JP3194093B2 - Manufacturing method of high torsional strength shaft parts - Google Patents

Manufacturing method of high torsional strength shaft parts

Info

Publication number
JP3194093B2
JP3194093B2 JP17813191A JP17813191A JP3194093B2 JP 3194093 B2 JP3194093 B2 JP 3194093B2 JP 17813191 A JP17813191 A JP 17813191A JP 17813191 A JP17813191 A JP 17813191A JP 3194093 B2 JP3194093 B2 JP 3194093B2
Authority
JP
Japan
Prior art keywords
shaft
section
torsional strength
hardness
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17813191A
Other languages
Japanese (ja)
Other versions
JPH0525546A (en
Inventor
達朗 越智
善郎 子安
俊道 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17813191A priority Critical patent/JP3194093B2/en
Publication of JPH0525546A publication Critical patent/JPH0525546A/en
Application granted granted Critical
Publication of JP3194093B2 publication Critical patent/JP3194093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高ねじり強度軸形状機械
部品の製造方法にかかわり、例えば、図1の(A)〜
(C)に示したようにセレーション部を有するシャフ
ト、フランジ付シャフト、外筒付シャフト等の自動車の
動力伝達系を構成する部品として、優れたねじり強さを
有する軸形状機械部品の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a mechanical component having a high torsion strength shaft shape, for example, as shown in FIGS.
As shown in (C), the present invention relates to a method of manufacturing a shaft-shaped mechanical part having excellent torsional strength as a part constituting a power transmission system of an automobile, such as a shaft having a serrated portion, a shaft with a flange, and a shaft with an outer cylinder. Things.

【0002】[0002]

【従来の技術】自動車の動力伝達系を構成する部品は、
近年の自動車エンジンの高出力化にともない、高強度化
(ねじり強さの向上)の指向が強い。これらの部品は、
通常中炭素鋼を所定の部品に成形加工し、高周波焼入れ
−焼戻しを施して製造されている。高周波焼入れ材のね
じり強さは、例えば「いすず技報、第67号9頁」にみ
られるように、高周波焼入れ深さを深くするほど向上す
る。しかしながら、現状ではねじり強さ(表面最大せん
断応力:以下τmax と呼ぶ)約150kgf/mm2 しか実現
できていない。
2. Description of the Related Art Parts constituting a power transmission system of an automobile include:
With the recent increase in the output of automobile engines, there is a strong tendency to increase the strength (improve the torsional strength). These parts are
Usually, it is manufactured by forming a medium carbon steel into a predetermined part and subjecting it to induction hardening and tempering. The torsional strength of the induction hardened material increases as the induction hardening depth increases, as shown in, for example, "Isuzu Technical Report, No. 67, page 9". However, at present, only about 150 kgf / mm 2 of torsional strength (surface maximum shear stress: hereinafter referred to as τ max ) has been realized.

【0003】また、特公昭63−62571号公報には
C;0.30〜0.38%、Mn;0.6〜1.5%、
B;0.0005〜0.0030%、Ti;0.01〜
0.04%、Al;0.01〜0.04%からなる鋼を
ドライブシャフトに成形し、高周波焼入れによる高周波
焼入れ深さと鋼部材半径の比を0.4以上とするドライ
ブシャフトの製造方法が示されている。しかしながら、
前記公報によるドライブシャフト材ではその第1図にみ
られるように、やはり、τmax は約160kgf/mm2 程度
しか実現できていない。
In Japanese Patent Publication No. 63-62571, C is 0.30 to 0.38%, Mn is 0.6 to 1.5%,
B: 0.0005 to 0.0030%, Ti; 0.01 to
A method of manufacturing a drive shaft in which steel comprising 0.04%, Al; 0.01 to 0.04% is formed into a drive shaft, and the ratio of the induction hardening depth by induction hardening to the steel member radius is 0.4 or more. It is shown. However,
As can be seen from FIG. 1 of the drive shaft material according to the above publication, τ max can be realized only about 160 kgf / mm 2 .

【0004】[0004]

【発明が解決しようとする課題】しかし、前記したτ
max =150〜160kgf/mm2 の強さレベルは、自動車
の動力伝達系部品の強さレベルとして十分であるとは言
えないのが現状である。一方、高周波焼入れ材では、高
強度化にともなって焼割れが発生しやすくなり、その抑
制が現在重要な課題の一つとなっている。
However, the aforementioned τ
At present, a strength level of max = 150 to 160 kgf / mm 2 cannot be said to be sufficient as a strength level of a power transmission system component of an automobile. On the other hand, in the induction hardened material, quenching cracks are likely to occur as the strength is increased, and its suppression is one of the important issues at present.

