JPH0360903B2 - - Google Patents

Info

Publication number
JPH0360903B2
JPH0360903B2 JP58141285A JP14128583A JPH0360903B2 JP H0360903 B2 JPH0360903 B2 JP H0360903B2 JP 58141285 A JP58141285 A JP 58141285A JP 14128583 A JP14128583 A JP 14128583A JP H0360903 B2 JPH0360903 B2 JP H0360903B2
Authority
JP
Japan
Prior art keywords
steel
less
steels
hardenability
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58141285A
Other languages
Japanese (ja)
Other versions
JPS6033339A (en
Inventor
Kenji Hayashi
Sumio Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP14128583A priority Critical patent/JPS6033339A/en
Publication of JPS6033339A publication Critical patent/JPS6033339A/en
Publication of JPH0360903B2 publication Critical patent/JPH0360903B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は岩盤、土砂などの掘削刃やチゼル等に
用いられる掘削刃用合金鋼に関し、耐摩耗性、焼
入性、靭性および被削性に優れ、ガス溶断のまま
で、その表面が硬化し、焼入れ、焼もどしなどの
熱処理を施すことなくそのままで使用し得るもの
であり、かつ衝撃疲労性に優れていることからそ
の径が100mm以上の大形チゼンにおいても使用中
に折れることが殆んどない掘削刃用合金鋼であ
る。掘削刃やチゼルに要求される特性として、ま
ず第1に、岩石、土砂の掘削に対して摩耗し難
く、耐摩耗性に優れていることがあげられ、この
ためには、所定の焼入れ硬さを有することが必要
である。 第2に、掘削時に掘削刃やチゼルに衝撃が加え
られても、折れ、割れ、欠けを生じないよう靭性
に優れていることがあげられ、このためには、4
Kg・m/cm2以上の衝撃値を有することが必要であ
る。 第3に、チゼルが折れる場合、衝撃で折れる場
合を除き、ほとんどチゼルシヤフト部での疲労破
断であるため、衝撃疲労性についても優れている
ことが必要である。 従来、掘削刃やチゼル用鋼としてはSCM440や
SNCM439が用いられ、一部の用途には工具鋼が
用いられている。そして、使用に際しては、鋼材
を所定の形状に機械加工したのち、熱処理を施し
て使用され、その先端部が使用により摩耗した場
合には、形状を修正して、再度、熱処理をして繰
り返して使用するのが一般的である。 また、最近になつて、作業効率の向上、さらに
はチゼルのライフコストの低減を図るため、掘削
現場において、ガス溶断によつて簡単に形状の修
正を行なおうとする試みからなされるようになつ
てきた。 この方法では、焼入性の悪い材料ではガス溶断
による熱で硬さが低下してしまい、繰り返して使
用するには再度焼入れ、焼もどし処理をしなけれ
ばならなく、また、焼入性が良すぎる材料では硬
さは得られるが衝撃疲労性、靭性が劣り、特に大
きな荷重が加わる100mmφ以上の大形の掘削刃や
チゼルにおいては割れが発生し易いという問題が
あつた。 さらに、従来鋼では耐摩耗性、焼入性を重視し
多量のSi,Mnを含有させたことにより、被削性、
衝撃疲労性が劣るという欠点があつた。 本発明は、このような背景の下に本発明者等が
種々実験を重ねた結果、本発明において焼入性を
向上させる元素であるMnの含有量を1.00〜1.55
%とすることにより、ガス溶断によつて割れが発
生することなく掘削刃やチゼルにとつて必要な表
面硬さHRC47以上が得られ、かつ、大形掘削刃や
チゼルにおいては芯部の硬さを表面硬さに比べて
若干低くすることができ、衝撃疲労性をも改善し
得る掘削刃、チゼル用合金鋼の開発に成功したも
のである。 すなわち、本発明は重量比にして、C0.35〜
0.50%、Si0.98〜1.40%、Mn1.00〜1.55%、
Cr2.04〜3.00%、Mo0.50〜0.75%、V0.30%以下
を含有し、必要に応じてNb0.30%以下、または
Nb0.30%以下とTi0.30%、S0.04〜0.10%と、希
土類元素0.30%以下、または希土類元素0.30%以
下とZr0.30%以下を含有させたことにより、耐摩
耗性焼入性、衝撃疲労性および被削性に優れ、掘
削現場において、ガス溶断によつて簡単に形状の
修正ができる掘削刃用合金鋼であり、かつ掘削刃
やチゼルの寿命を大巾に延長させることができる
ものである。 以下に本発明鋼の成分限定理由について説明す
る。 Cは焼入れにより必要な硬さを得ると同時に炭
化物を形成して耐摩耗性を向上させるに必要な元
素であり、チゼルとして必要な硬さを得るには、
0.35%以上の含有が必要である。 しかし、C量が多く、さらに、Cr、Si量が多
い場合には、靭性が低下し易く、使用中に折損す
るなどの危険性が増すのでその上限を0.50%とし
た。 Siは耐摩耗性向上に必要な元素であるとともに
高温での耐軟化性を向上させる元素であり、
Mo,Cr量が多い場合には特にこれらの特性を得
るには本成分系については0.98%以上の含有が必
要である。 しかし、Cr,Mo量が多く、さらに、Si含有量
が多くなると靭性が低下し、さらに焼入温度が上
昇するので、その上限を1.40%とした。 Mnは焼入性を向上させる元素で、ガス溶断に
よつて掘削刃やチゼルとして必要な硬さHRC47以
上を得るには1.00%以上の含有か必要である。し
かし、Mn含有量が増加しすぎると焼入性がよす
ぎて、100mmφ以上の大形チゼルにおいてもその
芯部まで焼き入れることにより、衝撃疲労性、靭
性が劣化し使用中に大きな荷重が加わると割れが
発生する危険があり、かつ被削性が劣化するので
その上限を1.55%とした。 CrはMnと同様に焼入性を向上させる元素であ
るとともに地質を強化させる有効な元素であり、
ガス溶断によつて必要な硬さを得るには、2.04%
以上の含有が必要である。しかしCr含有量が増
加しすぎるとオーステナイト化温度が上昇し、チ
ゼルを焼入れする際、焼入温度を上昇させなけれ
ばならなくなるのでその上限を3.00%とした。 MoはMnと同様に焼入性を向上させる元素で
あり、また、高温での軟化抵抗を増す元素でもあ
り、ガス溶断によつて均一な硬さを得ると同時に
チゼルの耐摩耗性を向上させるには0.50%以上の
含有が必要である。しかし0.75%を越えて含有さ
せてもその効果の向上が少なく、また、熱間加工
性を害するのでその上限を0.75%とした。 Vはチゼル使用中の熱の上昇にともなう軟化を
防止するとともに、Cと結合して炭化物を形成し
て耐摩耗性を向上させ、さらに、ガス溶断時の結
晶粒の粗大化を防止する元素である。しかし、
0.30%を越えて含有させてもその効果の向上が少
ないのでその上限を0.30%とした。 Nb,Tiは硬質微細な炭化物を形成して耐摩耗
を向上させる元素である。その効果は、W,Vよ
り大きく、過酷な条件で使用されるとき、また、
チゼルの直径が大きいときには、Nb,Tiの添加
が必要である。しかし、Nb,Tiはそれぞれ0.30
%を越えて含有させてもその効果の向上が少ない
ので、その上限を0.30%とした。 Sは被削性向上に必要な元素であり、本発明の
ように高Si、高Mn鋼においてはその地質の硬さ
が高く、機械加工が比較的多い掘削刃やチゼルに
おいて被削性向上のため0.040%以上添加するも
のである。しかし、Sは0.10%を越えて含有させ
ると機械的性質、特に衝撃値が劣化するのでその
上限を0.10%とした。 希土類元素、ZrはMnSなどの硫化物の形状を
制御して、その形状を丸くし、S含有鋼の衝撃値
の低下を防止するものである。しかし、希土類元
素、Zrともに0.30%を越えて含有させてもその効
果の向上が少ないので、その上限をそれぞれ0.30
%とした。 つぎに本発明鋼の特徴を従来鋼、比較鋼と比べ
て実施例でもつて明らかにする。 第1表はこれらの供試鋼の化学成分を示すもの
である。
The present invention relates to an alloy steel for excavation blades used for excavation blades and chisels for rock, earth, etc., which has excellent wear resistance, hardenability, toughness, and machinability, and has a hardened surface even when cut by gas welding. It can be used as is without any heat treatment such as quenching or tempering, and it has excellent impact fatigue resistance, so even large chisen with a diameter of 100 mm or more are unlikely to break during use. This is an alloy steel for drilling blades. The characteristics required of excavation blades and chisels are, first of all, that they are resistant to wear when excavating rocks and earth, and that they have excellent wear resistance. It is necessary to have Second, it has excellent toughness so that it will not break, crack, or chip even if impact is applied to the drilling blade or chisel during excavation.
It is necessary to have an impact value of Kg·m/cm 2 or more. Thirdly, when a chisel breaks, it is necessary to have excellent impact fatigue resistance since most of the time the chisel breaks due to fatigue, except when it breaks due to impact. Traditionally, SCM440 and other steels were used for drilling blades and chisels.
SNCM439 is used, and tool steel is used in some applications. When used, the steel material is machined into a predetermined shape and then heat treated. If the tip of the steel material becomes worn due to use, the shape is corrected and heat treated again. It is common to use Recently, in order to improve work efficiency and further reduce the life cost of chisels, attempts have been made to easily modify the shape of chisels at excavation sites using gas cutting. It's here. With this method, materials with poor hardenability will lose their hardness due to the heat generated by gas cutting, and if they are to be used repeatedly, they must be hardened and tempered again. Materials that are too hard can provide hardness, but have poor impact fatigue resistance and toughness, and there is a problem that cracks are likely to occur especially in large drilling blades and chisels of 100 mm diameter or more that are subjected to large loads. Furthermore, conventional steel focuses on wear resistance and hardenability, and contains large amounts of Si and Mn, which improves machinability and
The drawback was poor impact fatigue resistance. As a result of various experiments conducted by the inventors against this background, the present invention has been developed by increasing the content of Mn, which is an element that improves hardenability, from 1.00 to 1.55.
%, it is possible to obtain the required surface hardness of H R C47 or higher for excavation blades and chisels without cracking due to gas cutting, and for large-scale excavation blades and chisels, the core part We have succeeded in developing an alloy steel for drilling blades and chisels whose hardness can be made slightly lower than the surface hardness and which can also improve impact fatigue resistance. That is, the present invention has a weight ratio of C0.35 to
0.50%, Si0.98~1.40%, Mn1.00~1.55%,
Contains Cr2.04~3.00%, Mo0.50~0.75%, V0.30% or less, Nb0.30% or less if necessary, or
By containing 0.30% or less of Nb, 0.30% of Ti, 0.04 to 0.10% of S, and 0.30% or less of rare earth elements, or 0.30% or less of rare earth elements and 0.30% or less of Zr, wear resistance and hardenability are improved. This is an alloy steel for drilling blades that has excellent impact fatigue resistance and machinability, and whose shape can be easily modified by gas cutting at the excavation site.It also greatly extends the life of drilling blades and chisels. It is possible. The reasons for limiting the composition of the steel of the present invention will be explained below. C is an element necessary to obtain the necessary hardness through quenching and at the same time form carbides to improve wear resistance.To obtain the necessary hardness as a chisel,
It is necessary to contain 0.35% or more. However, when the amount of C is large and the amount of Cr and Si is also large, the toughness tends to decrease and the risk of breakage during use increases, so the upper limit was set at 0.50%. Si is an element necessary to improve wear resistance and also improves softening resistance at high temperatures.
Particularly when the content of Mo and Cr is large, the content of this component system must be 0.98% or more to obtain these properties. However, if the amounts of Cr and Mo are large and the Si content is also large, the toughness decreases and the quenching temperature increases, so the upper limit was set at 1.40%. Mn is an element that improves hardenability, and must be contained at 1.00% or more in order to obtain a hardness of H R C47 or higher, which is necessary for drilling blades and chisels, by gas cutting. However, if the Mn content increases too much, the hardenability will be too good, and even in large chisels of 100mmφ or more, if the core is hardened, the impact fatigue resistance and toughness will deteriorate and a large load will be applied during use. Since there is a risk of cracking and deterioration of machinability, the upper limit was set at 1.55%. Cr, like Mn, is an element that improves hardenability and is an effective element that strengthens the geology.
2.04% to obtain the required hardness by gas cutting.
The above content is necessary. However, if the Cr content increases too much, the austenitization temperature will rise and the quenching temperature will have to be raised when quenching the chisel, so the upper limit was set at 3.00%. Like Mn, Mo is an element that improves hardenability, and is also an element that increases resistance to softening at high temperatures.It achieves uniform hardness through gas cutting, and at the same time improves the wear resistance of the chisel. must contain 0.50% or more. However, even if the content exceeds 0.75%, the effect will not be improved much and hot workability will be impaired, so the upper limit was set at 0.75%. V is an element that prevents softening due to the rise in heat during use of the chisel, combines with C to form carbide, improves wear resistance, and also prevents coarsening of crystal grains during gas cutting. be. but,
Even if the content exceeds 0.30%, the effect will not be improved much, so the upper limit was set at 0.30%. Nb and Ti are elements that form hard fine carbides and improve wear resistance. Its effect is greater than W and V, and when used under harsh conditions,
When the diameter of the chisel is large, it is necessary to add Nb and Ti. However, Nb and Ti are each 0.30
Even if the content exceeds 0.3%, the effect will not be improved much, so the upper limit was set at 0.30%. S is an element necessary to improve machinability, and in high-Si and high-Mn steels like the one used in the present invention, the geological hardness is high, and S is an element that is necessary for improving machinability in drilling blades and chisels that are relatively often machined. Therefore, it is added at least 0.040%. However, if the content of S exceeds 0.10%, the mechanical properties, especially the impact value, deteriorate, so the upper limit was set at 0.10%. The rare earth element, Zr, controls the shape of sulfides such as MnS, makes the shape round, and prevents the impact value of S-containing steel from decreasing. However, even if both rare earth elements and Zr are contained in amounts exceeding 0.30%, their effects will not improve much, so the upper limit has been set at 0.30% for each.
%. Next, the characteristics of the steel of the present invention will be clarified in Examples by comparing it with conventional steel and comparative steel. Table 1 shows the chemical composition of these test steels.

【表】 第1表においてA鋼は従来鋼、B〜D鋼は比較
鋼、E〜N鋼は本発明鋼で、E〜H鋼は第1発明
鋼、J,K鋼は第2発明鋼、L鋼は第3発明鋼、
M,N鋼は第4発明鋼である。 第2表は、第1表の供試鋼A〜N鋼を岩石掘削
に用いた場合のチゼルの耐摩耗性を調べたもので
ある。調査にあたつては、シヤベルローダの刃に
前記供試鋼により作製したチゼルを取付けて摩耗
量を調べた。 なお、このとき硬さの影響をさけるため、HR
C50〜53の同一レベル硬さになるように熱処理を
施した、耐摩耗性は従来鋼であるA鋼の摩耗抵抗
値を100とした指数で示した。
[Table] In Table 1, Steel A is conventional steel, Steels B to D are comparative steels, Steels E to N are steels of the present invention, Steels E to H are first invention steels, and Steels J and K are second invention steels. , L steel is the third invention steel,
M and N steels are the fourth invention steels. Table 2 shows the wear resistance of chisels when the sample steels A to N in Table 1 were used for rock excavation. In the investigation, a chisel made from the above-mentioned sample steel was attached to the blade of a shovel loader, and the amount of wear was examined. At this time, in order to avoid the influence of hardness, H R
Heat treatment was performed to achieve the same level of hardness between C50 and C53.Wear resistance was expressed as an index with the wear resistance value of steel A, which is a conventional steel, taken as 100.

【表】【table】

【表】 摩耗抵抗値については、第2表より明らかなよ
うに本発明鋼であるE〜N鋼は、従来鋼であるA
鋼に比べてSi,Crなどの耐摩耗性を向上させる
合金元素を十分に含有することにより従来鋼に比
べて2倍ほどの値を有しており、優れた耐摩耗性
を有することは明らかである。また比較鋼である
B鋼はSi量が0.74%と本発明鋼に比べて低いため
摩耗抵抗値が小さく耐摩耗性が低いものである。 第3表は第1表の供試鋼A〜N鋼について衝撃
疲労試験を行い、その結果を示したものである。
衝撃疲労試験については、前記の摩耗抵抗値と同
様にHRC50〜53の同一レベル硬さとなるように熱
処理を施し、長さ160mm×15mmφ、ノツチ2.5Rの
試験片を作製し、松村式衝撃疲労試験機を用い
て、衝撃荷重20Kg・mで試験を行つた。
[Table] Regarding the wear resistance value, as is clear from Table 2, steels E to N, which are the steels of the present invention, are different from those of the conventional steel A.
Compared to steel, it contains enough alloying elements such as Si and Cr that improve wear resistance, so it has a value about twice that of conventional steel, and it is clear that it has excellent wear resistance. It is. Further, steel B, which is a comparative steel, has a lower Si content of 0.74% than the steel of the present invention, so its wear resistance value is small and its wear resistance is low. Table 3 shows the results of impact fatigue tests conducted on the test steels A to N in Table 1.
For the impact fatigue test, a test piece with a length of 160 mm x 15 mmφ and a notch of 2.5R was prepared by heat treatment to obtain the same level of hardness of H R C50 to 53 as in the above wear resistance value. A test was conducted using a fatigue testing machine at an impact load of 20 kg/m.

【表】【table】

【表】 第3表より明らかなように、比較鋼であるC鋼
は高Si、高Mn鋼であるため、衝撃疲労は0.5×
104と低いものであるが、本発明鋼であるE〜N
鋼は0.8〜1.6×104と、いずれも従来鋼であるA鋼
と同様に優れた衝撃疲労を有するものである。 第4表は第1表の供試鋼のうちA,C,G,
L,M,N鋼について被削性を調べたものであ
る。 被削性については、チゼルを所定の形状に切削
するに要する時間を測定し、従来鋼であるA鋼の
所要時間を100とした指類で示した。
[Table] As is clear from Table 3, the comparison steel C steel is a high-Si, high-Mn steel, so the impact fatigue is 0.5×
Although it is as low as 10 4 , the inventive steel E~N
The steels have an impact fatigue strength of 0.8 to 1.6×10 4 , which is similar to the conventional steel A steel. Table 4 shows A, C, G,
The machinability of L, M, and N steels was investigated. Regarding machinability, the time required to cut a chisel into a predetermined shape was measured, and the time required for conventional steel A steel was expressed as 100.

【表】 比較鋼であるC鋼は高Si、高Mn鋼であるため
被削性指数が従来鋼であるA鋼の2.5倍であるの
に対して、本発明鋼であるG,L,M,N鋼はい
ずれもSi,Mn鋼を規制したことによりA鋼の2
倍以下であり、特にSを含有させたL,M,N鋼
はA鋼の1.5倍と被削性が向上している。 上述のように、本発明鋼は従来鋼である
SCM440に比べて耐摩耗性、焼入性に優れ、か
つ、高Si、高Mn鋼に比べて衝撃疲労性、靭性お
よび被削性に優れ、さらに掘削現場においてガス
溶断によつて簡単に形状の修正ができ、岩石、土
砂などの掘削刃やチゼル等に用いられる掘削刃用
合金鋼として高い実用性を有するものである。
[Table] Steel C, which is a comparison steel, is a high-Si and high-Mn steel, so its machinability index is 2.5 times that of steel A, which is a conventional steel. , N steel are both A steel 2 due to regulation of Si and Mn steel.
In particular, the machinability of the L, M, and N steels containing S is 1.5 times that of the A steel. As mentioned above, the steel of the present invention is a conventional steel.
It has superior wear resistance and hardenability compared to SCM440, and has superior impact fatigue resistance, toughness and machinability compared to high Si and high Mn steels, and can be easily shaped by gas cutting at the excavation site. It can be modified and has high practicality as an alloy steel for excavating blades used for excavating rocks, earth and sand, chisels, etc.

Claims (1)

【特許請求の範囲】 1 重量比にして、C0.35〜0.50%、Si0.98〜1.40
%、Mn1.00〜1.55%、Cr2.04〜3.00%、Mo0.50
〜0.75%、V0.30%以下を含有し、残部Feならび
に不純物元素からなることを特徴とする耐衝撃疲
労性、焼入性に優れた掘削刃用合金鋼。 2 重量比にして、C0.35〜0.50%、Si0.98〜1.40
%、Mn1.00〜1.55%、Cr2.04〜3.00%、Mo0.50
〜0.75%、V0.30%以下を含有し、さらにNb0.30
%以下、またはNb0.30%以下とTi0.30%以下を
含有し、残部Feならびに不純物元素からなるこ
とを特徴とする耐衝撃疲労性、焼入性に優れた掘
削刃用合金鋼。 3 重量比にして、C0.35〜0.50%、Si0.98〜1.40
%、Mn1.00〜1.55%、Cr2.04〜3.00%、Mo0.50
〜0.75%、V0.30%以下を含有し、さらにS0.04〜
0.10%を含有し、残部Feならびに不純物元素から
なることを特徴とする耐衝撃疲労性、焼入性に優
れた掘削刃用合金鋼。 4 重量比にして、C0.35〜0.50%、Si0.98〜1.40
%、Mn1.00〜1.55%、Cr2.04〜3.00%、Mo0.50
〜0.75%、V0.30%以下を含有し、S0.04〜0.10%
と、さらに希土類元素0.30%以下、または希土類
元素0.30%以下とZr0.30%以下を含有し、残部Fe
ならびに不純物元素からなることを特徴とする耐
衝撃疲労性、焼入性に優れた掘削刃用合金鋼。
[Claims] 1. C0.35~0.50%, Si0.98~1.40% by weight
%, Mn1.00~1.55%, Cr2.04~3.00%, Mo0.50
An alloy steel for drilling blades with excellent impact fatigue resistance and hardenability, containing ~0.75% and V0.30% or less, with the remainder consisting of Fe and impurity elements. 2 Weight ratio: C0.35~0.50%, Si0.98~1.40
%, Mn1.00~1.55%, Cr2.04~3.00%, Mo0.50
Contains ~0.75%, V0.30% or less, and additionally Nb0.30
% or less, or Nb 0.30% or less and Ti 0.30% or less, with the balance consisting of Fe and impurity elements. An alloy steel for drilling blades with excellent impact fatigue resistance and hardenability. 3 Weight ratio: C0.35~0.50%, Si0.98~1.40
%, Mn1.00~1.55%, Cr2.04~3.00%, Mo0.50
Contains ~0.75%, V0.30% or less, and S0.04~
Alloy steel for drilling blades with excellent impact fatigue resistance and hardenability, containing 0.10% Fe and impurity elements. 4 Weight ratio: C0.35~0.50%, Si0.98~1.40
%, Mn1.00~1.55%, Cr2.04~3.00%, Mo0.50
Contains ~0.75%, V0.30% or less, S0.04~0.10%
and further contains 0.30% or less of rare earth elements, or 0.30% or less of rare earth elements and 0.30% or less of Zr, with the balance being Fe.
Alloy steel for drilling blades with excellent impact fatigue resistance and hardenability, which is characterized by comprising impurity elements.
JP14128583A 1983-08-01 1983-08-01 Wear resisting alloyed steel Granted JPS6033339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14128583A JPS6033339A (en) 1983-08-01 1983-08-01 Wear resisting alloyed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14128583A JPS6033339A (en) 1983-08-01 1983-08-01 Wear resisting alloyed steel

