JP3756567B2 - Mold for optical element molding - Google Patents

Mold for optical element molding Download PDF

Info

Publication number
JP3756567B2
JP3756567B2 JP06201196A JP6201196A JP3756567B2 JP 3756567 B2 JP3756567 B2 JP 3756567B2 JP 06201196 A JP06201196 A JP 06201196A JP 6201196 A JP6201196 A JP 6201196A JP 3756567 B2 JP3756567 B2 JP 3756567B2
Authority
JP
Japan
Prior art keywords
silicon carbide
film
optical element
orientation
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06201196A
Other languages
Japanese (ja)
Other versions
JPH09227140A (en
Inventor
修 中野
健 佐藤
研二 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP06201196A priority Critical patent/JP3756567B2/en
Publication of JPH09227140A publication Critical patent/JPH09227140A/en
Application granted granted Critical
Publication of JP3756567B2 publication Critical patent/JP3756567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Description

【0001】
【発明の属する技術分野】
本発明は、レンズやプリズム等のガラスよりなる光学素子をプレス成形により製造する際に使用される光学素子成形用型に関する。
【0002】
【従来の技術】
非球面レンズなどの複雑形状の光学素子を簡単かつ安価に得る方法として加熱軟化したガラスコブを成形型によりプレス成形する方法が採用され、高温での成形型としてセラミックス基材の表面に炭化珪素を蒸着した型が使用されている。
【0003】
従来から、この蒸着した炭化珪素の成形特性を改善手段が種々提案されており、たとえば、特開昭63−45135号公報には、型の研削・研磨時の加工性を良くするために、主として(111)面配向性を有するβ型の炭化珪素膜を被着したものが、また、特開平7−187689号公報においては、超平滑面を得るための研磨性を良くするために、(220)面強配向を有するβ型の炭化珪素蒸着層を形成することが開示されている。
【0004】
【発明が解決しようとする課題】
この光学素子成形用型においては、超平滑面を得るための加工性も重要ではあるが、その用途上、機械的な負荷と、室温から成形温度にいたる間での熱サイクルによる熱的な負荷に耐える必要がある。とくに、近年の光学素子の成形が、成形工程の短縮のため、低温・高圧・短時間内での昇・降温条件下で実施されるようになり、このような厳しい条件下でも、十分な機械・熱的耐久性を具備する型が要求される。
しかしながら、従来の炭化珪素膜では、成形中に結晶粒子間の粒界に沿って膜上部から基材に至るクラックが発生しやすく、また、膜上部で剥離が発生し、寿命が短いという問題があった。
【0005】
本発明において解決しようとする課題は、αおよび/またはβ型の焼結炭化珪素基材の表面に化学蒸着されたβ型炭化珪素膜から成る光学素子成形用型の機械的と熱的な要因に対する耐久性の改善にある。
【0006】
【課題を解決するための手段】
本発明は、成形時の耐久性を向上させる上で、基材の表面に化学蒸着されたβ型炭化珪素膜でのクラックと剥離が、
(i)膜の厚み方向に伝播するクラックが発生する
(ii)膜の上部で幅が数μm〜数十μm、深さが数μm〜数十μmの剥離が発生する
という現象に対して、クラックの発生と伝播に対して抵抗性のある膜構成を考慮していく必要があるという観点から完成した。
【0007】
まず、本発明においては、破壊エネルギーを増加させるため、粒界がクラックの伝播経路となるように粒界の構造を制御するもので、結晶粒子相互の界面(粒界)の不整合を増加させることによって、その界面のエネルギーを高めるとともに、粒子の相互作用を強めて粒界をクラックの伝播経路とする。
【0008】
このためには、膜を構成する結晶粒子が、多方位の結晶粒子から構成させられることが必要であり、β型の炭化珪素膜においては、β型の炭化珪素膜の構成結晶子が基材表面の法線方向に対して、特定の結晶方位を有さない不特定の結晶方位を有する構成とすることが重要である。すなわち、構成結晶子が粉末X線回折データであるJCPDS(29−1129)に記載されている回折面に対応した方位、<111>方位、<110>方位、<311>方位、<100>方位、<331>方位、<210>方位、<211>方位、<511>方位全てを基材表面の法線方向に有する構成とし、結晶方位の異なる結晶子相互により、粒界を形成させることが必要である。
クラックの伝播に対する抵抗性をより向上させる上で、X線回折で得られた回
折ピークを用いて、
【数1】