【0005】本発明の目的は、τmax が180kgf/mm2
以上の優れたねじり強さを有し、かつ焼割れ感受性の小
さい軸形状を有する高周波焼入れ、あるいは浸炭焼入れ
部品の製造方法を提供しようとするものである。
It is an object of the present invention that τ max is 180 kgf / mm 2
It is an object of the present invention to provide a method for producing an induction hardened or carburized hardened part having an excellent torsional strength and a shaft shape with low susceptibility to quenching cracking.

【0006】[0006]

【課題を解決するための手段、作用】本発明者らは、優
れたねじり強さを有し、かつ焼割れ感受性の小さい部品
を実現するために、鋭意検討を行い、次の知見を得た。 (1)ねじり強さは、下記で定義される断面内平均硬さ
に比例して向上し、τma x が180kgf/mm2 以上の優れ
たねじり強さを得るためには断面内平均硬さHVaを5
50以上とすることが必要である。
Means for Solving the Problems and Actions The present inventors have conducted intensive studies in order to realize a component having excellent torsional strength and low susceptibility to burn cracking, and obtained the following knowledge. . (1) Torsional strength is improved in proportion to the cross-section in an average hardness as defined below, tau ma x is cross-sectional in average hardness to obtain a 180 kgf / mm 2 or more superior torsional strength HVA 5
It is necessary to be 50 or more.

【0007】断面内平均硬さの定義;図2に示したよう
に、断面を半径方向に同心円状に個のリングに分割
し、n番目のリング状部分の硬さをHVn、面積をSn
とした時、
Definition of average hardness in cross section: As shown in FIG. 2, the cross section is divided into N rings concentrically in the radial direction, the hardness of the n-th ring portion is HVn, and the area is Sn.
When

【0008】[0008]

【数3】 (Equation 3)

【0009】(2)断面内平均硬さの増加は、高炭素鋼
を用いて焼入れ深さをより深くするか、もしくは中炭素
鋼を用いてより深く浸炭焼入れすることによって実現可
能である。ただし、ともに焼入れ深さを深くし過ぎる
と、焼割れを起こす危険性があるので、焼入れ深さに上
限が存在する。 (3)さらに、上記に加えて、高周波焼入れ−焼戻し
後、または浸炭焼入れ−焼戻し後、ショットピーニング
処理を行うことにより、さらにねじり強さは増加する。
(2) The increase in the average hardness in the cross section can be realized by increasing the quenching depth by using a high carbon steel or by carburizing and quenching by using a medium carbon steel. However, if the quenching depth is too deep, there is a risk of causing quenching cracks, so there is an upper limit to the quenching depth. (3) In addition to the above, the torsional strength is further increased by performing shot peening after induction hardening and tempering or after carburizing and tempering.

【0010】本発明は以上の新規なる知見に基づいてな
されたものであって、その要旨とするところは、重量比
として、C:0.4〜0.8%を含有する鋼を用いて軸
形状機械部品を製造するに際して、所定の部品形状に成
形加工後、高周波焼入れ−焼戻しにより、有効硬化層深
さtと部品半径rの比t/rを0.4〜0.8とし、か
つ上記で定義される断面内平均硬さHVaを550以上
とするか、またはC:0.3〜0.5%を含有する鋼を
用いて軸形状機械部品を製造するに際して、所定の部品
形状に成形加工後、浸炭焼入れ−焼戻しにより、有効硬
化層深さtと部品半径rの比t/rを0.2〜0.6と
し、かつ上記で定義される断面内平均硬さHVaを55
0以上とし、またはさらに熱処理後、アークハイト0.
5mmA以上の強さでショットピーニング処理を行うこ
とを特徴とする高ねじり強度軸形状機械部品の製造方法
にある。
The present invention has been made on the basis of the above-described novel findings, and the gist of the present invention is to provide a shaft using steel containing 0.4 to 0.8% by weight of C. When manufacturing a shape machine part, after forming into a predetermined part shape, induction hardening-tempering is performed to set the ratio t / r of the effective hardened layer depth t to the part radius r to 0.4 to 0.8, and When the average hardness in section HVa defined in the above is 550 or more, or when manufacturing a shaft-shaped machine part using steel containing C: 0.3 to 0.5%, it is formed into a predetermined part shape. After the working, the ratio t / r of the effective hardened layer depth t to the part radius r is set to 0.2 to 0.6 by carburizing and tempering, and the average hardness HVa in the cross section defined above is 55.
0 or more, or after the heat treatment, the arc height is set to 0.
A method for producing a high torsional strength shaft-shaped machine part, wherein a shot peening process is performed at a strength of 5 mmA or more.

【0011】以下に、本発明を詳細に説明する。請求項
1の発明で、重量比として、C:0.4〜0.8%を含
有する鋼を用いるのは次の理由による。Cは高周波焼入
れ硬化層の硬さを増加させるのに有効な元素であるが、
0.4%未満では硬さが不十分であり、また0.8%を
超えると靭性の劣化を招くとともに、焼割れが発生しや
すくなるため、含有量を0.4〜0.8%に定めた。
Hereinafter, the present invention will be described in detail. In the invention of claim 1, the steel containing C: 0.4 to 0.8% by weight is used for the following reason. C is an element effective for increasing the hardness of the induction hardened hardened layer,
If it is less than 0.4%, the hardness is insufficient, and if it exceeds 0.8%, the toughness is deteriorated, and quenching cracks are easily generated. I decided.

【0012】次に、請求項1の発明では、軸形状機械部
品を製造するに際して、所定の部品形状に成形加工後、
高周波焼入れ−焼戻しにより、有効硬化層深さtと部品
半径rの比t/rを0.4〜0.8とし、かつ上記で定
義される断面内平均硬さHVaを550以上とするので
あるが、以下にその理由を述べる。高周波焼入れ材のね
じり強さは、高周波焼入れ深さを深くするほど向上する
が、有効硬化層深さがt/rで0.4未満では、ねじり
強さ向上効果が小さく、また0.8を超えると表層の圧
縮残留応力が低下するため、焼割れ発生の危険性が増
す。以上の理由で、有効硬化層深さtと部品半径rの比
t/rを0.4〜0.8とした。ここで、本発明でいう
部品半径rは、図1に示したシャフト部の半径である。
なお、断面が非軸対称な部位については、本発明では、
断面積より求められる円相当半径を用いて部品半径rと
する。また、有効硬化層深さは、JISG 0559で
規定する高周波焼入れ硬化層深さ測定方法に基づく有効
硬化層深さである。
Next, according to the first aspect of the present invention, when manufacturing a shaft-shaped mechanical part, after forming into a predetermined part shape,
By induction hardening and tempering, the ratio t / r of the effective hardened layer depth t to the part radius r is set to 0.4 to 0.8, and the average hardness HVa in the cross section defined above is set to 550 or more. However, the reason is described below. The torsional strength of the induction hardened material is improved as the induction hardened depth is increased. However, when the effective hardened layer depth is less than 0.4 at t / r, the effect of improving the torsional strength is small. If it exceeds, the compressive residual stress of the surface layer decreases, and the risk of occurrence of sintering cracks increases. For the above reasons, the ratio t / r of the effective hardened layer depth t to the component radius r is set to 0.4 to 0.8. Here, the component radius r in the present invention is the radius of the shaft portion shown in FIG.
In the present invention, for a portion whose cross section is non-axisymmetric,
The component radius r is determined using a circle-equivalent radius determined from the cross-sectional area. The effective hardened layer depth is the effective hardened layer depth based on the induction hardened hardened layer depth measuring method specified in JISG 0559.

【0013】次に、ねじり強さは、図3に示したよう
に、断面内平均硬さに比例して向上し、τmax が180
kgf/mm2 以上の優れたねじり強さを得るためには断面内
平均硬さHVaを550以上とすることが必要であり、
それ未満ではねじり強さが不足するため、断面内平均硬
さHVaを550以上とした。次に、請求項2の発明
で、重量比として、C:0.3〜0.5%を含有する鋼
を用いるのは次の理由による。Cは浸炭焼入れ材の芯部
硬さを増加させるのに有効な元素であるが、0.3%未
満では硬さが不十分であり、また0.5%を超えると靭
性の劣化を招くとともに、焼割れが発生しやすくなるた
め、含有量を0.3〜0.5%に定めた。
Next, as shown in FIG. 3, the torsional strength increases in proportion to the average hardness in the cross section, and τ max is 180.
In order to obtain an excellent torsional strength of kgf / mm 2 or more, it is necessary to make the average hardness HVa in the cross section 550 or more,
If it is less than that, the torsional strength is insufficient, so the average hardness HVa in the cross section is set to 550 or more. Next, in the invention of claim 2, steel containing C: 0.3 to 0.5% by weight is used for the following reason. C is an effective element for increasing the core hardness of the carburized and quenched material, but if it is less than 0.3%, the hardness is insufficient, and if it exceeds 0.5%, the toughness is deteriorated and The content is set to 0.3% to 0.5%, since quenching cracks easily occur.

【0014】次に、請求項2の発明では、軸形状機械部
品を製造するに際して、所定の部品形状に成形加工後、
浸炭焼入れ−焼戻しにより、有効硬化層深さtと部品半
径rの比t/rを0.2〜0.6とし、かつ上記で定義
される断面内平均硬さHVaを550以上とするのであ
るが、以下にその理由を述べる。浸炭焼入れ材のねじり
強さは、浸炭焼入れ深さを深くするほど向上するが、有
効硬化層深さがt/rで0.2未満では、ねじり強さ向
上効果が小さく、また0.6を超える浸炭処理は極めて
長時間を要し、製造コストが顕著に増大する。以上の理
由で、有効硬化層深さtと部品半径rの比t/rを0.
2〜0.6とした。ここで、本発明でいう部品半径r
は、図1に示したシャフト部の半径である。なお、断面
が非軸対称な部位については、本発明では、断面積より
求められる円相当半径を用いて部品半径rとする。ま
た、有効硬化層深さは、JIS G 0557で規定す
る浸炭硬化層深さ測定方法に基づく有効硬化層深さであ
る。なお、断面内平均硬さHVaを550以上とするの
は第1項発明と同じ理由である。なお、第2項発明にお
ける浸炭時の炭素ポテンシャルは特に規定しないが、
0.6〜1.0wt%の範囲が望ましい。
Next, according to the second aspect of the present invention, when manufacturing a shaft-shaped mechanical part, after forming into a predetermined part shape,
By carburizing and quenching-tempering, the ratio t / r of the effective hardened layer depth t to the part radius r is set to 0.2 to 0.6, and the average hardness HVa in the cross section defined above is set to 550 or more. However, the reason is described below. The torsional strength of the carburized and quenched material increases as the carburized and quenched depth increases. However, when the effective hardened layer depth is less than 0.2 at t / r, the effect of improving the torsional strength is small. Excess carburization requires an extremely long time, which significantly increases the production cost. For the above reasons, the ratio t / r between the effective hardened layer depth t and the component radius r is set to be 0.
2 to 0.6. Here, the component radius r in the present invention
Is the radius of the shaft portion shown in FIG. In the present invention, a part having a non-axisymmetric cross section is defined as a component radius r using a circle-equivalent radius obtained from the cross-sectional area. The effective hardened layer depth is the effective hardened layer depth based on the carburized hardened layer depth measuring method defined in JIS G 0557. The reason why the average hardness HVa in the cross section is 550 or more is the same as in the first aspect of the invention. The carbon potential at the time of carburization in the second invention is not particularly defined,
The range of 0.6 to 1.0 wt% is desirable.

【0015】次に、本発明では高周波焼入れ−焼戻し
後、または浸炭焼入れ−焼戻し後、さらにアークハイト
0.5mmA以上の強さでショットピーニング処理を行
うことができる。ショットピーニングの強さの指標とし
ては、例えば「自動車技術、Vol.41、No.7、
1987、726〜727頁」に記載されているよう
に、通常「アークハイト」が用いられる。これは、アル
メンストリップ(厚さによりN、A、C3種類)と呼ば
れる薄い鋼片にショットを投射し、アルメンストリップ
の反り返った弧の高さ(アークハイト)でショットピー
ニングの強さを評価する方法である(アークハイトはア
ルメンストリップN、A、C間で換算可能)。本発明で
は、最も一般的に用いられているアルメンストリップA
を用いた時のアークハイトでショットピーニングの強さ
を限定した。本発明におけるショットピーニングの目的
は表層の圧縮残留応力を増加させて、ねじり強さの一層
の向上を図るためである。ただし、ショットピーニング
の強さがアークハイト0.5mmA未満ではその効果が
小さいのでアークハイトを0.5mmA以上とした。
Next, in the present invention, after the induction quenching and tempering or the carburizing and quenching and tempering, a shot peening treatment can be performed with an arc height of 0.5 mmA or more. As an index of the strength of shot peening, for example, “Automotive technology, Vol. 41, No. 7,
1987, pp. 726-727, "arc height" is usually used. This is a method in which a shot is projected on a thin steel piece called an Almen strip (three types of N, A, and C depending on the thickness), and the strength of shot peening is evaluated based on the height of the bent arc of the Almen strip (arc height). (The arc height can be converted between the Almen strips N, A, and C). In the present invention, the most commonly used Almen strip A
The strength of shot peening was limited by the arc height when using. The purpose of shot peening in the present invention is to increase the compressive residual stress of the surface layer to further improve the torsional strength. However, if the shot peening strength is less than 0.5 mmA, the effect is small, so the arc height is set to 0.5 mmA or more.

【0016】なお、本発明対象鋼としては、上記の如く
Cの範囲のみしか限定しないが、C以外の成分を下記の
範囲で含有させることが望ましい。 Si:0.01〜0.5% Mn:0.50〜2.0% S:0.01〜0.10% Al:0.015〜0.05% N:0.005〜0.020% さらに焼入れ性の向上を目的として、必要に応じて、 Cr:1.5%以下 Ni:3.5%以下 Mo:1.0%以下 の1種または2種以上を含有させる。
The steel to be used in the present invention is limited only to the range of C as described above, but it is desirable to include components other than C in the following ranges. Si: 0.01 to 0.5% Mn: 0.50 to 2.0% S: 0.01 to 0.10% Al: 0.015 to 0.05% N: 0.005 to 0.020% Further, for the purpose of improving the hardenability, one or more of Cr: 1.5% or less, Ni: 3.5% or less, and Mo: 1.0% or less are contained as necessary.

【0017】また、さらに高周波加熱時、浸炭加熱時の
オーステナイト粒の粗大化防止をはかることを目的とし
て、必要に応じて、 Ti:0.040%以下 Nb:0.1%以下 V:0.3%以下 の1種または2種以上を含有させる。
Further, for the purpose of preventing coarsening of austenite grains during high-frequency heating or carburizing heating, Ti: 0.040% or less, Nb: 0.1% or less, and V: 0. One or more of 3% or less are contained.

【0018】さらにP:0.030%以下に制限する。
また、本発明では高周波焼入れ条件、浸炭焼入れ条件お
よび焼戻し条件は上記で規定した以外は特に限定せず、
本発明の要件を満足する方法であればいずれの条件でも
よい。また、本発明では高周波焼入れの前に焼準、焼
鈍、球状化焼鈍、焼入れ−焼戻し等の熱処理を必要に応
じて行うことができる。なお、高周波焼入れ、浸炭焼入
れの前に焼準、焼鈍、球状化焼鈍を行わない場合には、
鋼材素材の熱間圧延による製造を仕上温度;700〜8
50℃、仕上圧延後700〜500℃の温度範囲の平均
冷却速度;0.05〜0.7℃/秒の条件で行うのが望
ましい。
P is further restricted to 0.030% or less.
Further, in the present invention, induction hardening conditions, carburizing and quenching conditions and tempering conditions are not particularly limited except as defined above,
Any conditions may be used as long as they satisfy the requirements of the present invention. In the present invention, heat treatments such as normalizing, annealing, spheroidizing annealing, and quenching-tempering can be performed as necessary before induction hardening. If induction hardening, normalizing, annealing, and spheroidizing annealing are not performed before carburizing and quenching,
Hot rolling of steel material to finish temperature; 700-8
It is desirable to perform the cooling at a temperature of 50 ° C. and an average cooling rate of 700 to 500 ° C. after finish rolling;

【0019】以下に、本発明の効果を実施例により、さ
らに具体的に示す。 (実施例)表1、表2の組成を有する鋼材を26mmφ
の棒鋼に圧延し、800℃加熱−炉冷の条件で焼鈍を行
った後、平行部が16mmφのねじり試験片に機械加工
した。その後、一部は表3に示す条件で高周波焼入れを
行い、その後170℃×1時間の条件で焼戻しを、また
残りは表4に示す条件で浸炭焼入れを行い、その後17
0℃×1時間の条件で焼戻しを行った。これらの試料に
ついてねじり試験を行った。なお、一部の試料について
は、高周波焼入れ−焼戻し後、または浸炭焼入れ−焼戻
し後、アークハイト0.6〜1.5mmAの条件でショ
ットピーニング処理を行った。
Hereinafter, the effects of the present invention will be more specifically described with reference to examples. (Example) A steel material having the composition shown in Tables 1 and 2 was prepared by 26 mmφ.
And then annealed under the conditions of 800 ° C. heating and furnace cooling, and then machined into a torsion test piece having a parallel portion of 16 mmφ. Thereafter, a part was subjected to induction quenching under the conditions shown in Table 3, then tempered at 170 ° C. × 1 hour, and the other was carburized and quenched under the conditions shown in Table 4, followed by 17
Tempering was performed at 0 ° C. × 1 hour. These samples were subjected to a torsion test. In addition, about some samples, after the induction hardening-tempering or the carburizing-hardening-tempering, the shot peening process was performed on 0.6-1.5 mmA of arc height conditions.

【0020】表5、表6に高周波焼入れ−焼戻し材の、
また表7、表8に浸炭焼入れ−焼戻し材の各鋼材のねじ
り強さ評価結果を、有効硬化層深さt/r、平均硬さH
Va、高周波加熱時または浸炭焼入れ時の焼割れの有
無、およびショットピーニングの有無(有りの場合はア
ークハイト値)と併せて示す。表5、表6、表7、表8
から明らかなように、本発明法による試料はいずれもτ
max が180kgf/mm2 以上の優れたねじり強さを有し、
かつ焼割れ感受性が小さいことがわかる。
Tables 5 and 6 show induction hardening-tempering materials,
Tables 7 and 8 show the evaluation results of the torsional strength of each of the carburized and quenched and tempered steels, the effective hardened layer depth t / r and the average hardness H.
Va, the presence or absence of quenching cracks during high-frequency heating or carburizing and quenching, and the presence or absence of shot peening (the arc height value if present) are also shown. Table 5, Table 6, Table 7, Table 8
As can be seen from FIG.
max has a 180 kgf / mm 2 or more superior torsional strength,
Further, it can be seen that the susceptibility to fire cracking is small.

【0021】一方、高周波焼入れ−焼戻し材について
は、比較例1はCの含有量が本発明の範囲を下回った場
合であり、比較例3は有効硬化層深さt/rと平均硬さ
HVaが本発明の範囲を下回った場合であり、比較例7
は有効硬化層深さt/rが本発明の範囲を下回った場合
であり、いずれもτmax が180kgf/mm2 以上のねじり
強さを達成していない。また、比較例12はCの含有量
が本発明の範囲を上回った場合であり、比較例8、1
1、20、23は有効硬化層深さt/rが本発明の範囲
の上限値を上回った場合であり、いずれもが焼割れが発
生している。
On the other hand, as for the induction hardened-tempered material, Comparative Example 1 is a case where the content of C is lower than the range of the present invention, and Comparative Example 3 is a case where the effective hardened layer depth t / r and the average hardness HVa Is less than the range of the present invention, and Comparative Example 7
Are cases where the effective hardened layer depth t / r is less than the range of the present invention, and none of them has achieved a torsional strength of τ max of 180 kgf / mm 2 or more. Comparative Example 12 is a case where the content of C exceeds the range of the present invention.
Nos. 1, 20, and 23 are cases where the effective hardened layer depth t / r exceeds the upper limit of the range of the present invention, and all of them show burning cracks.

【0022】次に、浸炭焼入れ−焼戻し材については、
比較例aはCの含有量が本発明の範囲を下回った場合で
あり、比較例eは有効硬化層深さt/rと平均硬さHV
aが本発明の範囲を下回った場合であり、比較例h、n
は有効硬化層深さt/rが本発明の範囲を下回った場合
であり、いずれもτmax が180kgf/mm2 以上のねじり
強さを達成していない。また、比較例iはCの含有量が
本発明の範囲を上回った場合であり、比較例c、oは有
効硬化層深さt/rが本発明の範囲の上限値を上回った
場合であり、いずれもが焼割れ発生している。
Next, carburizing and tempering materials are as follows:
Comparative Example a is a case where the content of C is lower than the range of the present invention, and Comparative Example e is an effective hardened layer depth t / r and an average hardness HV.
a is less than the range of the present invention, and Comparative Examples h and n
Are cases where the effective hardened layer depth t / r is less than the range of the present invention, and none of them has achieved a torsional strength of τ max of 180 kgf / mm 2 or more. Comparative Example i is a case where the content of C exceeds the range of the present invention, and Comparative Examples c and o are cases where the effective hardened layer depth t / r exceeds the upper limit of the range of the present invention. In each case, burning cracks occurred.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【表6】 [Table 6]

【0029】[0029]

【表7】 [Table 7]

【0030】[0030]

【表8】 [Table 8]

【0031】[0031]

【発明の効果】以上述べたごとく、本発明法を用いれ
ば、τmax が180kgf/mm2 以上の優れたねじり強さを
有し、かつ焼割れ感受性の小さい高ねじり強度軸形状機
械部品の製造が可能であり、近年の自動車エンジンの高
出力化を許容し得る動力伝達系部品の製造が可能とな
り、産業上の効果は極めて顕著なるものがある。
As described above, by using the method of the present invention, it is possible to produce a high torsional strength shaft-shaped machine part having excellent torsional strength with τ max of 180 kgf / mm 2 or more and low susceptibility to quenching. It is possible to manufacture a power transmission system component that can tolerate an increase in the output of an automobile engine in recent years, and the industrial effect is extremely remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】軸形状部品の例を示し、(A)はセレーション
部を有するシャフト、(B)はフランジ付シャフト、
(C)は外筒付シャフトを示した図である。各部位の名
称は次の通りである。
FIG. 1 shows an example of a shaft-shaped part, wherein (A) is a shaft having a serration, (B) is a shaft with a flange,
(C) is a diagram showing a shaft with an outer cylinder. The names of each part are as follows.

【符号の説明】[Explanation of symbols]

10 シャフト、 11、12 セレーション 20、21 シャフト、 22 フランジ 30、31、32 シャフト、 33 外筒部 Reference Signs List 10 shaft, 11, 12 serration 20, 21 shaft, 22 flange 30, 31, 32 shaft, 33 outer cylinder

【図2】断面内平均硬さの定義を説明するための、断面
を半径方向に同心円状に個のリングに分割した状態を
示す図である。
FIG. 2 is a view showing a state in which the cross section is divided into N rings concentrically in the radial direction for explaining the definition of the average hardness in the cross section.

【図3】断面内平均硬さHVaと静的ねじり強さτmax
の関係を示す図である。
FIG. 3 shows the average hardness HVA in the cross section and the static torsional strength τ max
FIG.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−203226(JP,A) 特開 平1−259129(JP,A) 特公 昭60−27729(JP,B2) 特公 昭63−62571(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 9/00,9/28,9/30 C22C 38/00 B21D 53/00 F16C 3/02 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-203226 (JP, A) JP-A-1-259129 (JP, A) JP-B-60-27729 (JP, B2) JP-B-63 62571 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 9/00, 9/28, 9/30 C22C 38/00 B21D 53/00 F16C 3/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比として、C:0.4〜0.8%を
含有する鋼を用いて軸形状機械部品を製造するに際し
て、所定の部品形状に成形加工後、高周波焼入れ−焼戻
しにより、有効硬化層深さtと部品半径rの比t/rを
0.4〜0.8とし、かつ下記で定義される断面内平均
硬さHVaを550以上とすることを特徴とする高ねじ
り強度軸形状機械部品の製造方法。 断面内平均硬さの定義; 断面を半径方向に同心円状に個のリングに分割し、n
番目のリング状部分の硬さをHVn、面積をSnとした
時、 【数1】
When manufacturing a shaft-shaped machine part using steel containing 0.4 to 0.8% by weight of C: after forming into a predetermined part shape, induction hardening and tempering are performed. A high torsional strength characterized in that the ratio t / r of the effective hardened layer depth t to the component radius r is 0.4 to 0.8, and the average in-section hardness HVa defined below is 550 or more. Manufacturing method of shaft-shaped machine parts. Definition of average hardness in the cross section; The cross section is divided into N rings concentrically in the radial direction, and n
When the hardness of the second ring-shaped portion is HVn and the area is Sn,
【請求項2】 重量比として、C:0.3〜0.5%を
含有する鋼を用いて軸形状機械部品を製造するに際し
て、所定の部品形状に成形加工後、浸炭焼入れ−焼戻し
により、有効硬化層深さtと部品半径rの比t/rを
0.2〜0.6とし、かつ下記で定義される断面内平均
硬さHVaを550以上とすることを特徴とする高ねじ
り強度軸形状機械部品の製造方法。 断面内平均硬さの定義; 断面を半径方向に同心円状に個のリングに分割し、n
番目のリング状部分の硬さをHVn、面積をSnとした
時、 【数2】
2. When manufacturing a shaft-shaped machine part using steel containing 0.3 to 0.5% by weight of C: after forming into a predetermined part shape, carburizing quenching and tempering are performed. A high torsional strength characterized in that the ratio t / r of the effective hardened layer depth t to the component radius r is 0.2 to 0.6, and the average in-section hardness HVa defined below is 550 or more. Manufacturing method of shaft-shaped machine parts. Definition of average hardness in the cross section; The cross section is divided into N rings concentrically in the radial direction, and n
When the hardness of the third ring-shaped portion is HVn and the area is Sn,
【請求項3】 請求項1または2記載の方法によって製
造した部品を、さらにアークハイト0.5mmA以上の
強さでショットピーニング処理を行うことを特徴とする
高ねじり強度軸形状機械部品の製造方法。
3. A method for producing a machine component having a high torsional strength shaft shape, wherein the component produced by the method according to claim 1 or 2 is further subjected to shot peening at an arc height of 0.5 mmA or more. .
JP17813191A 1991-07-18 1991-07-18 Manufacturing method of high torsional strength shaft parts Expired - Fee Related JP3194093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17813191A JP3194093B2 (en) 1991-07-18 1991-07-18 Manufacturing method of high torsional strength shaft parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17813191A JP3194093B2 (en) 1991-07-18 1991-07-18 Manufacturing method of high torsional strength shaft parts

Publications (2)

Publication Number Publication Date
JPH0525546A JPH0525546A (en) 1993-02-02
JP3194093B2 true JP3194093B2 (en) 2001-07-30

Family

ID=16043196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17813191A Expired - Fee Related JP3194093B2 (en) 1991-07-18 1991-07-18 Manufacturing method of high torsional strength shaft parts

Country Status (1)

Country Link
JP (1) JP3194093B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029841A1 (en) 2008-09-12 2010-03-18 Ntn株式会社 Power transmission shaft, drive shaft, and propeller shaft

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19941993C1 (en) * 1999-09-02 2000-12-14 Benteler Werke Ag Tubular profile manufacturing method for passenger vehicle rear axle uses cold-forming of central part of round cross-section steel tube before localised heating and hardening in water
CN105420463B (en) * 2015-12-23 2017-05-31 重庆大江工业有限责任公司 A kind of heavy-duty car spring end saddle inner chamber medium frequency induction hardening process and positioning fixture
JP7175182B2 (en) * 2018-12-20 2022-11-18 山陽特殊製鋼株式会社 Automobile mechanical parts made of carburizing steel with excellent static torsional strength and torsional fatigue strength

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027729A (en) * 1983-07-27 1985-02-12 Honda Motor Co Ltd Crankcase reed valve type two-cycle engine
JPH0824871B2 (en) * 1986-09-03 1996-03-13 東芝ケミカル株式会社 Die Bonding Paste Discharge Device
JPS63203226A (en) * 1987-02-19 1988-08-23 Toyota Motor Corp Manufacture of high strength crank shaft
JPH01259129A (en) * 1988-04-11 1989-10-16 Topy Ind Ltd Bushing for track containing carbon at about middle ratio and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029841A1 (en) 2008-09-12 2010-03-18 Ntn株式会社 Power transmission shaft, drive shaft, and propeller shaft
US8435125B2 (en) 2008-09-12 2013-05-07 Ntn Corporation Power transmission shaft, drive shaft, and propeller shaft

Also Published As

Publication number Publication date
JPH0525546A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JP3995904B2 (en) Method for producing inner ring for constant velocity joint excellent in workability and strength
JP2000154828A (en) Outer ring for constant velocity universal joint excellent in anti-flaking characteristic and shaft strength and manufacture thereof
JP2579640B2 (en) Manufacturing method of high fatigue strength case hardened product
JPH11323487A (en) Steel for machine structural use, excellent in machinability and grain coarsening resistance
JPH0421757A (en) High surface pressure gear
JP3006034B2 (en) High strength mechanical structural members with excellent surface pressure strength
JPH06172867A (en) Production of gear excellent in impact fatigue life
JP3194093B2 (en) Manufacturing method of high torsional strength shaft parts
JP2934485B2 (en) High-strength gear steel and high-strength gear that can be rapidly carburized
JP3551573B2 (en) Steel for carburized gear with excellent gear cutting
JPH07188895A (en) Manufacture of parts for machine structure use
JPH10147814A (en) Production of case hardening steel product small in heat treating strain
JP3502744B2 (en) Method of manufacturing shaft-shaped parts for machine structure with excellent fatigue characteristics
JP3240627B2 (en) Manufacturing method of constant velocity joint parts
JP3833388B2 (en) Method for producing constant velocity joint with excellent cold workability and strength
JPS59190321A (en) Production of parts for machine structural use having excellent soft nitriding characteristic and machinability
JP2007113063A (en) Hot-forged parts
JP3242336B2 (en) Cold forging steel excellent in cold forgeability and fatigue strength and method for producing cold forged member
JP7175182B2 (en) Automobile mechanical parts made of carburizing steel with excellent static torsional strength and torsional fatigue strength
JPH09201644A (en) Steel for carburized bevel gear, high toughness carburized bevel gear and manufacture thereof
JP2007056296A (en) Method for producing carburized parts for constant velocity joint
JP3109146B2 (en) Manufacturing method of low strain high strength member
JPH0568526B2 (en)
JP2002194492A (en) High hardness parts
JPH0978127A (en) Production of high strength and high toughness axial parts for mechanical structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010403

LAPS Cancellation because of no payment of annual fees