JPH06305813A - Production of non-magnetic material - Google Patents

Production of non-magnetic material

Info

Publication number
JPH06305813A
JPH06305813A JP5112365A JP11236593A JPH06305813A JP H06305813 A JPH06305813 A JP H06305813A JP 5112365 A JP5112365 A JP 5112365A JP 11236593 A JP11236593 A JP 11236593A JP H06305813 A JPH06305813 A JP H06305813A
Authority
JP
Japan
Prior art keywords
alumina
raw material
magnetic material
sintering
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5112365A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakamura
博幸 中村
Akira Nakajima
章 中島
Satoru Suzuki
了 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP5112365A priority Critical patent/JPH06305813A/en
Publication of JPH06305813A publication Critical patent/JPH06305813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To produce a non-magnetic material improved in abrasion resistance by mixing an alumina raw material as a sintering auxiliary with other calcined raw materials without calcining a part or all of the alumina raw material, molding the mixture ant subsequently calcining the molded product. CONSTITUTION:Starting raw materials containing CoO fine powder and NiO fine powder as basic components, respectively, are compounded in a prescribed CoO/NiO molar ratio and sufficiently mixed with each other by the use of a ball mill, etc. The mixed powder is calcined at approximately 850 deg.C in a N2 atmosphere, ground with a ball mill, etc., mixed with >=0.2wt.% of alumina fine powder having an average particle diameter of <=0.1mum. and further ground. The prepared composition is press-molded with a CIP, etc., and subsequently sintered at a prescribed temperature to provide a non-woven material having a relative density of >=99% and an average crystal particle diameter of <=5mum and improved in abrasion resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミナを焼結助剤と
して含有する非磁性材料に関し、特に、耐摩耗性に優
れ、かつ、結晶粒径が小さく、高抗折力を有する磁気ヘ
ッド用非磁性基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-magnetic material containing alumina as a sintering aid, and particularly for a magnetic head having excellent wear resistance, a small crystal grain size and high transverse rupture strength. The present invention relates to a non-magnetic substrate.

【0002】[0002]

【従来技術】磁気ヘッド用非磁性基板にセラミックスを
使用するためには、耐摩耗性や機械加工性の面から焼結
体の相対密度が99%以上であり、かつ平均結晶粒径が
5μm以下とすることが望まれている。
2. Description of the Related Art In order to use ceramics for a non-magnetic substrate for a magnetic head, the relative density of the sintered body is 99% or more and the average crystal grain size is 5 μm or less in terms of wear resistance and machinability. Is desired.

【0003】しかし、非磁性材料を、出発原料を混合、
仮焼、粉砕、成形、焼結する工程を経て製造する方法に
おいて、全成分の出発原料を初めから混合する従来の方
法では、焼結体の相対密度を高くしようとして焼結温度
を上げると結晶粒径が大きくなり、結晶粒径を小さくし
ようとして焼結温度を下げると焼結体の相対密度が低く
なり、焼結体の相対密度と結晶粒径の両方の要請を満足
することができないという問題点があった。
However, a non-magnetic material is mixed with a starting material,
In the method of manufacturing through the steps of calcination, crushing, molding, and sintering, in the conventional method of mixing starting materials of all components from the beginning, when the sintering temperature is raised to increase the relative density of the sintered body, the crystal When the grain size becomes large and the sintering temperature is lowered in order to reduce the crystal grain size, the relative density of the sintered body becomes low, and it is impossible to satisfy the requirements for both the relative density of the sintered body and the crystal grain size. There was a problem.

【0004】なお、従来技術では焼結後にHIP処理を
行って相対密度を99%以上にしても結晶粒径は5.5
μmが限度であった。
In the prior art, even if the relative density is 99% or more by performing HIP treatment after sintering, the crystal grain size is 5.5.
The limit was μm.

【0005】[0005]

【発明が解決する課題】本発明は上記の問題点を解決し
たもので、発明の目的はHIP処理を行わないでも焼結
のみで焼結体の相対密度が99%以上であり、平均結晶
粒径が5μm以下である非磁性材料を作製することにあ
る。
DISCLOSURE OF THE INVENTION The present invention has solved the above-mentioned problems, and an object of the present invention is to provide a sintered body having a relative density of 99% or more only without sintering, and with an average crystal grain. The purpose is to produce a non-magnetic material having a diameter of 5 μm or less.

