JP3833388B2 - Method for producing constant velocity joint with excellent cold workability and strength - Google Patents

Method for producing constant velocity joint with excellent cold workability and strength Download PDF

Info

Publication number
JP3833388B2
JP3833388B2 JP10728698A JP10728698A JP3833388B2 JP 3833388 B2 JP3833388 B2 JP 3833388B2 JP 10728698 A JP10728698 A JP 10728698A JP 10728698 A JP10728698 A JP 10728698A JP 3833388 B2 JP3833388 B2 JP 3833388B2
Authority
JP
Japan
Prior art keywords
constant velocity
velocity joint
less
rolling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10728698A
Other languages
Japanese (ja)
Other versions
JPH11302734A (en
Inventor
誠 井口
元裕 西川
正芳 嵯峨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Sanyo Special Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Sanyo Special Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10728698A priority Critical patent/JP3833388B2/en
Publication of JPH11302734A publication Critical patent/JPH11302734A/en
Application granted granted Critical
Publication of JP3833388B2 publication Critical patent/JP3833388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明に属する技術分野】
本発明は、冷間加工性、高周波焼入性、転動疲労寿命及びねじり強度に優れたボロンを含有する自動車部品である等速ジョイントの製造方法に関するものである。
【0002】
【従来の技術】
従来から自動車の等速ジョイントの外輪には、S48C(JIS規格)、S53C( JIS規格) 相当の鋼や特公平1−38847に記載の冷間鍛造性を改善した鋼に高周波焼入れを行い使用されている。しかし、生産コストの低減や燃費向上を実現するために、部品の軽量化が必要であり、そのためには、これらの鋼に対し、冷間加工性を阻害することなく、更なる転動疲労寿命特性及びねじり強度特性に優れた等速ジョイントの開発が必要である。
【0003】
【発明が解決しようとする課題】
本発明の課題は、S48C(JIS規格)、S53C( JIS規格)相当の鋼や特公平1−38847に記載の冷間鍛造性を改善した鋼に対し、冷間鍛造性、被削性等の冷間加工性を阻害することなく、転動疲労寿命特性及びねじり強度特性に優れた鋼からなる自動車等の等速ジョイントを供給することにある。
【0004】
【課題を解決するための手段】
その目的に対し、本発明者等は、転動疲労寿命及びねじり強度特性を向上させるために、C量の増加に加え、Moの添加が有効な手法であることを見出し、更に冷間加工性を考慮し、添加量の適正範囲を見出した。そして、冷間加工性の更なる向上のために、圧延条件の適正化と球状化焼鈍条件の適正化を図ることにより、本課題を解決した。
【0005】
すなわち、上記の課題を解決するための本発明の手段は、重量%で、C:0.52〜0.60%、Si:0.03〜0.15%、Mn:0.10〜0.40%、Cr:0.05〜0.30%、Mo:0.10〜0.30%、S:0.003〜0.020%、B:0.0005〜0.005%、Ti:0.02〜0.05%、N:0.01%以下、Al:0.005〜0.05%、Mn+Cr+Mo:0.35〜0.80%を含有し、残部Fe及び不可避不純物からなり、かつ加熱温度をAc3〜1000℃とした後、減面率30%以上で圧延または鍛造し、更にAc1〜770℃に加熱後、730℃〜700℃の温度範囲を15℃/h以下の速度で徐冷する球状化焼鈍を行い、球状化焼鈍後の硬さを68〜78HRBとした鋼を用い、高周波焼入れ後の表面硬さを60HRC以上とすることを特徴とし、CとMoを適正量添加し、かつ製造方法の適正化を見出すことにより、冷間加工性、転動疲労寿命特性及びねじり強度特性に優れた等速ジョイントの製造方法を提供するものである。
【0006】
本発明の限定理由を以下に示す。
C:Cは機械構造用部品として焼入焼戻し後の強度を確保し、かつ転動疲労寿命特性及びねじり強度特性を向上させるために必要な元素であり、0.52%未満では、高周波焼入れ時の表面硬さが60HRC以上を満足せず強度が不十分であり、0.60%を超えると冷間加工性を低下させると共に高周波焼入れ時に割れが発生する。そのため、含有量を0.52〜0.60%とした。
【0007】
Si:Siは脱酸のため必要元素であり、0.03%未満ではその効果が十分に得られず、0.15%を超えて含有させると加工性を低下させる。そのため、含有量を0.03〜0.15%とした。