Figure 0003756567
式の方法で計算した各結晶方位を有する結晶子の含有率が、6方位以上においてそれぞれ5%以上を占めることが望ましい。
【0009】
【数1】
【0010】
A(i):JCPDS(29−1129)の( )i面の回折強度
s(i):供試材の( )i面の回折強度
なお、< >i方位の含有率計算に使用した回折面は下記の通りである。
<111>方位の含有率は(111)面の反射強度
<311>方位の含有率は(311)面の反射強度
<110>方位の含有率は(220)面の反射強度
<100>方位の含有率は(200)面の反射強度
<331>方位の含有率は(330)面の反射強度
<210>方位の含有率は(420)面の反射強度
<211>方位の含有率は(422)面の反射強度
<511>方位の含有率は(511)面の反射強度
【0011】
更に、本発明においては、クラックの伝播を抑制するために結晶粒子の形態を制御する。ミクロ組織が、針状に伸びた結晶粒子とその針状結晶粒子を囲んだその針状粒子より微細な結晶粒子から成る複合組織を有する構造を有する。このミクロ組織において、針状に伸びた粒子は微細な結晶粒子間で生じるクラックの伝播に対して抵抗を示し、膜上部の剥離の発生を抑制する。また、針状粒子を囲んだ微細な結晶粒子は針状粒子相互の粒界に発生する膜の断面を貫くクラックの伝播に対して効果を示す。ここで、針状粒子の大きさは短軸が5μm〜50μm、長軸が50μm〜300μmである。一方、針状粒子を囲んだ微細な結晶粒子は粒状・針状、どちらの形態でもよく、その平均粒子径は30μm以下である。更に、針状粒子と微細な結晶粒子の含有割合はその効果を得るため膜断面の面積比において、針状粒子/微細粒子が20/80〜80/20であり、針状粒子と微細な結晶粒子が相互に均一に分散されていることが望ましい。
【0012】
このように、蒸着膜という一方向へ結晶成長しやすい膜構造に対して、特定の配向性をもたせることなく、結晶粒界へ不均一性を導入するとともに、膜のミクロ組織に均一な複合構造を持たせ、クラックの発生・伝播に対し抵抗性を向上させることができる。
【0013】
また、αおよび/またはβ型の焼結炭化珪素基材の表面にβ型炭化珪素膜を化学蒸着により膜を構成させた場合、基材と膜との界面には結晶方位の差に起因した残留応力が発生する。この残留応力は界面近傍ほどその影響が大きく、機械的強度が不安定で型に使用した場合成形中にクラックが容易に発生する。特に、上記条件を満足する結晶の場合、成形時の作用面の位置を基材より100μm以上にすることにより、界面の残留応力の影響を回避でき、さらに、耐久性が改善された型が得られる。
【0014】
【発明の実施の形態】
本発明品の構成膜はボイドが存在しない膜であれば、加工方法を充分に検討することにより光学素子成形用の型に要求される最大面粗さが10nm以下の光学的鏡面を得ることができる。
本発明に係る光学素子成形型は、基材に直接化学蒸着により形成したり、一度化学蒸着により得られた材料を接合等により設置することによっても得ることができる。
【0015】
【実施例】
実施例1
本発明の実施例のミクロ組織写真を図1(A)、(B)に示す。基材はβ型の炭化珪素焼結体で、膜はβ型の炭化珪素膜である。同図の写真に示すように、膜を構成している各結晶粒子は、法線方向に対して互いに不特定の結晶方位関係であり、膜のミクロ組織は、図1(A)中に見られるように、基材に対して垂直方向に伸びた針状粒子と、図1(B)中に見られる針状粒子間に見られる微細な結晶粒子からなる複合組織を呈している。
凹形状の型基材としてβ型炭化珪素焼結体を所定形状に一次加工を施した後、化学蒸着により種々の配向とミクロ組織を有するβ型多結晶炭化珪素膜を300μmを形成し、その後、成形面をRmax<l0nmに鏡面加工を行い、被成形体との離型膜(DLC薄膜)を形成した(成形使用面は基材より200μm)。この成形型を用い、SF6相当(Tg=570°C)のガラスを用い成形試験を実施した。成形温度は650°C、圧力は100kg/cm2、加圧時間は1min、雰囲気は窒素中で実施した。なお、成形サイクルはガラスを投入してからプレス開始までを90秒、プレス時間を60秒、プレス終了から離型までを90秒とした。成形後に型の表面を観察し膜表面のクラック及び剥離の有無を調べた。本試験に供した化学蒸着炭化珪素の配向粒子の含有率、組織構成、成形試験結果を表1に示す。なお、本発明の化学蒸着炭化珪素膜は次の製造条件により作製した。
【0016】
使用ガス:SiCl4,H2,CH4,Ar
ガス流量:5〜20 l/min
炉内圧力:10〜350Torr
処理温度:1200〜1500°C
処理時間:60min
【0017】
【表1】
Figure 0003756567
【0018】
比較例として、方位の異なる結晶子の含有率が異なる、またミクロ組織の異なるCVD炭化珪素膜を有した型を用いて耐久性試験を実施した結果、本発明の場合、膜の剥離及び膜内のクラック発生までのサイクル回数が多い、即ち耐久性の点で優れており、比較例の場合が、短サイクルで膜剥離、膜内クラックが発生するのに対して、5000回以上の成形が可能な耐久性を具備する型が得られた。
【0019】
実施例2
実施例1の試料3に相当する膜構成を有するCVDによる炭化珪素膜の厚みを50、75、100、150、200、300μmとし、実施例1と同様の成形回数による耐久試験を行った。その結果を図2に示す。同図は、横軸にCVDによるSiCの膜厚、縦軸に成形回数を示す。この試験結果から、膜厚100μmまで、その成形回数は急激に増大し耐久性が向上し、それ以上で、ほぼ定常状態を示すことが判った。
【0020】
【発明の効果】
本発明の光学素子成形用型は、結晶方位とミクロ組織がコントロールされた炭化珪素膜を有する成形型を用いることにより、高圧力、温度サイクル下での成形においても、従来の炭化珪素膜を有する成形型で見られた膜断面を通るクラックや膜上部の剥離の発生がなく、長期にわたるサイクルでも耐えることから、型寿命が大幅に向上する。
【図面の簡単な説明】
【図1】 本発明品の粒子構造の例を示す。
【図2】 膜圧と耐久性の関係を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical element molding die used when manufacturing an optical element made of glass such as a lens or a prism by press molding.
[0002]
[Prior art]
As a method for easily and inexpensively obtaining optical elements with complex shapes such as aspherical lenses, a method of press-molding heat-softened glass cove with a mold is adopted, and silicon carbide is deposited on the surface of the ceramic substrate as a mold at high temperature Type is used.
[0003]
Conventionally, various means for improving the molding characteristics of the deposited silicon carbide have been proposed. For example, Japanese Patent Application Laid-Open No. 63-45135 mainly discloses a method for improving workability during grinding and polishing of a mold. In order to improve the polishability for obtaining an ultra-smooth surface, a film obtained by depositing a (111) plane-oriented β-type silicon carbide film is disclosed in JP-A-7-18789. It is disclosed that a β-type silicon carbide vapor deposition layer having a strong plane orientation is formed.
[0004]
[Problems to be solved by the invention]
In this optical element molding die, workability to obtain an ultra-smooth surface is also important, but for that purpose, mechanical load and thermal load due to thermal cycle from room temperature to molding temperature It is necessary to endure. In particular, in recent years, molding of optical elements has been carried out under low-temperature, high-pressure, short-time temperature rise / fall conditions in order to shorten the molding process. -A mold with thermal durability is required.
However, in the conventional silicon carbide film, cracks from the upper part of the film to the base material are likely to occur along the grain boundaries between the crystal grains during molding, and peeling occurs at the upper part of the film, resulting in a short life. there were.
[0005]
The problem to be solved in the present invention is that mechanical and thermal factors of an optical element molding die comprising a β-type silicon carbide film chemically vapor-deposited on the surface of an α and / or β-type sintered silicon carbide substrate It is in improving the durability against.
[0006]
[Means for Solving the Problems]