【0006】[0006]

【課題を解決するための手段及び作用】以上の問題点を
解決するために、本発明者らは製造工程を詳細に検討し
た結果、従来の方法では添加したアルミナが仮焼による
熱履歴を受けることにより焼結助剤としての働きが弱く
なることを見い出し、本発明に至った。
In order to solve the above problems, the present inventors have studied the manufacturing process in detail, and as a result, in the conventional method, the added alumina undergoes a heat history due to calcination. As a result, they found that the function as a sintering aid was weakened, and the present invention was accomplished.

【0007】すなわち、本発明は、アルミナを焼結助材
として含有する非磁性材料を、出発原料を混合、仮焼、
粉砕、成形、焼結する工程を経て製造する方法におい
て、アルミナ原料の一部または全部を仮焼せずに、上記
の仮焼工程を経た他の原料と混合してから、上記の成
形、焼結工程を行うことを特徴とする非磁性材料の製造
方法を提供するものである。
That is, according to the present invention, a non-magnetic material containing alumina as a sintering aid is mixed with a starting material, calcined,
In the method of manufacturing through the steps of crushing, molding, and sintering, a part or all of the alumina raw material is not calcined, but is mixed with other raw materials that have undergone the above calcining step, and then the above-mentioned molding and firing are performed. The present invention provides a method for producing a non-magnetic material, which comprises performing a binding step.

【0008】また、仮焼しないアルミナ原料の量が全原
料の0.2wt%以上とする非磁性材料の製造方法を提供
するものである。さらに、仮焼しないアルミナ原料の量
が全原料の0.2wt%以上で、仮焼するアルミナ原料の
量が全原料の0.1wt%以上とする非磁性材料の製造方
法を提供するものである。なお、非磁性材料が酸化コバ
ルト及び酸化ニッケルあるいは酸化ニッケルを基本組成
とする材料に好適に適用できるものである。
Further, the present invention provides a method for producing a non-magnetic material in which the amount of alumina raw material that is not calcined is 0.2 wt% or more of the total raw material. Further, the present invention provides a method for producing a non-magnetic material in which the amount of alumina raw material that is not calcined is 0.2 wt% or more of all raw materials and the amount of alumina raw material that is calcined is 0.1 wt% or more of all raw materials. . The nonmagnetic material can be suitably applied to cobalt oxide and nickel oxide, or a material having a basic composition of nickel oxide.

【0009】アルミナ原料の一部または全部を仮焼せず
に、仮焼工程を経た他の原料と混合してから、成形、焼
結工程を行うことにより、仮焼による熱履歴を受けない
アルミナは焼結助剤として有効に作用し、焼結温度を上
げることなく焼結体の相対密度を上げることができるよ
うになった。なお、仮焼による熱履歴を受けないアルミ
ナの量は全原料の0.2wt%以上、より好ましくは0.
4wt%以上あれば上記の効果が得られる。
Alumina that does not undergo a thermal history due to calcination by performing a molding and sintering process after mixing a part or all of the alumina raw material with another raw material that has undergone the calcination process, without calcination Effectively acts as a sintering aid, and the relative density of the sintered body can be increased without increasing the sintering temperature. The amount of alumina that does not undergo the heat history due to calcination is 0.2 wt% or more of the total raw material, and more preferably 0.1.
If it is 4 wt% or more, the above effect can be obtained.

【0010】また、仮焼前に添加したアルミナは仮焼後
に粉砕した粉の凝集粒子の平均粒径を小さくする効果が
あり、添加しない場合には1.0〜1.5μmであるの
に対し、全原料の0.1wt%以上、より好ましくは0.
4wt%以上添加すると0.3〜0.6μmとすることが
でき、焼結後の平均結晶粒径をさらに小さくすることが
できる。
Alumina added before calcination has the effect of reducing the average particle size of the agglomerated particles of the powder pulverized after calcination, whereas it is 1.0 to 1.5 μm when not added. 0.1 wt% or more of the total raw material, more preferably 0.1.
When it is added in an amount of 4 wt% or more, the thickness can be 0.3 to 0.6 μm, and the average crystal grain size after sintering can be further reduced.

【0011】[0011]

【実施例1】平均粒径4μmのCoOと平均粒径0.6
μmのNiOを原料にCoO/NiO(モル比)=35
/65組成となるように合計2kgを湿式ボ−ルミルを用
いて20時間混合した。この混合粉をN2雰囲気中で温
度850℃にて仮焼した後、湿式ボ−ルミルを用いて3
6時間粉砕した。この後、同湿式ボ−ルミル中に平均粒
径0.1μm以下のアルミナを前記組成物を100とし
て2wt%添加し、更に2時間混合、粉砕した。
Example 1 CoO having an average particle size of 4 μm and an average particle size of 0.6
CoO / NiO (molar ratio) = 35 using μm NiO as a raw material
A total of 2 kg was mixed for 20 hours using a wet ball mill so that the composition became / 65. This mixed powder is calcined in an N 2 atmosphere at a temperature of 850 ° C., and then mixed with a wet ball mill to 3
Crushed for 6 hours. Thereafter, 2 wt% of alumina having an average particle size of 0.1 μm or less was added to the same wet ball mill with the above composition as 100, and further mixed and pulverized for 2 hours.

【0012】この粉末を1500kg/cm2の圧力でCIP
成形し、1230℃で10時間焼結し、HIP処理を行
なった。この実施例による焼結後の焼結体の相対見かけ
密度、平均結晶粒径、ビッカース硬度、さらにHIP処
理後の焼結体の相対密度、平均結晶粒径の測定を行っ
た。その結果を表1に示す。
CIP this powder at a pressure of 1500 kg / cm 2.
It was molded, sintered at 1230 ° C. for 10 hours, and subjected to HIP treatment. The relative apparent density, average crystal grain size, Vickers hardness of the sintered body after sintering according to this example, and the relative density and average crystal grain size of the sintered body after HIP treatment were measured. The results are shown in Table 1.

【表1】 [Table 1]

【0013】[0013]

【実施例2】アルミナを初めに1wt%添加し、仮焼後
に残り1wt%添加すること以外は実施例1と同様の処
理行った。この実施例2による、焼結後とHIP処理後
の物性を表1に実施例1と合わせて示す。
Example 2 The same treatment as in Example 1 was performed except that 1 wt% of alumina was added first and the remaining 1 wt% was added after calcination. The physical properties after sintering and after HIP treatment according to the second embodiment are shown in Table 1 together with the first embodiment.

【0014】[0014]

【比較例1】アルミナを初めに2wt%添加し、仮焼後
には添加しないこと以外は実施例1と同様の処理行っ
た。この比較例による、焼結後とHIP処理後の物性を
表1に実施例1、2と合わせて示す。表1から明らかな
ように、本発明では焼結のみで従来法のHIP処理後の
ものより高い相対密度と小さな結晶粒径を得ることがで
きたことがわかる。
[Comparative Example 1] The same treatment as in Example 1 was carried out except that 2 wt% of alumina was first added and not added after calcination. The physical properties after sintering and after HIP treatment according to this comparative example are shown in Table 1 together with Examples 1 and 2. As is clear from Table 1, in the present invention, it is possible to obtain a higher relative density and a smaller crystal grain size than those obtained by the conventional HIP treatment only by sintering.

【0015】[0015]

【発明の効果】以上説明したように、従来は常圧焼結後
HIP工程が必要であった工程が、本発明により焼結だ
けで目標とする相対密度99%以上、平均結晶粒径5μ
m以下の焼結体を得ることができた。これにより、磁気
ヘッド材料として必要とされる耐摩耗性の目安であるビ
ッカース硬度も向上し従来法より品質的にも優れた非磁
性材料を得ることができた。
As described above, the steps which conventionally required the HIP step after pressureless sintering are the relative densities of 99% or more and the average crystal grain size of 5 μm which is the target of the present invention only by sintering.
It was possible to obtain a sintered body of m or less. As a result, the Vickers hardness, which is a measure of wear resistance required as a magnetic head material, was improved, and a non-magnetic material superior in quality to the conventional method could be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルミナを焼結助材として含有する非磁
性材料を、出発原料を混合、仮焼、粉砕、成形、焼結す
る工程を経て製造する方法において、アルミナ原料の一
部または全部を仮焼せずに、上記の仮焼工程を経た他の
原料と混合してから、上記の成形、焼結工程を行うこと
を特徴とする非磁性材料の製造方法。
1. A method for producing a non-magnetic material containing alumina as a sintering aid through the steps of mixing starting materials, calcination, crushing, molding, and sintering, and part or all of the alumina raw material. A method for producing a non-magnetic material, characterized in that the material is mixed with another raw material that has been subjected to the above-mentioned calcination step without being calcinated, and then the above-mentioned forming and sintering steps are performed.
【請求項2】 仮焼しないアルミナ原料の量が全原料の
0.2wt%以上であることを特徴とする請求項1記載の
非磁性材料の製造方法。
2. The method for producing a non-magnetic material according to claim 1, wherein the amount of the alumina raw material that is not calcined is 0.2 wt% or more of the total raw material.
【請求項3】 仮焼するアルミナ原料の量が全原料の
0.1wt%以上であることを特徴とする請求項2記載の
非磁性材料の製造方法。
3. The method for producing a non-magnetic material according to claim 2, wherein the amount of the alumina raw material to be calcined is 0.1 wt% or more of the total raw material.
【請求項4】 非磁性材料が酸化コバルト及び酸化ニッ
ケルあるいは酸化ニッケルを基本組成とする材料である
ことを特徴とする請求項1、2または3記載の非磁性材
料の製造方法
4. The method for producing a non-magnetic material according to claim 1, 2 or 3, wherein the non-magnetic material is a material having a basic composition of cobalt oxide and nickel oxide or nickel oxide.
JP5112365A 1993-04-16 1993-04-16 Production of non-magnetic material Pending JPH06305813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5112365A JPH06305813A (en) 1993-04-16 1993-04-16 Production of non-magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5112365A JPH06305813A (en) 1993-04-16 1993-04-16 Production of non-magnetic material

Publications (1)

Publication Number Publication Date
JPH06305813A true JPH06305813A (en) 1994-11-01

Family

ID=14584870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5112365A Pending JPH06305813A (en) 1993-04-16 1993-04-16 Production of non-magnetic material

Country Status (1)

Country Link
JP (1) JPH06305813A (en)

Similar Documents

Publication Publication Date Title
EP3467828A1 (en) Method of preparing a sintered magnet
JPH0832554B2 (en) Method for producing rare earth oxide powder
JP2708160B2 (en) Ferrite manufacturing method
JPH06305813A (en) Production of non-magnetic material
JPH0927430A (en) Manufacture of ferrite magnet
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP3545438B2 (en) Method for producing Ni-Zn ferrite powder
JPH08217543A (en) Production of nonmagnetic ceramics for magnetic head
JPH09306718A (en) Ferrite magnetic material and method of fabricating the same
JPH06290923A (en) Manufacture of ferrite magnet
JPH05283231A (en) Manufacture of material powder for nonmagnetic board
JPH04269808A (en) Manufacture of nonmagnetic substrate for magnetic head
JPH04309203A (en) Manufacture of nonmagnetic substrate for magnetic head
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPH05166613A (en) Production of non-magnetic board for magnetic head
JPH06325920A (en) Low-loss magnetic material and manufacture thereof
JPS60171267A (en) Manufacture of ni-zn ferrite
JPH06251926A (en) Manufacture of nickel-zinc ferrite
JPH05129118A (en) Non-magnetic substrate for magnetic head
CN117383923A (en) Calcium barium strontium permanent magnetic ferrite and preparation method thereof
JPH0830907A (en) Nonmagnetic substrate for magnetic head and its production
JPH08208323A (en) Productionn of nonmagnetic ceramic for magnetic head
JPH0653020A (en) Oxide permanent magnet
JPH05315110A (en) Nonmagnetic substrate for magnetic head