【0008】
Mn:Mnは焼入性を確保するのに必要な元素であり、0.10%未満ではその効果が充分に得られず、0.40%を超えて含有させると加工性を低下させる。そのため、含有量を0.10〜0.40%とした。
【0009】
Cr:Crは、焼入性に寄与する元素であるが0.05%未満ではその効果が得られず、0.30%を超えて含有させると、球状化焼鈍時に炭化物中への濃縮が起こり、高周波焼入時に、炭化物が残留し、均一な焼入硬さが得られない。そのため、含有量を0.05〜0.30%とした。
【0010】
Mo:Moは焼入性向上元素であると共に、転動疲労寿命及びねじり強度を向上させる元素であり、0.10%未満ではその効果は十分ではなく、0.30%を超えて含有させると球状化焼鈍後の硬さを上げ、加工性を著しく低下させる。そのため、含有量を0.10〜0.30%とした。
【0011】
S:Sは、MnS、TiSとなり、被削性を改善する元素であるが0.003%未満ではその効果が十分に得られず、0.020%を超えると冷間加工性を低下させる。そのため含有量を0.003〜0.020%とした。
【0012】
B:Bは、粒界強度を向上させ、かつ焼入性を向上させる元素であり、0.0005%未満ではその効果は十分ではなく、0.005%を超えて含有させると逆に焼入性を低下させる。そのため、含有量を0.0005〜0.005%とした。
【0013】
Ti:Tiは鋼中のfree−Nを固定してBの焼入性への効果を向上させる元素であり、0.02%未満ではその効果が充分に得られず、0.05%を超えても鋼中のN量が0.01%以下と規定するために、その効果は飽和する。そのため、含有量を0.02%〜0.05%とした。
【0014】
N:Nは0.01%を超えて含有するとTiNが増加し、疲労特性に悪影響を及ぼす。そのため、含有量を0.01%以下とした。
【0015】
Al:Alは、脱酸材として必要な元素であり、0.005%未満ではその効果は十分ではなく、0.05%を超えて含有させるとアルミナ系酸化物が増加し、疲労特性、加工性を低下させる。そのため含有量は、0.005〜0.05%とした。
【0016】
Mn+Cr+Mo:Mn、Cr、Mo共に高周波焼入性に寄与すると共に鋼材の硬さを上げる元素であり、その和が0.35以下では均質な焼入組識が得られず、転動寿命を著しく低下し、0.80以上では、球状化焼鈍後の硬さが78HRB以下を満足しなくなる。そのため、Mn+Cr+Moの和を0.35〜0.80とした。
【0017】
圧延・鍛造条件:Ac3以上に加熱する理由は、炭化物やフェライトを残さず均質にオーステナイト化するためであり、フェライトが残留した場合、圧延または鍛造後の組織において均質なフェライト粒度の組織が得られず、焼入焼戻処理後に熱処理歪みが大きくなる。また1000℃以上の加熱温度になると、微細析出物の成長が起こり析出物が比較的大きくなるため、圧延または鍛造時のオーステナイト結晶粒が大きくなり、圧延または鍛造後のフェライト量を減少させ、加工性を劣化させると共に、焼入焼戻処理後の結晶粒が大きくなり、粒界強度が低下する。そのため、圧延または鍛造時の加熱温度をAc3〜1000℃とした。減面率については、30%以下ではフェライトの生成量が減少し加工性が低下する。
【0018】
球状化焼鈍条件:
(加熱温度)
良好な球状化組織を得るためには、オーステナイトと球状化した残留炭化物の二相域に加熱する必要がある。加熱温度がAc1未満では、炭化物の分断が起こらず、球状化焼鈍後にラメラーパーライトが残留し、良好な球状化組織が得られず、770℃を超える温度に加熱すると残留炭化物が無くなり、冷却時にラメラーパーライトが析出する。そのため、加熱温度をAc1〜770℃とした。
【0019】
(徐冷温度区間)
良好な球状化組織を得るためには、炭化物の析出が起こる温度区間を徐冷することにより、ラメラーパーライトの析出を抑制し、残留炭化物を成長させる必要があるが、730℃より高い温度では、炭化物の析出は、ほとんど起こらず、700℃で析出が終了する。そのため、徐冷区間を730〜700℃とした。また、徐冷温度区間以外の区間、すなわち上記の加熱温度から730℃までの温度区間、あるいは700℃から常温までの間の区間の冷却速度は規定するものではなく任意の速度で良いが、工業生産性の問題から、できる限り早くした方が好ましい。
【0020】
(徐冷速度)
730〜700℃の温度区間を15℃/hより早い速度で冷却すると、冷却中にラメラーパーライトが析出し、良好な球状化組織が得られない。そのため、徐冷速度を15℃/h以下とした。
【0021】
硬さ:球状化焼鈍後の硬さが78HRBを超える場合、冷間鍛造時に割れが発生すると共に、金型の寿命を著しく低下させ生産性を阻害し、68HRB未満の場合、被削性を劣化させる。そのため、球状化焼鈍後の硬さを68〜78HRBとした。
【0022】
高周波焼入れ後の硬さ:高周波焼入れ後の硬さが60HRC未満であると転動疲労寿命が低下すると共に、転動部に滑りが加わるため部品の摩耗量が増加する。そのため、高周波焼入後の硬さを60HRC以上とした。
【0023】
【発明の実施の形態】
本発明の実施の形態を以下に、実施例及び比較例を通じて示す。実施例及び比較例における鋼組成を表1のNo.1〜9において示す。発明鋼No.1〜3は、それぞれJISに規定するS53C、S55C、S58Cの鋼に対しSi、Mnを低減し、Mo、Bを添加した鋼である。それに対し、比較鋼No.4、5、6は、それぞれS48C、S53C、S58Cの鋼である。比較鋼No.7、8は、S48C、S53Cの鋼に対し、Si、Mnを低減し、Bを添加した鋼である。比較鋼No.9は、S58Cの鋼に対し、Si、Mnを低減し、Mo、Bを添加した鋼であるがMn+Cr+Moが0.85%となり、0.35≦Mn+Cr+Mo≦0.80%を満足していない鋼である。