In the present invention, in order to improve the durability at the time of molding, cracks and peeling in the β-type silicon carbide film chemically vapor-deposited on the surface of the base material,
(I) Cracks propagating in the thickness direction of the film are generated. (Ii) For the phenomenon in which peeling occurs with a width of several μm to several tens of μm and a depth of several μm to several tens of μm at the upper part of the film. It was completed from the viewpoint that it is necessary to consider a film configuration that is resistant to the generation and propagation of cracks.
[0007]
First, in the present invention, in order to increase the fracture energy, the structure of the grain boundary is controlled so that the grain boundary becomes a propagation path of the crack, and the mismatch of the interface (grain boundary) between crystal grains is increased. As a result, the energy of the interface is increased and the interaction of the particles is strengthened to make the grain boundary a crack propagation path.
[0008]
For this purpose, the crystal grains constituting the film must be composed of multidirectional crystal grains. In the β-type silicon carbide film, the constituent crystallites of the β-type silicon carbide film are base materials. It is important to have an unspecified crystal orientation that does not have a specific crystal orientation relative to the surface normal direction. That is, the orientation corresponding to the diffraction surface described in JCPDS (29-1129) whose constituent crystallites are powder X-ray diffraction data, <111> orientation, <110> orientation, <311> orientation, <100> orientation , <331> orientation, <210> orientation, <211> orientation, and <511> orientation all in the normal direction of the substrate surface, and grain boundaries can be formed by crystallites having different crystal orientations. is necessary.
In order to further improve the resistance to propagation of cracks, using the diffraction peak obtained by X-ray diffraction,
[Expression 1]
Figure 0003756567
It is desirable that the content of crystallites having each crystal orientation calculated by the formula method occupy 5% or more in each of the six orientations or more.
[0009]
[Expression 1]
[0010]
I A (i): JCPDS (29-1129) () i-plane diffraction intensity I s (i): () i-plane diffraction intensity of test material Used for calculating the content ratio of <> i orientation The diffraction surface is as follows.
The content of the <111> orientation is the reflection intensity of the (111) plane. The content of the <311> orientation is the reflection intensity of the (311) plane. The content of the <110> orientation is the reflection intensity of the (220) plane. The content ratio is (200) plane reflection intensity <331> orientation content ratio is (330) plane reflection intensity <210> orientation content ratio is (420) plane reflection intensity <211> orientation content ratio is (422) ) Surface reflection intensity <511> Orientation content is (511) plane reflection intensity
Furthermore, in the present invention, the form of crystal grains is controlled in order to suppress the propagation of cracks. The microstructure has a structure having a composite structure composed of crystal particles extending in a needle shape and crystal particles finer than the needle particles surrounding the needle crystal particles. In this microstructure, the particles extending like needles show resistance to the propagation of cracks generated between fine crystal particles, and suppress the occurrence of peeling at the top of the film. Further, the fine crystal particles surrounding the acicular particles have an effect on the propagation of cracks penetrating through the cross section of the film generated at the grain boundary between the acicular particles. The size of the acicular particles are minor axis is 5 m to 50 m, major axis is 50 m to 300 m. On the other hand, the fine crystal particles surrounding the acicular particles may be either granular or acicular, and the average particle diameter is 30 μm or less . Further, in order to obtain the effect, the content ratio of the acicular particles and the fine crystal particles is 20/80 to 80/20 in the area ratio of the cross section of the film, and the acicular particles and the fine crystals. It is desirable that the particles are uniformly dispersed among each other.
[0012]
In this way, a film structure that easily grows in one direction, such as a vapor-deposited film, introduces non-uniformity to the grain boundaries without giving a specific orientation, and a uniform composite structure in the microstructure of the film It is possible to improve resistance to the generation and propagation of cracks.
[0013]