Publications (2)

Publication Number Publication Date
JPS6033339A JPS6033339A (en) 1985-02-20
JPH0360903B2 true JPH0360903B2 (en) 1991-09-18

Family

ID=15288332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14128583A Granted JPS6033339A (en) 1983-08-01 1983-08-01 Wear resisting alloyed steel

Country Status (1)

Country Link
JP (1) JPS6033339A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290329A (en) * 2012-02-22 2013-09-11 北京辰极国泰科技有限公司 High strength and toughness alloy cast steel bucket tooth of excavator and production technologies thereof
US11186901B2 (en) 2015-04-21 2021-11-30 Komatsu Ltd. Chisel and steel for chisel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138428A (en) * 1976-05-17 1977-11-18 Nippon Steel Corp Production of rail having excellent wear resistance and damage resistance as rolled
JPS5380318A (en) * 1976-12-27 1978-07-15 Daido Steel Co Ltd Hot tool steel with excellent high temperature strength
JPS5831066A (en) * 1981-07-28 1983-02-23 Toyota Motor Corp Punch for cold working

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52138428A (en) * 1976-05-17 1977-11-18 Nippon Steel Corp Production of rail having excellent wear resistance and damage resistance as rolled
JPS5380318A (en) * 1976-12-27 1978-07-15 Daido Steel Co Ltd Hot tool steel with excellent high temperature strength
JPS5831066A (en) * 1981-07-28 1983-02-23 Toyota Motor Corp Punch for cold working

Also Published As

Publication number Publication date
JPS6033339A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
JP6180984B2 (en) Steel plates for chainsaw parts and chainsaw parts
SE528454C2 (en) Extractable curable martensitic stainless steel including titanium sulfide
JP2011074427A (en) Hollow drill steel rod
JPH0578781A (en) High strength and high toughness wear resistant steel
KR100415626B1 (en) High Strength Wear Resistance Steel with Excellent Hardenability
JPH0360903B2 (en)
JP2002235144A (en) Wear resistant high strength steel, cutting edge, bucket tooth and bucket lip
JPH031370B2 (en)
JP2927694B2 (en) Tough wear-resistant steel with excellent breakage resistance
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
JP4448525B2 (en) Mowing blade substrate
JP4125423B2 (en) Method for producing tool steel with excellent earth and sand wear characteristics
JP2001200341A (en) Tool steel excellent in earth and sand wear property
JPS5925027B2 (en) Wear-resistant, impact-resistant tool rope
JP3962143B2 (en) Mowing blade substrate
JPS58171558A (en) Tough nitriding steel
JPS6112851A (en) High toughness, wear resistant steel
JPS60215743A (en) Wear-resistant steel
JPH05239589A (en) High strength nonheat-treated steel
JP3227730B2 (en) Steel for large shank for drilling
Kawakami et al. Effect of chemical composition on sag resistance of suspension spring
JP7176877B2 (en) Alloy steel for machine structural use with excellent impact resistance
JPS60165356A (en) Abrasion resistant alloyed steel
JPH07179988A (en) Hot tool steel excellent in high temperature strength
JP2000328182A (en) Free-cutting steel for machine structure excellent in hot workability