【0024】
表1に示す化学成分組成の供試鋼( 発明鋼1〜3、比較鋼4〜10) をそれぞれ100kg真空溶解炉にて溶製し、950℃に加熱後、熱間鍛造でφ55に鍛造し、750℃に加熱後、730℃〜700℃の温度範囲を10℃/hの冷却速度で徐冷する球状化焼鈍を行った鋼材を用い、その後、φ52mmの長さ111mmに加工した。そして、冷間鍛造にて素形材加工を行った後、旋削加工と転造加工を加え、図1に示す形状の等速ジョイント外輪に加工した。図において、等速ジョイントはマウス部1及び軸部2からなり、軸部2はセレーション部4及びネジ部5からなる。等速ジョイント外輪のマウス部1の内側は6ヶ所のボール転動溝3を有し、該ボール転動溝3の上下にはボール7を保持するリテーナー8が形成されている。さらに等速ジョイント外輪の中には等速ジョイント内輪6が装着されている。その等速ジョイント外輪のマウス転動面に有効硬化層深さ( 鏡面から500HVとなる点までの距離) が約3.0mm、軸部2の有効硬化層深さが約5mmになるように高周波焼入焼戻し( 焼戻条件:180℃で1時間) を行った。
【0025】
【表1】

Figure 0003833388
【0026】
【実施例】
以下に、実施の形態に記載の製品について以下の試験を行ない、その結果を示す。それぞれマウス転動面については転動疲労寿命試験、軸部2についてはねじり強度試験を実施した。転動疲労寿命試験は、図2に示すように等速ジョイント内輪6とボール7を組み合せて試験することにより評価し、ねじり強度試験は、マウス部1とセレーション部4を固定してねじることにより評価した。また、硬化層深さは、ビッカース硬度計での測定で500HVとなる位置とし、球状化焼鈍後の素材の硬さは、ロックウェル硬度計を用いて測定した。
【0027】
(素材硬さ及び転動疲労寿命試験結果について)
高周波焼入焼戻し後の有効硬化層深さを約3.0mmとした試験片を用い、転動疲労寿命試験を行った。試験条件は、一定面圧を負荷した状態で100時間試験を行い、6ヶ所のボール転動溝3のうち一ヶ所でもはく離が生じたときの面圧で評価した。つまり、はく離が生じるときの面圧が高いほど、転動疲労寿命に優れていることを示している。本発明鋼No.1〜3は、同C量レベルの比較鋼No.4〜8に対しはく離が発生する面圧が高くなっており、転動疲労寿命に対し優れた特性を持っている。また、比較鋼No.4、5、6、9に比べ、本発明鋼No.1〜3は、0.35≦Mn+Cr+Mo≦0.80%とし、球状化焼鈍条件の最適化を図ることにより、球状化焼鈍後の硬さを68〜78HRBとすることができ、冷間鍛造時に割れを抑制し、かつ金型の寿命を向上させることが可能となった。
【0028】
【表2】
Figure 0003833388
【0029】
(ねじり強度試験結果について)
高周波焼入焼戻し後の有効硬化層深さを約5.0mmとした試験片を用い、軸部2のねじり強度試験を行った。本発明鋼No.1〜3は、B、Moを複合添加し粒界強度高くすることにより、比較鋼No.4〜8に対し、優れたねじり強度を有している。また、比較鋼No.9は、本発明鋼と同等の強度を示しているが、冷間加工性の面で本発明鋼に劣る。
【0030】
【表3】
Figure 0003833388
【0031】
【発明の効果】
以上説明したように、本発明の等速ジョイントの製造方法による効果を以下に示す。
1)鋼組成において、C:0.52〜0.60%とし、Mo:0.10〜0.30%添加し、更に高周波焼入焼戻し後の硬さを60HRC以上とすることにより、優れた転動疲労寿命及びねじり強度を有する等速ジョイントの製造が可能である。
2)さらに、鋼組成において、Mn+Cr+Mo量を0.35〜0.80%とし、圧延または鍛造条件と球状化焼鈍条件の最適化を図ることにより、優れた冷間加工性を有する等速ジョイントの製造が可能である。
以上本発明の方法により、冷間鍛造性、被削性等の冷間加工性を阻害することなく、転動疲労特性、強度特性に優れた等速ジョイントの製造が可能となり、自動車部品等の軽量化を図ることができる。
【図面の簡単な説明】
【図1】転動疲労寿命試験及びねじり強度試験に用いた等速ジョイントの形状を一部破断、一部省略して示す図で、(a)は平面図、(b)は正面図である。
【図2】転動疲労試験時の等速ジョイント内・外輪、及びボールの組立図である。
【符号の説明】
1 マウス部
2 軸部
3 マウス部のボール転動溝
4 セレーション部
5 ネジ部
6 等速ジョイント内輪
7 ボール
8 リテーナー[0001]
[Technical field belonging to the invention]
The present invention relates to a method for manufacturing a constant velocity joint which is an automotive part containing boron having excellent cold workability, induction hardenability, rolling fatigue life and torsional strength.
[0002]
[Prior art]
Conventionally, outer rings of constant velocity joints of automobiles have been used by induction hardening to steel equivalent to S48C (JIS standard) and S53C (JIS standard) and steel with improved cold forgeability described in JP-B 1-38847. ing. However, in order to reduce production costs and improve fuel efficiency, it is necessary to reduce the weight of parts. For this purpose, these steels have a further rolling fatigue life without impairing cold workability. It is necessary to develop a constant velocity joint with excellent characteristics and torsional strength.
[0003]
[Problems to be solved by the invention]
The object of the present invention is to provide cold forgeability, machinability, etc., for steels equivalent to S48C (JIS standard), S53C (JIS standard), and steel with improved cold forgeability described in JP-B-1-38847. An object of the present invention is to supply a constant velocity joint such as an automobile made of steel having excellent rolling fatigue life characteristics and torsional strength characteristics without impairing the cold workability.
[0004]
[Means for Solving the Problems]
In order to improve the rolling fatigue life and torsional strength characteristics, the present inventors have found that addition of Mo is an effective technique in addition to increasing the amount of C, and further, cold workability. In view of the above, an appropriate range of the addition amount was found. And in order to further improve cold workability, this problem was solved by optimizing rolling conditions and spheroidizing annealing conditions.
[0005]
That is, the means of the present invention for solving the above-mentioned problems are, by weight, C: 0.52-0.60%, Si: 0.03-0.15%, Mn: 0.10-0. 40%, Cr: 0.05 to 0.30%, Mo: 0.10 to 0.30%, S: 0.003 to 0.020%, B: 0.0005 to 0.005%, Ti: 0 0.02 to 0.05%, N: 0.01% or less, Al: 0.005 to 0.05%, Mn + Cr + Mo: 0.35 to 0.80%, the balance being Fe and inevitable impurities, and After heating temperature to Ac 3 to 1000 ° C., rolling or forging at an area reduction rate of 30% or more, and further heating to Ac 1 to 770 ° C., the temperature range from 730 ° C. to 700 ° C. is a rate of 15 ° C./h or less. Spheroidizing annealing is performed at a low temperature, and steel having a hardness after spheroidizing annealing of 68 to 78 HRB is used. It is characterized by having a surface hardness of 60 HRC or more after addition, and by adding an appropriate amount of C and Mo and finding the optimization of the manufacturing method, cold workability, rolling fatigue life characteristics and torsional strength characteristics The present invention provides a method for manufacturing a constant velocity joint excellent in the above.
[0006]
The reasons for limiting the present invention will be described below.
C: C is an element necessary for securing strength after quenching and tempering as a machine structural component and improving rolling fatigue life characteristics and torsional strength characteristics. When it is less than 0.52%, induction hardening is required. The surface hardness does not satisfy 60HRC or more and the strength is insufficient. If it exceeds 0.60%, cold workability is deteriorated and cracking occurs during induction hardening. Therefore, the content is set to 0.52 to 0.60%.
[0007]
Si: Si is a necessary element for deoxidation. If it is less than 0.03%, its effect cannot be sufficiently obtained, and if it exceeds 0.15%, workability is lowered. Therefore, the content is set to 0.03 to 0.15%.
[0008]
Mn: Mn is an element necessary for ensuring hardenability. If the content is less than 0.10%, the effect cannot be sufficiently obtained. If the content exceeds 0.40%, workability is deteriorated. Therefore, the content is made 0.10 to 0.40%.
[0009]
Cr: Cr is an element that contributes to hardenability, but if it is less than 0.05%, its effect cannot be obtained. If it exceeds 0.30%, concentration into carbide occurs during spheroidizing annealing. During induction hardening, carbide remains and uniform quenching hardness cannot be obtained. Therefore, the content is set to 0.05 to 0.30%.
[0010]
Mo: Mo is a hardenability improving element and an element that improves rolling fatigue life and torsional strength. If the content is less than 0.10%, the effect is not sufficient. Increases hardness after spheroidizing annealing and significantly reduces workability. Therefore, the content was made 0.10 to 0.30%.
[0011]
S: S becomes MnS and TiS, and is an element that improves machinability. However, if it is less than 0.003%, the effect cannot be sufficiently obtained, and if it exceeds 0.020%, cold workability is lowered. Therefore, the content is made 0.003 to 0.020%.
[0012]
B: B is an element that improves the grain boundary strength and improves hardenability. If it is less than 0.0005%, the effect is not sufficient, and if it exceeds 0.005%, it is quenched. Reduce sex. Therefore, the content is set to 0.0005 to 0.005%.
[0013]
Ti: Ti is an element that fixes the free-N in the steel and improves the effect on the hardenability of B. If it is less than 0.02%, the effect cannot be sufficiently obtained and exceeds 0.05%. Even so, the effect is saturated because the N content in the steel is regulated to 0.01% or less. Therefore, the content is set to 0.02% to 0.05%.
[0014]
If N: N is contained in excess of 0.01%, TiN increases and adversely affects fatigue properties. Therefore, the content is set to 0.01% or less.
[0015]
Al: Al is an element necessary as a deoxidizing material. If it is less than 0.005%, its effect is not sufficient, and if it exceeds 0.05%, alumina-based oxide increases, fatigue characteristics, processing Reduce sex. Therefore, the content is set to 0.005 to 0.05%.
[0016]
Mn + Cr + Mo: Mn, Cr, and Mo are elements that contribute to induction hardenability and increase the hardness of the steel. If the sum is 0.35 or less, a homogeneous quenching structure cannot be obtained, and the rolling life is remarkably increased. If it is 0.80 or more, the hardness after spheroidizing annealing does not satisfy 78HRB or less. Therefore, the sum of Mn + Cr + Mo is set to 0.35 to 0.80.
[0017]
Rolling / forging conditions: The reason for heating to Ac 3 or higher is to uniformly austenite without leaving carbides or ferrite. When ferrite remains, a structure with a uniform ferrite grain size is obtained in the structure after rolling or forging. However, the heat treatment distortion increases after quenching and tempering. When the heating temperature is 1000 ° C. or higher, the growth of fine precipitates occurs and the precipitates become relatively large, so the austenite crystal grains during rolling or forging increase, reducing the amount of ferrite after rolling or forging, and processing. The crystal grain after quenching and tempering treatment becomes large, and the grain boundary strength decreases. Therefore, the heating temperature at the time of rolling or forging was set to Ac 3 to 1000 ° C. As for the area reduction rate, if it is 30% or less, the amount of ferrite produced decreases and the workability deteriorates.