In addition, when a β-type silicon carbide film was formed on the surface of an α and / or β-type sintered silicon carbide base material by chemical vapor deposition, the interface between the base material and the film was caused by a difference in crystal orientation. Residual stress is generated. This residual stress has a greater effect near the interface, and the mechanical strength is unstable, and cracks are easily generated during molding when used in a mold. In particular, in the case of a crystal that satisfies the above conditions, the effect of residual stress at the interface can be avoided by setting the position of the working surface during molding to 100 μm or more from the base material, and a mold with improved durability is obtained. It is done.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
If the constituent film of the product of the present invention is a film in which no void exists, an optical mirror surface having a maximum surface roughness of 10 nm or less required for a mold for molding an optical element can be obtained by thoroughly examining processing methods. it can.
The optical element mold according to the present invention can also be obtained by directly forming a chemical vapor deposition on a base material, or installing a material once obtained by chemical vapor deposition by bonding or the like.
[0015]
【Example】
Example 1
The microstructure photograph of the Example of this invention is shown to FIG. 1 (A), (B). The base material is a β-type silicon carbide sintered body, and the film is a β-type silicon carbide film. As shown in the photograph in the figure, the crystal grains constituting the film have an unspecified crystal orientation relationship with respect to the normal direction, and the microstructure of the film can be seen in FIG. As shown in the figure, a composite structure composed of acicular particles extending in a direction perpendicular to the substrate and fine crystal particles seen between the acicular particles seen in FIG.
After subjecting a β-type silicon carbide sintered body to a predetermined shape as a concave mold base material, a β-type polycrystalline silicon carbide film having various orientations and microstructures is formed by chemical vapor deposition to 300 μm, and thereafter The molding surface was mirror-finished to R max <10 nm to form a release film (DLC thin film) with the object to be molded (the molding use surface was 200 μm from the base material). Using this mold, a molding test was carried out using glass equivalent to SF6 (Tg = 570 ° C.). The molding temperature was 650 ° C., the pressure was 100 kg / cm 2 , the pressing time was 1 min, and the atmosphere was nitrogen. The molding cycle was 90 seconds from when the glass was introduced to the start of pressing, 60 seconds of pressing time, and 90 seconds from the end of pressing to releasing. After molding, the surface of the mold was observed to examine the presence or absence of cracks and peeling on the film surface. Table 1 shows the content of the oriented particles of chemical vapor deposited silicon carbide subjected to this test, the structure of the structure, and the molding test results. The chemical vapor deposition silicon carbide film of the present invention was produced under the following production conditions.
[0016]
Gas used: SiCl 4 , H 2 , CH 4 , Ar
Gas flow rate: 5-20 l / min
Furnace pressure: 10 to 350 Torr
Processing temperature: 1200-1500 ° C
Processing time: 60 min
[0017]
[Table 1]
Figure 0003756567
[0018]
As a comparative example, as a result of performing a durability test using a mold having a CVD silicon carbide film with different crystallite contents with different orientations and different microstructures, in the case of the present invention, film peeling and in-film The number of cycles until the occurrence of cracks is large, that is, it is excellent in terms of durability, and in the case of the comparative example, film peeling and in-film cracks occur in a short cycle, and molding over 5000 times is possible A mold having excellent durability was obtained.
[0019]
Example 2
The thickness of the silicon carbide film by CVD having a film configuration corresponding to the sample 3 of Example 1 was set to 50, 75, 100, 150, 200, and 300 μm, and the durability test was performed by the same number of moldings as in Example 1. The result is shown in FIG. In the figure, the horizontal axis indicates the film thickness of SiC by CVD, and the vertical axis indicates the number of moldings. From this test result, it was found that the number of moldings rapidly increased up to a film thickness of 100 μm and the durability was improved.
[0020]
【The invention's effect】
The optical element molding die of the present invention has a conventional silicon carbide film even in molding under a high pressure and temperature cycle by using a molding die having a silicon carbide film whose crystal orientation and microstructure are controlled. There is no crack passing through the film cross section seen in the mold and no peeling of the upper part of the film, and it can endure even a long cycle, so the mold life is greatly improved.
[Brief description of the drawings]
FIG. 1 shows an example of the particle structure of the product of the present invention.
FIG. 2 shows the relationship between membrane pressure and durability.

Claims (2)

αおよび/またはβ型の焼結炭化珪素の基材表面に化学蒸着により形成したβ型炭化珪素膜を有する光学素子成形型において、
前記化学蒸着されたβ型炭化珪素膜を構成する結晶粒子が、法線方向に対して不特定の結晶方位を有し、かつ、短軸が5μm〜50μmであり、長軸が50μm〜300μmである針状に伸びた針状粒子と、この針状粒子を囲む平均粒子径が30μm以下である微細な結晶粒子との複合組織からなることを特徴とする光学素子成形型。
In an optical element molding die having a β-type silicon carbide film formed by chemical vapor deposition on an α and / or β-type sintered silicon carbide substrate surface,
The crystal particles constituting the chemically vapor-deposited β-type silicon carbide film have an unspecified crystal orientation with respect to the normal direction , the short axis is 5 μm to 50 μm, and the long axis is 50 μm to 300 μm. acicular particles extending to a needle, the optical element molding die of this acicular particles be enclosed average particle size characterized by comprising the composite structure of the fine crystal grains is 30μm or less.
β型炭化珪素膜の厚みが100μm以上である請求項1に記載の光学素子成形型。 The optical element mold according to claim 1, wherein the β-type silicon carbide film has a thickness of 100 μm or more.
JP06201196A 1996-02-22 1996-02-22 Mold for optical element molding Expired - Fee Related JP3756567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06201196A JP3756567B2 (en) 1996-02-22 1996-02-22 Mold for optical element molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06201196A JP3756567B2 (en) 1996-02-22 1996-02-22 Mold for optical element molding

Publications (2)

Publication Number Publication Date
JPH09227140A JPH09227140A (en) 1997-09-02
JP3756567B2 true JP3756567B2 (en) 2006-03-15

Family

ID=13187795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06201196A Expired - Fee Related JP3756567B2 (en) 1996-02-22 1996-02-22 Mold for optical element molding

Country Status (1)

Country Link
JP (1) JP3756567B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255570A (en) * 2001-02-28 2002-09-11 Ibiden Co Ltd Die for forming glass lens and method for manufacturing the same
JP2002293552A (en) * 2001-03-28 2002-10-09 Ibiden Co Ltd Mold and method for manufacturing the same
EP2861546B1 (en) * 2012-06-15 2022-08-31 Saint-Gobain Ceramics & Plastics Inc. Method of forming a ceramic body comprising silicon carbide, and armor component comprising said ceramic body
KR102475198B1 (en) * 2020-11-17 2022-12-09 주식회사 와이컴 High-Resistance Silicon Carbide Product Forming Method and High-Resistance Silicon Carbide Product

Also Published As

Publication number Publication date
JPH09227140A (en) 1997-09-02

Similar Documents

Publication Publication Date Title
EP2116637A2 (en) Crucible for melting silicon and release agent used to the same
JP4006535B2 (en) Semiconductor or liquid crystal manufacturing apparatus member and manufacturing method thereof
JP3756567B2 (en) Mold for optical element molding
EP0504441A1 (en) High strength composite ceramic structure and process for producing the same
JPS61281030A (en) Mold for molding optical element
JP2009149474A (en) Molding die and method for manufacturing the die
US5352643A (en) High strength alumina and process for producing same
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP3857742B2 (en) Glass mold for optical element molding
JPS62132734A (en) Mold for forming optical element
JPS6236089A (en) Manufacture of ceramic product
JPH11268920A (en) Forming mold for forming optical element and its production
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
CN1775701B (en) Mould core with superhard coating
JP4243437B2 (en) Method for producing metal-ceramic composite material having a pore-less surface
JPS63236757A (en) Polycrystal ceramic product and manufacture
JPH04358068A (en) Member coated with sic by cvd
JPH0583511B2 (en)
JP3592837B2 (en) Glass forming mold
JP2002201070A (en) Silicon carbide sintered compact and its manufacturing method
JP2000063175A (en) Modification of surface of zirconia sintered product
JPH0214881A (en) Surface deposited carbonaceous material
JPH0329012B2 (en)
JPH04367528A (en) Mold for forming optical element
JPH10182232A (en) Production of silicon carbide formed body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees