JPS6144159A - Steel for cold forging having superior suitability to carbonitriding - Google Patents

Steel for cold forging having superior suitability to carbonitriding

Info

Publication number
JPS6144159A
JPS6144159A JP16700084A JP16700084A JPS6144159A JP S6144159 A JPS6144159 A JP S6144159A JP 16700084 A JP16700084 A JP 16700084A JP 16700084 A JP16700084 A JP 16700084A JP S6144159 A JPS6144159 A JP S6144159A
Authority
JP
Japan
Prior art keywords
steel
carbonitriding
cold forging
less
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16700084A
Other languages
Japanese (ja)
Other versions
JPH0254416B2 (en
Inventor
Morifumi Nakamura
中村 守文
Yoshitake Matsushima
義武 松島
Heijiro Kawakami
川上 平次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16700084A priority Critical patent/JPS6144159A/en
Publication of JPS6144159A publication Critical patent/JPS6144159A/en
Publication of JPH0254416B2 publication Critical patent/JPH0254416B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To obtain a steel for cold forging having superior suitability to carbonitriding by adding prescribed percentages of C, Si, Mn, Cr, Al and O while satisfying specified equations. CONSTITUTION:This steel for cold forging having superior suitability to carbonitriding consists of, by weight, 0.10-0.30% C, 0.05-0.35% Si, 0.30-1.50% Mn, <=2.5% Cr, 0.02-0.5% Al, <=0.0030% O and the balance Fe with inevitable impurities and satisfies equations I, II. The steel has low deformation resistance during working by cold forging, and when the steel is carbonitrided after the working, an effective hardened layer having >=800 hardness Hv is obtd. up to a large depth.

Description

【発明の詳細な説明】 本発明は浸炭窒化性にすぐれた冷間鍛造用鋼に関し、詳
しくは、冷間鍛造によって加工する際の変形抵抗が小さ
いと共に、その後の浸炭窒化処理によってHV800以
上の表面硬さが得られ、且つ、深い有効硬化層深さが得
られる鋼、即ち、浸炭窒化性にすぐれた冷間鍛造用鋼に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to cold forging steel with excellent carbonitriding properties, and more specifically, it has low deformation resistance during processing by cold forging, and has a surface of HV800 or higher by subsequent carbonitriding treatment. The present invention relates to a steel that provides hardness and a deep effective hardening layer depth, that is, a steel for cold forging that has excellent carbonitriding properties.

従来より鋼の表面硬化処理法が種々研究され、また、実
用化されているが、ガス浸炭法が最も一般的に採用され
ている。しかし、近年、省エネルギー、熱処理歪みの低
減等の観点から、ガス浸炭法に比べて・処理温度の低い
アンモニア雰囲気下での浸炭窒化法も採用されるに至っ
ており、特に、耐摩耗性を要求される小型部品には、浸
炭用材料である肌焼鋼を使用する浸炭窒化法が広く用い
られるに至っている。
Although various surface hardening treatment methods for steel have been studied and put into practical use, gas carburizing is the most commonly employed method. However, in recent years, from the viewpoint of energy saving and reduction of heat treatment distortion, carbonitriding method in an ammonia atmosphere, which has a lower processing temperature than gas carburizing method, has been adopted. The carbonitriding method, which uses case-hardened steel as a carburizing material, has come to be widely used for small parts.

他方、小型部品の成形加工に関しては、従来、表面硬化
処理前に切削加工によって成形加工されているが、工程
の簡略化、製品歩留りの向上等を目的として、近年、冷
間鍛造法によって加工されることも多くなっている。こ
の場合、従来の肌焼鋼を用いると、工具寿命が極端に低
下することがあるため、C,Mn、Cr等の化学成分の
添加■をある限界値以下に抑える必要があるが、反面、
余りに少なくするときは、浸炭窒化処理によって十分な
表面硬さと有効硬化層深さが得られない。
On the other hand, when it comes to forming small parts, conventionally they are formed by cutting before surface hardening treatment, but in recent years, cold forging has been used to simplify the process and improve product yield. This is becoming more common. In this case, if conventional case hardening steel is used, the tool life may be extremely shortened, so it is necessary to suppress the addition of chemical components such as C, Mn, Cr, etc. below a certain limit value.
If the amount is too small, sufficient surface hardness and effective hardened layer depth cannot be obtained by the carbonitriding treatment.

本発明者らは、上記した問題を解決するために鋭意研究
した結果、鋼において、主成分であるC1Si、Mn及
びCrと、炭窒化物形成元素であるAj2の添加量を所
定の範囲の量とすることにより、冷間鍛造時の変形抵抗
が低(、更に、その後の浸炭窒化処理によって、Hv8
00以上の表面硬さが安定して得られると共に、深い有
効硬化層?、’+”:さが得られ、かくして、浸炭窒化
性にすくれた冷間鍛造用鋼を得ることができることを見
出して、本発明に至ったものである。
As a result of intensive research to solve the above-mentioned problems, the present inventors have determined that the main components C1Si, Mn, and Cr and the carbonitride-forming element Aj2 are added in amounts within a predetermined range in steel. By doing so, the deformation resistance during cold forging is low (furthermore, by the subsequent carbonitriding treatment, Hv8
A surface hardness of 00 or higher can be stably obtained, and a deep effective hardening layer can be obtained. , '+': It has been found that cold forging steel with low carbonitriding properties can be obtained, and the present invention has been achieved.

本発明による浸炭窒化性にすぐれた冷間鍛造用鋼は、重
量%で C0.10〜0.30%、 Si0.05〜0,35%、 Mn   0.30〜1.50%、 Or 2.5%以下、 Al  0.02〜0.5 %、 0  0.0030%以下、 残部鉄及び不可避的不純物よりなり、且つ、上記元素が 1.6≦Cr ”” + 3 A l ”” ≦3.2
、及び7.4C+1.0Si+1.4Mn+1.3Cr
≦4.5を満足することを特徴とする。
The cold forging steel with excellent carbonitriding properties according to the present invention contains, in weight percent, C 0.10 to 0.30%, Si 0.05 to 0.35%, Mn 0.30 to 1.50%, Or 2. 5% or less, Al 0.02-0.5%, 0.0030% or less, the balance consists of iron and unavoidable impurities, and the above elements are 1.6≦Cr ”” + 3 Al ”” ≦3 .2
, and 7.4C+1.0Si+1.4Mn+1.3Cr
It is characterized by satisfying ≦4.5.

先ず、本発明鋼における化学成分の限定理由について説
明する。
First, the reasons for limiting the chemical components in the steel of the present invention will be explained.

Cは、本発明鋼においては、浸炭窒化処理した部品の芯
部硬さを向上させると共に、有効硬化層潔さを深くする
ために、少なくとも0.10%を添加する必要がある。
In the steel of the present invention, it is necessary to add at least 0.10% of C in order to improve the core hardness of the carbonitrided parts and to deepen the effective hardness of the layer.

しかし、Cを過多に添加するときは、鋼の靭性、被削性
が劣化し、浸炭窒化処理したときに発生ずる熱処理歪み
が大きくなる。
However, when adding too much C, the toughness and machinability of the steel deteriorate, and the heat treatment distortion that occurs during carbonitriding treatment increases.

また、部品を浸炭窒化処理前に冷間鍛造によって成形加
工する場合には、後述するように、Cfiが増大すると
、加工時の変形抵抗が増大して工具寿命の低下を来し、
更には変形能の低下を来すので、本発明鋼においては(
Jlの上限は0.30%とする。
In addition, when forming parts by cold forging before carbonitriding, as will be described later, as Cfi increases, deformation resistance during processing increases and tool life decreases.
Furthermore, since deformability decreases, in the steel of the present invention, (
The upper limit of Jl is 0.30%.

Siは、溶製時の脱酸元素として必要な元素であり、本
発明においては少なくとも0.05%の添加を必要とす
るが、過多に添加するときは、冷間鍛造時の変形能が低
下し、割れ発生の原因となるので上限を0.35%とす
る。
Si is a necessary element as a deoxidizing element during ingot manufacturing, and in the present invention it is necessary to add at least 0.05%, but if it is added in excess, the deformability during cold forging will decrease. However, since it causes cracking, the upper limit is set at 0.35%.

Mnは、溶製時の脱酸及び脱硫のために必要であり、ま
た、鋼の焼入れ性を増大させることにより、浸炭窒化処
理した部品の芯部硬さを向上させ1    ると共に、
有効硬化層深さを深くするために必要である。本発明に
おいては、上記効果を十分に発現させるために0.30
%以上を添加する必要がある。しかし、過多に添加する
ときは、芯部硬さが高くなりすぎたり、或いは被削性が
劣化したりするほか、冷間鍛造時の変形抵抗が増え、工
具)Y命の低下を招(ので、Mn添加最の−F限は1.
50%とする。
Mn is necessary for deoxidation and desulfurization during melting, and also improves the core hardness of carbonitrided parts by increasing the hardenability of steel.
This is necessary to increase the effective hardening layer depth. In the present invention, in order to fully express the above effects, 0.30
It is necessary to add % or more. However, when adding too much, the core hardness becomes too high or machinability deteriorates, and the deformation resistance during cold forging increases, leading to a decrease in tool life. , the maximum -F limit of Mn addition is 1.
It shall be 50%.

Crは、本発明鋼において、浸炭窒化処理した部品にH
V800以上の表面硬さと所定の有効硬化層深さをは保
せしめるために必須の元素である。
In the steel of the present invention, Cr is added to H in carbonitrided parts.
It is an essential element in order to maintain a surface hardness of V800 or higher and a predetermined effective hardened layer depth.

しかし、余りに多量に添加しても、これらの効果が飽和
し、また、芯部硬さも高くなりすぎ、更に、冷間鍛造の
際の変形抵抗も増大するので、その上限を2.5%とす
る。
However, if too large a quantity is added, these effects will be saturated, the core hardness will become too high, and the deformation resistance during cold forging will also increase, so the upper limit is set at 2.5%. do.

A!は、浸炭窒化処理した際のオーステナイト結晶粒を
微細化すると共に、所定の表面硬さを6′住保するため
に必須の元素であり、これらの効果を同時に得るには、
少なくとも0.02%の添加を必要とする。しかし、0
.5%を越えて多量に添加するときは、表面硬さを高め
る効果が飽和するのみならず、素材鋼の製造時に分塊圧
延において割れを発生ずる。従って、本発明においては
、Affiの上限は0.5%とする。
A! is an essential element for refining austenite grains during carbonitriding treatment and maintaining a specified surface hardness of 6'. To obtain these effects at the same time,
Requires addition of at least 0.02%. However, 0
.. When added in a large amount exceeding 5%, not only does the effect of increasing surface hardness become saturated, but also cracks occur during blooming during the production of raw steel. Therefore, in the present invention, the upper limit of Affi is set to 0.5%.

Oについては、鋼中に酸化物系介在物A1□03が存在
するとき、冷間鍛造時に割れが発生する原因となり、変
形能を低下させ、また、被削性及び部品の疲労強度を低
下させる原因となる。他方、前記したように、Al1は
浸炭窒化処理後に所定の表面硬さを薙保するたゐに必須
である。従って、本発明においては、AhOi生成の原
因となる鋼中の酸素含有■を極力(■える必要があり、
上限を0.0030%とする。
Regarding O, when oxide inclusions A1□03 exist in steel, it causes cracks to occur during cold forging, reduces deformability, and also reduces machinability and fatigue strength of parts. Cause. On the other hand, as described above, Al1 is essential for maintaining a predetermined surface hardness after carbonitriding. Therefore, in the present invention, it is necessary to reduce the oxygen content (■) in the steel as much as possible (■), which is the cause of AhOi formation.
The upper limit is set to 0.0030%.

本発明による鋼は、その化学成分が上記した範囲にある
と共に、特に、表面硬さ向上元素であるCr及びANに
ついては下記(1)式 1式%(1) を満足する必要がある。ここに、各元素記号は、鋼にお
ける含を■(重量%)を示す。即ち、本発明によれば、
浸炭窒化処理した鋼部品に安定して表面硬さHV800
以上を伺与するためには、表面り!さ向上元素であるC
r及びAlの含有■が上記(1)式の値(以下、A値と
いう。)を満足するごとが必要である。しかし、両元素
共に余りに過多に添加しても、表面硬さはそれに見合っ
ては増大しないので、経済性を考慮して上記A値の上限
を3.2とする。
The steel according to the present invention must have its chemical components within the above-mentioned range, and in particular must satisfy the following formula (1) for Cr and AN, which are elements for improving surface hardness. Here, each element symbol indicates its content in steel (% by weight). That is, according to the present invention,
Stable surface hardness of HV800 on carbonitrided steel parts
In order to find out the above, we need to go to the surface! C, which is an element that improves
It is necessary that r and Al content (2) satisfy the value of the above formula (1) (hereinafter referred to as A value). However, even if excessive amounts of both elements are added, the surface hardness will not increase commensurately, so the upper limit of the A value is set at 3.2 in consideration of economic efficiency.

次に、本発明鋼がすくれた冷間鍛造性を有するには、合
金元素であるC、Si、Mn及びCrについて、下記(
2)式を満足することが必要である。
Next, in order for the steel of the present invention to have excellent cold forgeability, the following (
2) It is necessary to satisfy the formula.

7.4 C+ 1.OS i n−1,4Mn + 1
3 Cr≦4.5 +21即ち、冷間鍛造時の鋼の変形
抵抗に着目し、各合金元素の効果を定量的に調べた結果
、上記A値(以下、H値という。)を満足する[U凹円
で合金元素■を調整することによって、工具の1!に耗
が実質的に生じないように変形抵抗を小さくすることが
できるのである。
7.4 C+ 1. OS i n-1, 4Mn + 1
3 Cr≦4.5 +21 That is, as a result of focusing on the deformation resistance of steel during cold forging and quantitatively examining the effects of each alloying element, the above A value (hereinafter referred to as H value) is satisfied [ 1 of the tool by adjusting the alloying element ■ in the U concave circle! This allows the deformation resistance to be reduced so that virtually no wear occurs.

更に、本発明鋼においては、上記した元素に加えて、N
i及びMoよりなる群から選ばれる少へくとも1種の元
素を添加し、鋼の焼入れ性を向上させて、浸炭窒化処理
した部品の芯部硬さを高めることができる。これら元素
の添加量は、経済性を考慮して、本発明においては、N
iについては3.0%を、またMoについては0.50
%をそれぞれ上限とする。
Furthermore, in the steel of the present invention, in addition to the above-mentioned elements, N
By adding at least one element selected from the group consisting of i and Mo, it is possible to improve the hardenability of steel and increase the core hardness of carbonitrided parts. In the present invention, the amount of these elements added is determined in consideration of economical efficiency.
3.0% for i and 0.50 for Mo
% respectively.

このように泪が焼入れ性向上元素であるNi及び/又は
MOを含存するときは、この鋼がす(れた冷間鍛造性を
有するためには、合金元素の添加■が下記(3)式で示
されるΔ値を有することが必要である。
In this way, when the steel contains Ni and/or MO, which are elements that improve hardenability, in order for this steel to have good cold forgeability, the addition of alloying elements (■) is determined by the formula (3) below. It is necessary to have a Δ value of .

7、4 C+ 1. OS i + 1.4 M n 
+ 1.3 Cr+ 0.6 N i + 2.5 M
 o≦4.5         F31また、浸炭窒化
による表面硬化処理の前に切削による形成加工を必要と
するような場合のために、本発明鋼にはs、pb及びZ
rよりなる群から選ばれる少なくとも1種の元素を添加
し、鋼の被削性を高めることもできる。各元素について
、その1.21の被削性を向上させるためには、本発明
においては、S 0.03%以上、P b 0.05%
以上及びZr0.05%以上か必要である。しかし、そ
の添加量が余りに多くなるときは、冷間鍛造時に割れ−
発生の原因となり、鋼の変形化を低下させると共に、部
品の疲労強度が劣化する。従って、各元素の添加■の上
限は、Sについては0.30%、pbについては0.1
0%、及びZrについては0.10%とする。
7,4 C+ 1. OS i + 1.4M n
+ 1.3 Cr+ 0.6 N i + 2.5 M
o≦4.5 F31 In addition, for cases where forming processing by cutting is required before surface hardening treatment by carbonitriding, the steel of the present invention contains s, pb, and Z.
The machinability of steel can also be improved by adding at least one element selected from the group consisting of r. For each element, in order to improve the machinability of 1.21, in the present invention, S 0.03% or more, P b 0.05%
It is necessary to have at least 0.05% or more of Zr. However, if the amount added is too large, cracks may occur during cold forging.
This causes deformation of the steel and deteriorates the fatigue strength of the part. Therefore, the upper limit for the addition of each element is 0.30% for S and 0.1% for PB.
0%, and 0.10% for Zr.

以上のようGこ、本発明S4においては、合金元素の添
加量を所定の範囲とすると共に、特に、表面硬さ向上元
素であるCr及び7Bの添加量については所定の関係を
満足させ、また、これらを含む主要合金元素の添加量に
ついても相互間で所定の関係を満足させたので、冷間鍛
造時に変形抵抗が低く、更に、その後の浸炭窒化処理に
よって安定してHν800以上の表面硬さと深い有効硬
化層深さが得られるのである。
As described above, in the present invention S4, the amount of alloying elements added is set within a predetermined range, and in particular, the amounts of Cr and 7B, which are elements for improving surface hardness, satisfy a predetermined relationship. Since the amounts of the main alloying elements including these elements also satisfy the predetermined relationships, the deformation resistance during cold forging is low, and furthermore, the subsequent carbonitriding treatment provides a stable surface hardness of Hv800 or higher. A deep effective case depth can be obtained.

以下に実施例を上げて本発明を説明する。The present invention will be explained below with reference to Examples.

実施例 (1)浸炭窒化処理鋼の表面硬さとCr及びAl量との
関係 浸炭窒化処理した鋼の表面硬さと合金元素量、特に、C
r及びAl量との関係を調べるため、これらの合金元素
量が異なる各種鋼を小型高周波炉で溶製した。各成分組
成を第1表に示す。
Example (1) Relationship between the surface hardness of carbonitrided steel and the amount of Cr and Al The surface hardness of carbonitrided steel and the amount of alloying elements, especially C
In order to investigate the relationship between r and the amount of Al, various steels with different amounts of these alloying elements were melted in a small high-frequency furnace. The composition of each component is shown in Table 1.

これら鋼材を熱間鍛造にて直径30mmの丸棒に加工し
、焼準し処理を行なった後、直径25m5、長さ100
 amの丸棒に機械加工した。次に、RXカスとブタン
ガスの混合ガスに約5%のアンモニアガスを添加した雰
囲気下に、830℃で6時間浸炭窒化処理し、油υε入
れを施した後、150°Cで2時間加熱、空冷する焼戻
し処理をした。このように処理した丸棒について、長手
方向中央部にて切断し、表面より0.02 uの微小深
さにおりる硬さを表面硬さとしてJす定した。結果を第
1表に示す。
These steel materials are hot-forged into a round bar with a diameter of 30 mm, and after normalizing, it is made into a round bar with a diameter of 25 m5 and a length of 100 mm.
Machined into am round bar. Next, carbonitriding treatment was carried out at 830°C for 6 hours in an atmosphere in which approximately 5% ammonia gas was added to a mixed gas of RX residue and butane gas, and after applying oil υε, heating at 150°C for 2 hours. It was tempered by air cooling. The thus treated round bar was cut at the center in the longitudinal direction, and the hardness at a minute depth of 0.02 u from the surface was determined as surface hardness J. The results are shown in Table 1.

浸炭窒化処理後の表面硬さに及ぼすCr及びANli)
の効果を定量的に調べるために、第1表鋼1の硬さを凸
本硬さとし、その他の鋼の表面硬さとの差を求めた。こ
の値を表面硬さ上昇値(Hν)として第1表に示す。
Effect of Cr and ANli on surface hardness after carbonitriding treatment)
In order to quantitatively investigate the effect of Table 1, the hardness of Steel 1 in Table 1 was defined as convex hardness, and the difference between it and the surface hardness of other steels was determined. This value is shown in Table 1 as the surface hardness increase value (Hv).

更に、この表面硬さ上昇値とΔp及びCr呈との関係を
第1図に示す。第1図よりCr及びΔpMが多いほど、
表面硬さ上昇値は大きくなるが、過多に添加しても効果
は飽和する。従って、経済性を考慮すれば、Cr及びA
i景は前記A値を満足すればよい。かかる条件を満足さ
せることによって、本発明によれば確実に表面硬さHv
800以上を得ることができる。
Furthermore, the relationship between this surface hardness increase value, Δp, and Cr appearance is shown in FIG. From Figure 1, the more Cr and ΔpM, the more
Although the increase in surface hardness increases, the effect is saturated even if it is added in excess. Therefore, considering economic efficiency, Cr and A
The i-view only needs to satisfy the above A value. By satisfying these conditions, the present invention ensures that the surface hardness Hv
You can get more than 800.

(2)浸炭窒化処理後の硬化特性と冷間鍛造性浸炭窒化
処理したときの硬化特性と冷間鍛造性を調べるため、第
2表に示す化学組成を有する鋼を小型高周波炉にて溶製
した。
(2) Hardening properties and cold forgeability after carbonitriding In order to investigate the hardening properties and cold forgeability after carbonitriding, steel with the chemical composition shown in Table 2 was melted in a small high-frequency furnace. did.

先ず、これらの鋼の冷間鍛造性を調べるため、熱間鍛造
により直径25麟買の丸棒に加工し、焼準し処理、球状
化焼鈍し処理を施した後、直径20龍、長さ30amの
円柱に加工した。次いで、同心円状の溝付き圧板を用い
て、圧下率が60%になるまで拘束圧縮変形させ、その
際の荷重と拘束係数に基づいて、各鋼材の変形抵抗を求
めた。これを第2表に示す。
First, in order to investigate the cold forgeability of these steels, they were hot-forged into round bars with a diameter of 25 mm, normalized, and annealed to make them spheroidized. It was processed into a 30am cylinder. Next, using a concentric grooved pressure plate, restraint compression deformation was performed until the rolling reduction ratio reached 60%, and the deformation resistance of each steel material was determined based on the load and restraint coefficient at that time. This is shown in Table 2.

浸炭窒化処理したときの硬化特性については、鋼を前記
と同様の工程で加工した後、長手方向中央部断面での表
面硬さと有効硬化層深さく表面からHv550までの距
離、JIS G 0557を参照)を求めた。結果を第
2表に示す。
Regarding the hardening characteristics when carbonitriding is performed, refer to JIS G 0557 for the surface hardness at the longitudinal center section and the distance from the surface to Hv550 for the depth of the effective hardened layer after processing the steel in the same process as above. ) was sought. The results are shown in Table 2.

比較鋼20.21及び22は、Cr及びA1世が前記A
値に関する条件を満足しておらず、いずれも十分な表面
硬さを有しない。また、十分な有効硬化層深さが得られ
ない。比較鋼23及び24は、A値が本発明による条件
を満足していないと共に、H値に関しても本発明による
条件を満足していないので、拘束圧縮変形時の変形抵抗
が大きい。このような鋼は、冷間鍛造に際して、工具寿
命を大幅に低下させる。比較鋼25.26及び27はC
r及び/l/!fiが前記A値に関する条件を満足して
おらず、十分な表面硬さを有しない。これに対して、本
発明鋼においては、Hv800以上の表面硬さと十分な
有効硬化層深さが得られ、冷間鍛造時の変形抵抗も小さ
い。
Comparative steels 20.21 and 22 have Cr and A1
They do not satisfy the conditions regarding the value, and neither has sufficient surface hardness. Furthermore, a sufficient effective hardened layer depth cannot be obtained. Comparative steels 23 and 24 do not satisfy the conditions according to the present invention for the A value and also do not satisfy the conditions according to the present invention for the H value, so their deformation resistance during restrained compressive deformation is large. Such steels significantly reduce tool life during cold forging. Comparative steels 25, 26 and 27 are C
r and /l/! fi does not satisfy the conditions regarding the A value and does not have sufficient surface hardness. On the other hand, in the steel of the present invention, a surface hardness of Hv800 or more and a sufficient effective hardening layer depth are obtained, and the deformation resistance during cold forging is also small.

(3)鋼の酸素含有量と冷間鍛造性との関係冷間鍛造性
に関して、特に、釦1の変形能と酸素含有量との関係を
調べるため、第3表に示す化学組成を有する銅を小型高
周波炉、一部は小型真空炉により溶製した。
(3) Relationship between oxygen content and cold forgeability of steel Regarding cold forgeability, in particular, in order to investigate the relationship between the deformability of Button 1 and the oxygen content, we used copper having the chemical composition shown in Table 3. were melted in a small high-frequency furnace and some in a small vacuum furnace.

これらの鋼を前記と同様の加工工程にて直径20龍、長
さ301の丸棒に機械加工し、これを拘束圧縮変形させ
たときの割れ発生限界圧縮率を求めた。第3表に結果を
示す。酸素含有量を抑えた本発明鋼によれば、比較鋼に
比べて割れ限界圧縮率が高く、冷間鍛造の際の鋼の変形
能がすぐれている。
These steels were machined into round bars with a diameter of 20mm and a length of 301mm using the same processing steps as described above, and the critical compression ratio for cracking when this was subjected to restrained compressive deformation was determined. Table 3 shows the results. The steel of the present invention, which has a reduced oxygen content, has a higher compressibility at cracking limit than comparative steels, and has excellent deformability during cold forging.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は鋼におけるAA量及びCriと、浸炭窒化処理後
の表面硬さ上昇値との関係を示すグラフである。 Ai’−!−(重量%) −;301
The drawing is a graph showing the relationship between the AA content and Cri in steel and the increase in surface hardness after carbonitriding. Ai'-! -(weight%) -;301

Claims (1)

【特許請求の範囲】 (1)重量%で C 0.10〜0.30%、 Si 0.05〜0.35%、 Mn 0.30〜1.50%、 Cr 2.5%以下、 Al 0.02〜0.5%、 O 0.0030%以下、 残部鉄及び不可避的不純物よりなり、且つ、上記元素が 1.6≦Cr^1^/^2+3Al^1^/^2≦3.
2、及び7.4C+1.0Si+1.4Mn+1.3C
r≦4.5を満足することを特徴とする浸炭窒化性にす
ぐれた冷間鍛造用鋼。 (2)重量%で (a)C 0.10〜0.30%、 Si 0.05〜0.35%、 Mn 0.30〜1.50%、 Cr 2.5%以下、 Al 0.02〜0.5%、 O 0.0030%以下、及び (b)Ni 3.0%以下及びMo 0.50%以下よ
りなる群から選ばれる少なくとも1種、 残部鉄及び不可避的不純物よりなり、且つ、上記元素が 1.6≦Cr^1^/^2+3Al^1^/^2≦3.
2、及び7.4C+1.0Si+1.4Mn+1.3C
r+0.6Ni+2.5Mo≦4.5 を満足することを特徴とする浸炭窒化性にすぐれた冷間
鍛造用鋼。 (3)重量%で (a)C 0.10〜0.30%、 Si 0.05〜0.35%、 Mn 0.30〜1.50%、 Cr 2.5%以下、 Al 0.02〜0.5%、 O 0.0030%以下、及び (b)S 0.03〜0.07%、Pb 0.05〜0
.10%及びZr 0.05〜0.10%よりなる群か
ら選ばれる少なくとも1種、 残部鉄及び不可避的不純物よりなり、且つ、上記元素が 1.6≦Cr^1^/^2+3Ar^1^/^2≦3.
2、及び7.4C+1.0Si+1.4Mn+1.3C
r≦4.5を満足することを特徴とする浸炭窒化性にす
ぐれた冷間鍛造用鋼。 (4)重量%で (a)C 0.10〜0.30%、 Si 0.05〜0.35%、 Mn 0.30〜1.50%、 Cr 2.5%以下、 Al 0.02〜0.5%、 O 0.0030%以下、 (b)Ni 3.0%以下及びMo 0.50%以下よ
りなる群から選ばれる少なくとも1種、及び (c)S 0.03〜0.07%、Pb 0.05〜0
.10%及びZr 0.05〜0.10%よりなる群か
ら選ばれる少なくとも1種、 残部鉄及び不可避的不純物よりなり、且つ、上記元素が 1.6≦Cr^1^/^2+3Al^1^/^2≦3.
2、及び7.4C+1.0Si+1.4Mn+1.3C
r+0.6Ni+2.5Mo≦4.5 を満足することを特徴とする浸炭窒化性にすぐれた冷間
鍛造用鋼。
[Claims] (1) C 0.10-0.30%, Si 0.05-0.35%, Mn 0.30-1.50%, Cr 2.5% or less, Al 0.02 to 0.5%, O 0.0030% or less, the balance consists of iron and unavoidable impurities, and the above elements are 1.6≦Cr^1^/^2+3Al^1^/^2≦3.
2, and 7.4C+1.0Si+1.4Mn+1.3C
A cold forging steel with excellent carbonitriding properties, which satisfies r≦4.5. (2) In weight% (a) C 0.10-0.30%, Si 0.05-0.35%, Mn 0.30-1.50%, Cr 2.5% or less, Al 0.02 ~0.5%, O 0.0030% or less, and (b) at least one member selected from the group consisting of Ni 3.0% or less and Mo 0.50% or less, the balance consisting of iron and inevitable impurities, and , the above element is 1.6≦Cr^1^/^2+3Al^1^/^2≦3.
2, and 7.4C+1.0Si+1.4Mn+1.3C
A cold forging steel with excellent carbonitriding properties, which satisfies r+0.6Ni+2.5Mo≦4.5. (3) In weight% (a) C 0.10-0.30%, Si 0.05-0.35%, Mn 0.30-1.50%, Cr 2.5% or less, Al 0.02 ~0.5%, O 0.0030% or less, and (b) S 0.03-0.07%, Pb 0.05-0
.. 10% and at least one selected from the group consisting of Zr 0.05 to 0.10%, the balance consisting of iron and inevitable impurities, and the above elements are 1.6≦Cr^1^/^2+3Ar^1^ /^2≦3.
2, and 7.4C+1.0Si+1.4Mn+1.3C
A cold forging steel with excellent carbonitriding properties, which satisfies r≦4.5. (4) In weight% (a) C 0.10-0.30%, Si 0.05-0.35%, Mn 0.30-1.50%, Cr 2.5% or less, Al 0.02 ~0.5%, O 0.0030% or less, (b) Ni 3.0% or less, and Mo 0.50% or less, and (c) S 0.03-0. 07%, Pb 0.05-0
.. 10% and at least one selected from the group consisting of Zr 0.05 to 0.10%, the balance consisting of iron and inevitable impurities, and the above elements are 1.6≦Cr^1^/^2+3Al^1^ /^2≦3.
2, and 7.4C+1.0Si+1.4Mn+1.3C
A cold forging steel with excellent carbonitriding properties, which satisfies r+0.6Ni+2.5Mo≦4.5.
JP16700084A 1984-08-08 1984-08-08 Steel for cold forging having superior suitability to carbonitriding Granted JPS6144159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16700084A JPS6144159A (en) 1984-08-08 1984-08-08 Steel for cold forging having superior suitability to carbonitriding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16700084A JPS6144159A (en) 1984-08-08 1984-08-08 Steel for cold forging having superior suitability to carbonitriding

Publications (2)

Publication Number Publication Date
JPS6144159A true JPS6144159A (en) 1986-03-03
JPH0254416B2 JPH0254416B2 (en) 1990-11-21

Family

ID=15841518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16700084A Granted JPS6144159A (en) 1984-08-08 1984-08-08 Steel for cold forging having superior suitability to carbonitriding

Country Status (1)

Country Link
JP (1) JPS6144159A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137145A (en) * 1986-11-29 1988-06-09 Nippon Steel Corp Steel for carburizing
JPH09279295A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Steel for soft-nitriding excellent in cold forgeability
EP0867521A1 (en) * 1997-03-26 1998-09-30 Imatra Steel Oy Ab Steel for cold forging and a method using the steel
JP2010270348A (en) * 2009-05-19 2010-12-02 Kobe Steel Ltd Nitrided slide member, steel material for slide member and method for manufacturing slide member
JP2015229780A (en) * 2014-06-03 2015-12-21 山陽特殊製鋼株式会社 Steel for nitriding excellent in nitriding property

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485229U (en) * 1990-11-30 1992-07-24
JPH0485228U (en) * 1990-11-30 1992-07-24

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119760A (en) * 1980-02-26 1981-09-19 Daido Steel Co Ltd Carbonitriding steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119760A (en) * 1980-02-26 1981-09-19 Daido Steel Co Ltd Carbonitriding steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137145A (en) * 1986-11-29 1988-06-09 Nippon Steel Corp Steel for carburizing
JPH049858B2 (en) * 1986-11-29 1992-02-21
JPH09279295A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Steel for soft-nitriding excellent in cold forgeability
EP0867521A1 (en) * 1997-03-26 1998-09-30 Imatra Steel Oy Ab Steel for cold forging and a method using the steel
JP2010270348A (en) * 2009-05-19 2010-12-02 Kobe Steel Ltd Nitrided slide member, steel material for slide member and method for manufacturing slide member
JP2015229780A (en) * 2014-06-03 2015-12-21 山陽特殊製鋼株式会社 Steel for nitriding excellent in nitriding property

Also Published As

Publication number Publication date
JPH0254416B2 (en) 1990-11-21

Similar Documents

Publication Publication Date Title
JPH08311607A (en) Low strain carburized gear excellent in deddendum bending strength and its production
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JPH0971841A (en) Steel for soft-nitriding
JPH09279295A (en) Steel for soft-nitriding excellent in cold forgeability
JPS6144159A (en) Steel for cold forging having superior suitability to carbonitriding
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JPH0254739A (en) Bearing steel having excellent workability
JPH07188895A (en) Manufacture of parts for machine structure use
JP3579558B2 (en) Bearing steel with excellent resistance to fire cracking
JP3833388B2 (en) Method for producing constant velocity joint with excellent cold workability and strength
JP3467929B2 (en) High toughness hot forged non-heat treated steel for induction hardening
JPH08260039A (en) Production of carburized and case hardened steel
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JP3142689B2 (en) Spring with excellent fatigue strength
JP2001049337A (en) Production of high strength spring excellent in fatigue strength
JPH09324848A (en) Carbon sintered gear component
JP2991869B2 (en) Machine structural steel with excellent cold forgeability
JPH108199A (en) Case hardening steel excellent in carburizing hardenability
JPH0453937B2 (en)
JPH0563542B2 (en)
JPH11335773A (en) Bearing steel excellent in cold workability
JPS61261427A (en) Production of steel having superior cold workability and preventing coarsening of grain during carburization heating
JPH04141521A (en) Production of induction hardened parts having shaft shape
JPH06299241A (en) Production of carburizing steel excellent in cold workability and fatigue resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees