or more can be obtained. Furthermore, Ni-Z
Judging from the fact that roll milling of ferrites other than n-based ferrites does not show the same effect as Ni-Zn ferrites, ZnO appears to play a major role.

以上説明した2つの実施例は本発明の特徴でアルロール
ミル処理を施したあとプレス処理ニ至るまでについて説
明したものであるが、これから説明する実施例は全工程
の処理を施したものについて行う。この実施例において
は原料として2種類の組成を用いている。ひとつの原料
はFe2O3が49.5mo1%、 NiOが19.0
mo1%、 ZnOが31.5 mol %の組成を持
つ酸化物粉末であり。
The two embodiments described above describe the features of the present invention, from Alroll milling to press processing, but the embodiments to be described from now on will be carried out on products that have undergone all steps. In this example, two types of compositions are used as raw materials. One raw material contains 49.5 mo1% of Fe2O3 and 19.0 mo1 of NiO.
It is an oxide powder having a composition of 1% by mole and 31.5% by mole of ZnO.

他の原料はFe2O3が49.5mo1%、 NiOが
17.0mo1%、 ZnOが33.5mo1%の組成
を持つ酸化物粉末である。以下前者を組成A、後者を組
成りと名付ける。そしてこれら2つの原料粉末につき全
く同じ処理を行う。す力わちいずれの組成においても、
−1,ずこの酸化物原料粉末をボールミルにより40時
時間式混合し、濾過、乾燥後ロールミルにて3000K
P/dの圧力で圧縮通過する。その後温度800℃、大
気雰囲気にて1時間予焼し。
The other raw materials are oxide powders having a composition of 49.5 mo1% Fe2O3, 17.0 mo1% NiO, and 33.5 mo1% ZnO. Hereinafter, the former will be named composition A, and the latter will be named composition. Exactly the same treatment is then performed on these two raw material powders. In either composition,
-1, Zuko's oxide raw material powder was mixed for 40 hours in a ball mill, filtered and dried, then heated to 3000K in a roll mill.
It passes through compression at a pressure of P/d. Thereafter, it was prefired at a temperature of 800°C for 1 hour in an air atmosphere.

さらにボールミルでか時間粉砕して平均粒子径0.2μ
mの粉末を得、この粉末にバインダーを添加し、プレス
によ、92000KV/dの圧力で60 X 30×1
0wnの圧粉体を作成し、1’150℃の温度で大気中
2時間1次焼結を行い、その後処理温度1100℃、圧
力I OD OK9/crIl+ 7 ルコ7雰囲気中
テ2時間HIP処理を行った。
Furthermore, the average particle size was 0.2 μ by milling in a ball mill for several hours.
m of powder was obtained, a binder was added to this powder, and a 60 x 30 x 1 powder was obtained using a press at a pressure of 92000 KV/d.
A green compact of 0wn was prepared, and primary sintering was performed in the air at a temperature of 150°C for 2 hours, followed by HIP treatment for 2 hours at a treatment temperature of 1100°C and a pressure of IOD OK9/crIl+ 7 in an atmosphere of 7. went.

第6図は上記のようにして得られた高密度のNi−Zn
フェライトのいくつかの特性を、ロールミルによる圧縮
通過を行わない従来方法により得られる諸物件と比較し
て示した図である。
Figure 6 shows the high-density Ni-Zn obtained as described above.
FIG. 2 is a diagram illustrating some properties of ferrite in comparison with articles obtained by a conventional method that does not involve compression passing through a roll mill.

また第4図は動特性の1つである実効透磁率を同様に比
較して示した図である。
Further, FIG. 4 is a diagram showing a similar comparison of effective magnetic permeability, which is one of the dynamic characteristics.

第6図において特に注目すべき点を挙げると。Points to note in particular in Figure 6 are as follows.

本発明の方法により得たフェライトの特性は。The characteristics of the ferrite obtained by the method of the present invention are as follows.

従来のものに比較して、比抵抗が高く、平均粒径および
気孔率が小さく、かつ抗折強度が大きいことである。な
お抗折強度が大きいことは。
Compared to conventional products, it has a high specific resistance, a small average particle size and a small porosity, and a large bending strength. Note that the bending strength is high.

このフェライトが磁気ヘッドとして用いる場合。When this ferrite is used as a magnetic head.

その高磁気特性と相俟って、極めて効果的である。Combined with its high magnetic properties, it is extremely effective.

また第4図から分ることは、使用周波数が2MHz程度
以上になると実効透磁率が本発明において大きくなシ、
優れた周波数特性を示すことら =&Bの場合もほぼ同じ割合で向上している。これは第
6図に示した特性でいえば比抵抗、平均粒径、および気
孔率が改善されていることであシ、これを源にさかのぼ
れば1本発明において特に用いるロールミル圧縮により
第2回のボールミル処理により得られる粉末粒径が0.
2μm程度と、従来の6分の1程度に小さくなったこと
によるものである。
Furthermore, it can be seen from FIG.
Since it shows excellent frequency characteristics, the = &B case also improves at almost the same rate. In terms of the characteristics shown in Figure 6, this means that specific resistance, average particle size, and porosity are improved. The powder particle size obtained by ball milling is 0.
This is due to the fact that it is about 2 μm, which is about one-sixth of the conventional size.

〔発明の効果ミ 以上説明したように9本発明によれば磁気特性及び機械
特性の優れた高密度Ni−Znフェライトを容易に製造
することができ、磁気ヘッド用フェライト材として極め
て有用である。
[Effects of the Invention] As explained above, according to the present invention, high-density Ni--Zn ferrite having excellent magnetic and mechanical properties can be easily produced, and is extremely useful as a ferrite material for magnetic heads.

以下金口Below is the money mouth

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNi−Znフェライトの予焼温度とこの予焼に
よシ得られるスピネル量の関係を本発明と従来のものを
比較して示した図、第2図は第2回のボールミル処理に
よって得られる粉砕粉末の粒度分布を1本発明のものと
従来のものにつき比較した図、第5図はHIP処理を終
ったNi −Znフェライトの特性を本発明のものと従
来のものを比較して示した図、第4図はNi−Znフェ
ライトの特性の1つである実効透磁率を本発明のものと
従来のものを比較して示した図である。 第1図 括2図
Figure 1 is a diagram comparing the relationship between the pre-firing temperature of Ni-Zn ferrite and the amount of spinel obtained by this pre-firing between the present invention and the conventional one. Fig. 5 shows a comparison of the particle size distribution of the pulverized powder obtained by the present invention and the conventional one, and Figure 5 shows a comparison of the characteristics of the Ni-Zn ferrite after HIP treatment between the present invention and the conventional one. FIG. 4 is a diagram comparing the effective magnetic permeability, which is one of the characteristics of Ni-Zn ferrite, between the present invention and the conventional one. Figure 1 Bracket 2

Claims (1)

【特許請求の範囲】[Claims] 1、鉄、ニッケル、及び亜鉛の酸化物を主成分とする粉
末原料を、混合、予焼、粉砕、プレス成型、焼結、およ
び熱間静水圧プレス処理して高密度フェライトを製造す
る方法において、前記混合処理と仮焼処理の中間にロー
ルミル圧縮処理を施すようにしたことを特徴とするNr
−Zn7エライト材の製造方法。
1. A method for producing high-density ferrite by mixing, pre-sintering, pulverizing, press-molding, sintering, and hot isostatically pressing powder raw materials containing iron, nickel, and zinc oxides as main components. , Nr characterized in that a roll mill compression treatment is performed between the mixing treatment and the calcination treatment.
- Method for manufacturing Zn7 elite material.
JP59023949A 1984-02-10 1984-02-10 Manufacture of ni-zn ferrite Granted JPS60171267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59023949A JPS60171267A (en) 1984-02-10 1984-02-10 Manufacture of ni-zn ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59023949A JPS60171267A (en) 1984-02-10 1984-02-10 Manufacture of ni-zn ferrite

Publications (2)

Publication Number Publication Date
JPS60171267A true JPS60171267A (en) 1985-09-04
JPS6358781B2 JPS6358781B2 (en) 1988-11-16

Family

ID=12124797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59023949A Granted JPS60171267A (en) 1984-02-10 1984-02-10 Manufacture of ni-zn ferrite

Country Status (1)

Country Link
JP (1) JPS60171267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160626A (en) * 1989-09-05 1990-06-20 Ngk Insulators Ltd Production of ferrite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160626A (en) * 1989-09-05 1990-06-20 Ngk Insulators Ltd Production of ferrite
JPH0559049B2 (en) * 1989-09-05 1993-08-30 Ngk Insulators Ltd

Also Published As

Publication number Publication date
JPS6358781B2 (en) 1988-11-16

Similar Documents

Publication Publication Date Title
JPS60171267A (en) Manufacture of ni-zn ferrite
JP2708160B2 (en) Ferrite manufacturing method
JPH0696930A (en) Transformer using microcrystalline ferrite
JP2561815B2 (en) High-density ferrite manufacturing method
JPH0376762B2 (en)
JP2938261B2 (en) Manufacturing method of ferrite molding
JP3545438B2 (en) Method for producing Ni-Zn ferrite powder
JPH06251926A (en) Manufacture of nickel-zinc ferrite
JPS5851402B2 (en) Porcelain for magnetic head structural parts and method for manufacturing the same
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
KR100191350B1 (en) High density mn-zn magnetic powder producing method
KR0137076B1 (en) Non-magnetic ceramic substrate for magnetic head
JPH0717765A (en) Production of cao-tio2 series ceramic
JPS5967611A (en) Manufacture of polycrystalline ferrite
JPH08208323A (en) Productionn of nonmagnetic ceramic for magnetic head
JPH06305813A (en) Production of non-magnetic material
JPH05243032A (en) Microcrystal ferrite
JPH0122228B2 (en)
JPH0321498B2 (en)
JP2627637B2 (en) Oxide magnetic material
JPS6224379B2 (en)
JPH04269808A (en) Manufacture of nonmagnetic substrate for magnetic head
JPS6047727B2 (en) Manufacturing method of high-density ferrite
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPH0376761B2 (en)