[0018]
Spheroidizing annealing conditions:
(Heating temperature)
In order to obtain a good spheroidized structure, it is necessary to heat the two-phase region of austenite and spheroidized residual carbide. When the heating temperature is less than Ac 1 , the carbide is not divided, lamellar pearlite remains after spheroidizing annealing, and a good spheroidized structure cannot be obtained. When heated to a temperature exceeding 770 ° C., residual carbide disappears, Lamellar perlite is deposited. Therefore, the heating temperature was set to Ac 1 to 770 ° C.
[0019]
(Slow cooling temperature section)
In order to obtain a good spheroidized structure, it is necessary to suppress the precipitation of lamellar pearlite by slowly cooling the temperature interval in which precipitation of carbide occurs, and to grow residual carbide, but at a temperature higher than 730 ° C., Precipitation of carbide hardly occurs and the precipitation is completed at 700 ° C. Therefore, the slow cooling section was set to 730 to 700 ° C. In addition, the cooling rate of the zone other than the slow cooling temperature zone, that is, the temperature zone from the above heating temperature to 730 ° C. or the zone from 700 ° C. to room temperature is not specified, but may be any rate. From the viewpoint of productivity, it is preferable to make it as fast as possible.
[0020]
(Slow cooling rate)
When the temperature range of 730 to 700 ° C. is cooled at a rate faster than 15 ° C./h, lamellar pearlite is precipitated during cooling, and a good spheroidized structure cannot be obtained. Therefore, the slow cooling rate was set to 15 ° C./h or less.
[0021]
Hardness: If the hardness after spheroidizing annealing exceeds 78HRB, cracks will occur during cold forging, and the life of the mold will be significantly reduced and productivity will be impaired, and if it is less than 68HRB, machinability will deteriorate. Let Therefore, the hardness after spheroidizing annealing was set to 68 to 78 HRB.
[0022]
Hardness after induction hardening: If the hardness after induction hardening is less than 60 HRC, the rolling fatigue life is reduced and the amount of wear of the parts is increased due to slippage at the rolling part. Therefore, the hardness after induction hardening is set to 60 HRC or more.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below through examples and comparative examples. The steel compositions in Examples and Comparative Examples are shown in No. 1 of Table 1. Shown in 1-9. Invention Steel No. 1-3 are steels in which Si and Mn are reduced and Mo and B are added to steels of S53C, S55C, and S58C respectively defined in JIS. In contrast, Comparative Steel No. 4, 5 and 6 are steels of S48C, S53C and S58C, respectively. Comparative steel No. 7 and 8 are steels obtained by reducing Si and Mn and adding B to steels of S48C and S53C. Comparative steel No. 9 is a steel in which Si and Mn are reduced and Mo and B are added to S58C steel, but Mn + Cr + Mo is 0.85%, and does not satisfy 0.35 ≦ Mn + Cr + Mo ≦ 0.80%. It is.
[0024]
Test steels having the chemical composition shown in Table 1 (invention steels 1 to 3, comparative steels 4 to 10) were each melted in a 100 kg vacuum melting furnace, heated to 950 ° C., and then forged to φ55 by hot forging. After heating to 750 ° C., a steel material subjected to spheroidizing annealing in which a temperature range of 730 ° C. to 700 ° C. was gradually cooled at a cooling rate of 10 ° C./h was used, and then processed into a length of 111 mm of φ52 mm. Then, after forming the shape material by cold forging, turning and rolling were added to form a constant velocity joint outer ring having the shape shown in FIG. In the figure, the constant velocity joint includes a mouse portion 1 and a shaft portion 2, and the shaft portion 2 includes a serration portion 4 and a screw portion 5. The inside of the mouth portion 1 of the constant velocity joint outer ring has six ball rolling grooves 3, and retainers 8 for holding the balls 7 are formed above and below the ball rolling grooves 3. Furthermore, a constant velocity joint inner ring 6 is mounted in the constant velocity joint outer ring. High frequency so that the effective hardened layer depth (distance from the mirror surface to 500 HV) is about 3.0 mm and the effective hardened layer depth of the shaft 2 is about 5 mm on the mouse rolling surface of the constant velocity joint outer ring. Quenching and tempering (tempering conditions: 180 ° C. for 1 hour) was performed.
[0025]
[Table 1]
Figure 0003833388
[0026]
【Example】
The following tests are performed on the products described in the embodiment, and the results are shown below. A rolling fatigue life test was performed on the rolling surface of the mouse, and a torsional strength test was performed on the shaft 2. The rolling fatigue life test is evaluated by combining the constant velocity joint inner ring 6 and the ball 7 as shown in FIG. 2, and the torsional strength test is performed by fixing and twisting the mouse part 1 and the serration part 4. evaluated. Further, the depth of the hardened layer was set at a position where it was 500 HV as measured with a Vickers hardness meter, and the hardness of the material after spheroidizing annealing was measured using a Rockwell hardness meter.
[0027]
(About material hardness and rolling fatigue life test results)
A rolling fatigue life test was performed using a test piece having an effective hardened layer depth of about 3.0 mm after induction hardening and tempering. The test conditions were evaluated by the surface pressure when peeling occurred at one of the six ball rolling grooves 3 in a state where a constant surface pressure was applied for 100 hours. That is, it shows that the higher the surface pressure when peeling occurs, the better the rolling fatigue life. Invention Steel No. 1-3 are comparative steel No. 1 of the same C amount level. The surface pressure at which delamination occurs with respect to 4 to 8 is high, and it has excellent characteristics for rolling fatigue life. Comparative steel No. Compared to 4, 5, 6, and 9 of the present invention steel No. 1-3 is 0.35 ≦ Mn + Cr + Mo ≦ 0.80%, and by optimizing the spheroidizing annealing conditions, the hardness after spheroidizing annealing can be set to 68-78 HRB, and during cold forging It became possible to suppress cracking and improve the life of the mold.
[0028]
[Table 2]
Figure 0003833388
[0029]
(About torsional strength test results)
A torsional strength test of the shaft portion 2 was performed using a test piece having an effective hardened layer depth of about 5.0 mm after induction hardening and tempering. Invention Steel No. Nos. 1 to 3 are obtained by adding B and Mo in a composite manner to increase the grain boundary strength, so For 4-8, it has excellent torsional strength. Comparative steel No. 9 shows the same strength as the steel of the present invention, but inferior to the steel of the present invention in terms of cold workability.
[0030]
[Table 3]
Figure 0003833388
[0031]
【The invention's effect】
As described above, the effects of the method of manufacturing the constant velocity joint of the present invention are shown below.
1) In the steel composition, C: 0.52 to 0.60%, Mo: 0.10 to 0.30% was added, and the hardness after induction hardening and tempering was set to 60 HRC or more. It is possible to manufacture a constant velocity joint having a rolling fatigue life and a torsional strength.
2) Further, in the steel composition, the amount of Mn + Cr + Mo is set to 0.35 to 0.80%, and by optimizing rolling or forging conditions and spheroidizing annealing conditions, a constant velocity joint having excellent cold workability is obtained. Manufacturing is possible.
As described above, the method of the present invention makes it possible to produce a constant velocity joint excellent in rolling fatigue characteristics and strength characteristics without impairing cold workability such as cold forgeability and machinability. Weight reduction can be achieved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a constant velocity joint used in a rolling fatigue life test and a torsional strength test, partially broken and partially omitted, (a) is a plan view and (b) is a front view. .
FIG. 2 is an assembly drawing of constant velocity joint inner and outer rings and balls during a rolling fatigue test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mouse part 2 Shaft part 3 Ball rolling groove of mouse part 4 Serration part 5 Screw part 6 Constant velocity joint inner ring 7 Ball 8 Retainer

Claims (1)

重量%で、C:0.52〜0.60%、Si:0.03〜0.15%、Mn:0.10〜0.40%、Cr:0.05〜0.30%、Mo:0.10〜0.30%、S:0.003〜0.020%、B:0.0005〜0.005%、Ti:0.02〜0.05%、N:0.01%以下、Al:0.005〜0.05%、Mn+Cr+Mo:0.35〜0.80%を含有し、残部Fe及び不可避不純物からなり、かつ加熱温度をAc3〜1000℃とした後、減面率30%以上で圧延または鍛造し、更にAc1〜770℃に加熱後、730℃〜700℃の温度範囲を15℃/h以下の速度で徐冷する球状化焼鈍を行い、球状化焼鈍後の硬さを68〜78HRBとした鋼材を用い、高周波焼入れ後の表面硬度が60HRC以上とすることを特徴とした冷間加工性、転動疲労寿命及びねじり強度に優れた等速ジョイントの製造方法。By weight, C: 0.52 to 0.60%, Si: 0.03 to 0.15%, Mn: 0.10 to 0.40%, Cr: 0.05 to 0.30%, Mo: 0.10 to 0.30%, S: 0.003 to 0.020%, B: 0.0005 to 0.005%, Ti: 0.02 to 0.05%, N: 0.01% or less, Al: 0.005 to 0.05%, Mn + Cr + Mo: 0.35 to 0.80%, the balance consisting of Fe and inevitable impurities, and after heating temperature to Ac 3 to 1000 ° C., the area reduction rate 30 % Or more, and further heated to Ac 1 to 770 ° C., and then subjected to spheroidizing annealing in which the temperature range of 730 ° C. to 700 ° C. is gradually cooled at a rate of 15 ° C./h or less. A steel material having a thickness of 68 to 78 HRB is used, and the surface hardness after induction hardening is 60 HRC or more. The cold workability, the rolling fatigue life and torsional method of manufacturing a constant velocity joint having excellent strength.
JP10728698A 1998-04-17 1998-04-17 Method for producing constant velocity joint with excellent cold workability and strength Expired - Fee Related JP3833388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10728698A JP3833388B2 (en) 1998-04-17 1998-04-17 Method for producing constant velocity joint with excellent cold workability and strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10728698A JP3833388B2 (en) 1998-04-17 1998-04-17 Method for producing constant velocity joint with excellent cold workability and strength

Publications (2)

Publication Number Publication Date
JPH11302734A JPH11302734A (en) 1999-11-02
JP3833388B2 true JP3833388B2 (en) 2006-10-11

Family

ID=14455249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10728698A Expired - Fee Related JP3833388B2 (en) 1998-04-17 1998-04-17 Method for producing constant velocity joint with excellent cold workability and strength

Country Status (1)

Country Link
JP (1) JP3833388B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355271B (en) * 1999-10-11 2003-12-24 Sanyo Special Steel Co Ltd Process for producing constant velocity joint having improved cold workability and strength
JP4884803B2 (en) 2005-03-16 2012-02-29 本田技研工業株式会社 Heat treatment method for steel
JP2007270343A (en) * 2006-03-08 2007-10-18 Honda Motor Co Ltd Method for producing outer ring member
JP5292896B2 (en) * 2008-03-31 2013-09-18 Jfeスチール株式会社 Machine structural parts having excellent rolling fatigue characteristics and manufacturing method thereof
US9487843B2 (en) 2011-01-21 2016-11-08 Ntn Corporation Method for producing a bearing ring

Also Published As

Publication number Publication date
JPH11302734A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
WO2012073485A1 (en) Carburizing steel having excellent cold forgeability, and production method thereof
CN112292471B (en) Mechanical component
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JPH08311607A (en) Low strain carburized gear excellent in deddendum bending strength and its production
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
WO2014027463A1 (en) Steel material for high frequency induction hardening
JP3593255B2 (en) Manufacturing method of high strength shaft
JP2006348321A (en) Steel for nitriding treatment
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP3833388B2 (en) Method for producing constant velocity joint with excellent cold workability and strength
US6123785A (en) Product and process for producing constant velocity joint having improved cold workability and strength
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
KR100957306B1 (en) Forging steel using high frequency heat treatment and method for manufacturing the same
JP2007107046A (en) Steel material to be induction-hardened
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JP2004183065A (en) High strength steel for induction hardening, and production method therefor
JP3240627B2 (en) Manufacturing method of constant velocity joint parts
JPS6144159A (en) Steel for cold forging having superior suitability to carbonitriding
JP4209600B2 (en) Method for producing retainer for constant velocity joint with excellent machinability and bending strength
JP2000119818A (en) Martensitic heat resistant steel excellent in cold workability
JP4175933B2 (en) Nitride steel parts capable of obtaining high surface hardness and deep hardening depth by nitriding for a short time and method for producing the same
JP3194093B2 (en) Manufacturing method of high torsional strength shaft parts
WO2023248556A1 (en) Steel for high-frequency hardening
JP2018150628A (en) Steel for nitriding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees