JPS5828873A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS5828873A
JPS5828873A JP56126141A JP12614181A JPS5828873A JP S5828873 A JPS5828873 A JP S5828873A JP 56126141 A JP56126141 A JP 56126141A JP 12614181 A JP12614181 A JP 12614181A JP S5828873 A JPS5828873 A JP S5828873A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
gate
semiconductor device
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56126141A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP56126141A priority Critical patent/JPS5828873A/en
Publication of JPS5828873A publication Critical patent/JPS5828873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain a semiconductor device wherein an evaporation-stack-formed NSCS by a plasma CVD method, etc. is formed on a substrate by utilizing its characteristic and which is more excellent than a conventional insulating gate type field effect semiconductor device in facilitations of manufacture and integration, further in a low voltage and a high speed response. CONSTITUTION:To constitute a channel forming region on the substrate 1, an NSCS53 (I layer) is formed 0.1-1mum thick, a mask 21 is formed on the upper surface thereof, and an N<+> type NSCS45 and a P type NSCS25 are likewise selectively manufactured 0.1-1mum thick. Next, oxygen is implanted into this I layer by an ion implantation resulting in a ban-isolation region 53. Subsequently, after removing the mask 21 by a lift-off method, a field inulator 31 is manufactured. Further, after manufacturing gate insulators 33, 43, an aperture 32 of an electrode, and gate electrodes 35, 45 and a lead 34 are provided.

Description

【発明の詳細な説明】 本発明(d基板上にアモルファス(無112if形、非
晶質)、5〜200Aの大きさのンヨ−トレンジオーダ
の微結晶性を有するセミアモルファス(半非晶質)捷/
こに1.多結晶構造を有する半導体であって、特に水素
寸たはフッ素、I’fllj累の如きハロゲン元素が0
.01〜10モル係、リチューム、ナトリュームまたは
カリュームの如きアルカリ金N5C8という)を用いた
絶縁ゲイト型電界効果半導体装置おJ:びその作1!I
’J方法に関する。
Detailed Description of the Invention The present invention (amorphous (non-112if type, non-crystalline) on a d-substrate, semi-amorphous (semi-amorphous) having microcrystallinity in the range order of 5 to 200 A) /
Koni 1. A semiconductor having a polycrystalline structure, in particular containing no hydrogen or halogen elements such as fluorine or I'flj.
.. Insulated gate field effect semiconductor device using alkali gold such as lithium, sodium or potassium (N5C8) with a 01 to 10 molar content (N5C8). I
'J method.

本発明はかかる基板上にプラズマcvr+法1により蒸
積形成されるN5O8をその時1/1を利+1’1して
形成ぜんとするもので、そのnli造に1.・いても寸
だ製造方法においても従来の絶縁ゲイト型電界効果半導
体装置(以下単にTOFETという)に比べて作りやす
さ、果清化しやすささらに低電圧、高速応答性にすぐれ
たものである。
In the present invention, N5O8 is deposited on such a substrate by plasma CVR+ method 1, with a ratio of 1/1 to +1'1, and the nli structure is 1.・In terms of its manufacturing method, it is easier to manufacture, easier to process, and has superior low voltage and high-speed response compared to conventional insulated gate field effect semiconductor devices (hereinafter simply referred to as TOFETs).

本発明はその製造方法において、平坦面を有しかつN5
C8と反応等の何ら悪い作用をしないノメコ板例えばガ
ラス基板、セラミックス、ブレーム ズYセラミックス、ステンレス等を用いている。
The present invention has a flat surface and N5 in its manufacturing method.
For example, glass substrates, ceramics, Blame's Y ceramics, stainless steel, etc. are used.

ざらにこの−に面に形成されたN S OSに関し、そ
の1畝も重要な制御と必要とするチャネル形成領域に関
[〜、このl’l S OSを形成した後ゲイト絶縁物
件たf171ニゲイト電極を構成せしめるという特徴を
有する。またソース、ドレインを構成する不純物)+”
’rはP t iこば1く型の導電型を有する半導体h
:iを選択的にリフトオフ法どプラズマOVD法とを用
いることにより成就さぜ/こ。この半導体」たし1導体
か金属がII−結晶に比べてやわらかい寸だ活性のチャ
ネル形成領域を411成するN5O8の♂くσ1i上に
ふt′7−ず、ここでは絶縁物特に酸化珪素のみを接触
させて、この領域での信頼性の向上を111っているこ
とが本発明の他の特徴ゝである。
Regarding the N S OS formed on the rough surface, one ridge is also important for control and the necessary channel formation region [~, after forming this l'l S OS, the gate insulating material was f171 ni gate. It has the feature of forming an electrode. Also, impurities that make up the source and drain)
'r is a semiconductor h having a conductivity type of P t i
:I can be achieved by selectively using a lift-off method or a plasma OVD method. In this semiconductor, there is no conductor or metal on the σ1i of the N5O8 which forms the active channel forming region 411, which has a softer dimension than the II-crystal, and here only an insulator, especially silicon oxide, is used. Another feature of the present invention is that the reliability in this area is improved by bringing the two parts into contact with each other.

木兄1y、1 h、ASv: f’ニー ’tJ: s
 A SをN5C3(iJ主タル拐旧と17で用いてい
るが、このAS、SASはともにプラズマOV ])法
で作製している。
Tree brother 1y, 1h, ASv: f'knee 'tJ: s
The AS is manufactured by the N5C3 method (both AS and SAS are plasma OV), which is used in iJ's main technology and 17.

この5lll/こ関しては、本発明人の出願になる特許
1+;:〔i (セミアモルファス半導体 特願昭56
−065826056゜4.:’、O出1j’Jl z
 !l”I”j!!l昭55−I20 :522S55
゜8゜30出願)に記さ11.ている。
Regarding this 5llll/, patent 1+;:[i (semi-amorphous semiconductor patent application 1982
-065826056°4. :', O exit 1j'Jl z
! l”I”j! ! 1975-I20:522S55
11. ing.

すなわち半導体例えばf1素半、、、+7体に1・・け
るJ1′l糸占晶をイfさない111にアモルファス(
1・l);<′、、のカラス基板、多片1晶()、J造
のステンレス、IIL、板であってもその電気−)1乙
伝力j及がAMl(100mW/cI古)の)1(、エ
ネルギを一!jえた」え7合] X 16−3 X 1
.6冗Q (: l11)’を有しこれらの(的eJ、
中1M、i品月索」′石rt1本の1./2〜1./]
−0ときわめてずぐれ/こ牛1・円ミをイI’ 1〜て
いることが実験的に本発明人により、!Ilj出され/
こイ、のである。
In other words, if a semiconductor, for example, f1 element and a half, ... +7 body, J1'l filamentary crystal, is amorphous (
Even if it is a glass substrate of 1.l); ) 1 (, I gained one energy!) 7 points] X 16-3 X 1
.. 6 JyoQ (: l11)' and these ('eJ,
Junior high school 1M, I Shinazuki Saku'' stone rt 1 piece 1. /2~1. /]
The inventor has experimentally found that -0 and extremely low / Kogyu 1 and Enmi are I' 1~! Ilj is brought out/
This is it.

本発明にJ、かかるfE ASの1.、+j慴を団1i
’ 11 Tに用返んとしプζものである。
J to the present invention, 1. of such fE AS. ,+j group 1i
' 11 This is an example of a return to T.

さらに木兄四人はかかるA 3寸だ1IsASが従来よ
り知られた1、Iil模型のJ Q F II: Tの
留」造すなわち第1図に示すたて回向の4’i’)清に
応用しノこ場合本来のAS井だ(l−JSASとしての
物1’lを有さずjjj77足した特PI“が?:iら
れないという’Jt実に)1(、すいている。
In addition, the four wooden brothers are A 3-sun 1 Is AS is the conventionally known 1, Iil model J Q F II: T-no-tome" construction, that is, the vertical turn shown in Figure 1 4'i') clear In this case, it is the original AS well (l-JSAS does not have the thing 1'l and jjj77 is added to the special PI "?:i") 1(, it is empty).

すなわち従来アモルフつ′ス用″;、11体を用いた、
IGFETとして第1図の如きたてぼノr II’!l
 :/lを有する構造が知られている。第1図において
、絶縁基板(」)上にゲイト電極(3) 、 (]I1
が耐熱性材料例えばモリフ゛デンに」ニリ作られている
。さらにゲイト絶縁膜0】)をOVD法てより酸化珪素
を0.1〜0.57+の)Iノさに設ける。次にこの上
面にASを形成し、(5) 、 (1,0)のチャネル
型ゲイト−にのみに選IJ<エッチをして形成する。さ
らにNチャネルTavybT0のにおけるN型の半導体
層(6) 、 (7)を選択的にフ刈トエッチ法を用い
て形成し、丑たPチャネル!1ijj I Glc E
T(2)に対してはアルミニュームイ〔真空蒸着法で形
成し、選択エッチをしてソース(9)、ドレイン(8)
を作り第11図の如(07MO3・F F、Tを完成さ
せている。
In other words, 11 bodies were used for conventional amorphous materials.
As an IGFET, it is like the one shown in Figure 1. l
Structures having :/l are known. In Fig. 1, a gate electrode (3), (]I1
It is made of heat-resistant material such as molybdenum. Further, a gate insulating film 0]) is formed using silicon oxide at an angle of 0.1 to 0.57+ by the OVD method. Next, AS is formed on this upper surface, and only the channel type gates (5) and (1,0) are selectively etched. Furthermore, the N-type semiconductor layers (6) and (7) in the N-channel TavybT0 are selectively formed using the cut-out etch method, and the P-channel! 1ijj I Glc E
For T(2), aluminum foil [formed by vacuum evaporation method and selectively etched to form source (9) and drain (8)
As shown in Figure 11 (07MO3・FF F, T have been completed).

この構造においてはゲイト絶縁物(11)がOVD法で
形成されるため、高密度で々く、結果としてゲイト電極
(3)と半導体(5)とがショートシやすく、そのため
絶縁物(11)を0.3μ以−にと厚くしなければなら
ない。結果としてゲイト電圧は20〜60Vと大きな電
圧となり、いわゆる]−15〜5■の低電圧駆動が全く
不可能である。
In this structure, since the gate insulator (11) is formed by the OVD method, it is dense and dense, and as a result, the gate electrode (3) and the semiconductor (5) are easily short-circuited. It must be thicker than 0.3μ. As a result, the gate voltage becomes a large voltage of 20 to 60 V, and low voltage driving of so-called -15 to 5 .mu. is completely impossible.

ゲイト電極(lυの両端と半導体(5)の両端とソース
(6)、ドレイン(′7)の一端を精密に位置合せが必
要である。しかし基板上に凹凸がある状’AI!4で:
l 71以上の高uj度にて位置合せが不1可能である
It is necessary to precisely align both ends of the gate electrode (lυ), both ends of the semiconductor (5), and one end of the source (6) and drain ('7).However, since there are irregularities on the substrate, 'AI!4:
Alignment is impossible at high uj degrees of 71 or more.

結果として20〜7. Olzものトレランスを作って
1?す、そのためトンイン電圧も50〜’70Vと高く
なり、1゜5〜]、OVの低月−,l枢動が全く不1佳
能である。
As a result, 20-7. Is it possible to create a tolerance for Olz? Therefore, the tunnel voltage becomes as high as 50 to 70 V, and the low pivoting of OV is completely impossible.

さらに構造敏感性をイ]するいわゆるチャネル形成領域
と接する半、i7%体(5)の入面0において、P捷た
はN型の導電/li’、!の不純物が0.5〜2乃もの
多量にドープされた半)I4(体が密メ”l12、それ
を′光子にエツチング除去しない限りこの部分てソース
(6)、ドレイン(′7)がショート1〜でし」・う。
Furthermore, at the entrance surface 0 of the semi-i7% body (5) that is in contact with the so-called channel forming region, which has structural sensitivity, P-type or N-type conductivity /li',! The source (6) and drain ('7) will be short-circuited unless it is etched away by photon etching. 1~deshi”・U.

しかしこれはその下側の半うH体(5)と同一主成分で
あるため、選択エッチがきわめて困y+IAになってし
1つだ。
However, since this has the same main component as the lower half-H form (5), selective etching becomes extremely difficult.

さら(でこの裏面が完成された第1図のi’f?1′造
になっても、半導体(5)の表面が空気中に露呈するた
め信頼性において、また製造パラツギ匠おいて、工業I
T9に全く実用不可能であった。このような構造を用い
ることに「、半導体としての’r:1;潰敏感性全敏感
性ているため、かかる欠点を除去しブこデバイス構造の
折案が待たれていた。
Furthermore, even if the back side is completed in the i'f? I
It was completely impractical for T9. Since the use of such a structure results in 'r:1; total sensitivity as a semiconductor, a solution to the structure of a flattened device that eliminates this drawback has been awaited.

本発明はチャネル形成領域にNSC!Sを用い、その下
側、上側、側部のすべてを絶縁物または高不純物濃Jf
’51を有する半導体でおおっており、この半導体とし
ての梅漬敏感性を利用してゲイトも制jii’ilする
ことを特徴としている。そのため従来の40〜SOV駆
動というのではナク、ゲイト′11L圧、ドレイン電圧
とも5〜IOV駆動が可能となり、さらIjC1−、5
V駆動もそのlj’/造において本質的に可能であると
いう特徴を有する。
The present invention uses NSC! in the channel forming region! S is used, and its lower, upper, and side parts are all insulating or highly impurity-concentrated Jf.
It is covered with a semiconductor having 1.51 and is characterized in that it also controls gates by utilizing the umezuke sensitivity of this semiconductor. Therefore, instead of the conventional 40~SOV drive, it is now possible to drive 5~IOV for both gate '11L voltage and drain voltage, and furthermore, IjC1-, 5
V drive also has the characteristic that it is essentially possible in its lj'/structure.

さらに第1図においては4回のフォトマスクを用いて作
るもゲイト電極(4)、ソース(6)、ドレイン(1)
目、3!:3.1・l旧制であり、基板−ににリード配
線を抵抗の小さい金属で作ろうとすると、さらにこの上
面に2回のフォトマスクを必要とし、計6回になるにも
かかわらず単層配線しかできないという欠点を有してい
た。
Furthermore, in Figure 1, the gate electrode (4), the source (6), and the drain (1) are made using photomasks four times.
Eyes, 3! :3.1・L Old system, if you try to make the lead wiring on the board with a metal with low resistance, you will need two photomasks on the top surface, making it a total of 6 times, but it is still a single layer. It had the disadvantage that only wiring could be done.

本発明は以上説明した欠点をとり去るのみ表らず、半導
体装置としての集積化しやすいこと他の重要な要素であ
る抵抗、キャパシタも同時に一体化して作りやすいこと
、さらにこのキャパシタの要素を液晶とすることにより
、パネルディスプレー丑ブξは17−面型ブラウン管を
作ることを他の大きな71..9徴としている。
The present invention not only eliminates the above-mentioned drawbacks, but also facilitates integration into a semiconductor device, facilitates the integration of other important elements such as a resistor and a capacitor, and furthermore allows the capacitor element to be integrated with a liquid crystal. By doing so, the panel display ξ can be made into a 17-sided cathode ray tube compared to other large 71. .. It is said to be 9 signs.

以F図面に従って本発明の実h(!1例t、 、B2明
する。
Hereinafter, the implementation of the present invention will be explained according to the drawings.

実施例」 第2図は本発明のl0FET 、1.− J:びその・
便1、”、工程を示すたて断面図である。
Embodiment" FIG. 2 shows the l0FET of the present invention, 1. − J: Bisono・
FIG. 1 is a vertical sectional view showing the process.

第21≧i (A)に」・・いて基板(1)側か絶縁性
でありかつ透光性基板であるガラス寸/こ←I: ’)
、Ij−電1’1ノ復扱であるステンレス−1−にN5
O8いシをO01〜L pの厚さにプラズマ気相法で形
成した。このN5C8の′φす造はシラン(モノ7ラン
オた姓1:ボリシラン)才たはフッ化珪素をヘリューム
−または水素で希釈し、0.01〜10torr例えば
0゜31; Or rの反応炉内に導入した。さらに]
00〜ツo o’c例えば300°Cに加熱された基板
近傍で前記反応性気体に直流4周波(500KHz 〜
50MHz例えば13゜56Mnz)−jたはマイクロ
波(:1〜]−0G HZ例えば2゜4.5 (1,I
−T Z)の電磁エネルギを30〜200Wの出力を加
えてグロー放電捷たはアーク放電を行わしめ、これら反
応性気体およびキャリアガスをプラズマ化1〜、活性化
、分解、反応せしめ、基板上にN5C3膜を形成さぜた
。とのN5OS膜は反応性気体に加える電磁エネルギに
より5〜20WでばASに、60〜200WではS A
、 FJに、20〜60Wではその中間の混合状態であ
った。60〜200Wを加えさらに基板の加熱温度を4
50〜’1000とすると、PO2になった。600〜
’yoo’aでは電磁エネルギを加えなくてもP OS
になった。
21≧i (A)...The size of the glass that is an insulating and transparent substrate on the substrate (1) side/this←I: ')
, N5 to stainless steel-1- which is a reissue of Ij-Electric 1'1
An O8 film was formed to a thickness of O01 to Lp by a plasma vapor phase method. The structure of N5C8 is made by diluting silane (mono-silane) or silicon fluoride with helium or hydrogen and reacting it in a reactor at 0.01 to 10 torr, e.g. 0°31; It was introduced in moreover]
For example, a DC 4-frequency wave (500 KHz ~
50MHz e.g. 13°56Mnz)-j or microwave (:1~]-0G Hz e.g. 2°4.5 (1,I
- Electromagnetic energy of TZ) is applied with an output of 30 to 200 W to perform glow discharge or arc discharge, and transform these reactive gases and carrier gases into plasma, activate, decompose, and react, and place them on the substrate. An N5C3 film was then formed. Depending on the electromagnetic energy applied to the reactive gas, the N5OS film becomes AS at 5 to 20 W, and SA at 60 to 200 W.
, FJ, and at 20 to 60 W, the mixed state was intermediate between them. Add 60 to 200W and further increase the substrate heating temperature to 4
50 to '1000, it became PO2. 600~
With 'yoo'a, P OS can be achieved without adding electromagnetic energy.
Became.

このN5O8の作製の際同時に反応性気体を構成する水
素、ハロゲン元素が0.01〜]−〇モル係の濃度に添
加され、再結合中心中和剤として作用させた。
At the time of producing this N5O8, hydrogen and halogen elements constituting the reactive gas were added at a concentration of 0.01 to ]-0 molar to act as a recombination center neutralizing agent.

゛このSASは5〜200Aのショートレンジオーダの
大きさの微結晶性を有することが、かかる結晶性を有さ
ないASと大きな結晶学的々違いである。さらにこれら
には半導体材料である珪素の不対結合手を中和させる水
素、フッ素の如きハロゲン元素による再結合中心中和剤
に0.01〜5モル係添加されている。さらにこの5A
EIのこれらの中和剤で相殺できていない不対結合手を
]、0〜]、 OCmの濃度に中和するため、リチュー
(9) ム、ナトリュームまたはカリュームの如きアルカリ金属
をlO〜1.0 c mの濃度((副扉してさらに再結
合中心の密度を減少させてもよい。
``The fact that this SAS has microcrystallinity on the order of a short range of 5 to 200 A is a major crystallographic difference from AS which does not have such crystallinity. Furthermore, 0.01 to 5 mole of a recombination center neutralizing agent is added to these materials using a halogen element such as hydrogen or fluorine, which neutralizes the dangling bonds of silicon, which is a semiconductor material. Furthermore, this 5A
In order to neutralize the unpaired bonds of EI which cannot be offset by these neutralizing agents to a concentration of ], 0 to], OCm, an alkali metal such as lithium, sodium or potassium is added to 10 to 1. The density of recombination centers may be further reduced by a sub-door.

このS A Sけ暗伝導度I X ]、 O〜3 X 
1.0 (xc m)を有し、またA Sの1. O〜
]、 O(xc m)’を有する。尤伝導度ばAM]−
の条件下でSASばI X ]、 O〜8 X ]−O
(fLc m)−9−。
This S A S dark conductivity I
1.0 (xc m) and 1.0 (xc m) of A S. O~
], O(xc m)'. Likelihood conductivity AM] −
Under the conditions of SAS, IX], O~8X]-O
(fLc m)-9-.

を実験的に有し、またA S @ 10−3 X ]、
 O(xc m)を有する。この値を実用上使い分ける
ととができることが本発明の晶゛徴である。
experimentally, and A S @ 10-3 X ],
It has O(xc m). The key feature of the present invention is that this value can be used appropriately in practice.

そのためこのSASは高周波動作用と17、l〜Sは直
流的な低周波の微少信号処理またば′]1先川の用N、
 OFF処理用として用いることができる。
Therefore, this SAS is for high-frequency operation, 17, l~S is for DC-like low-frequency minute signal processing, and 1 is for Sakikawa's N.
It can be used for OFF processing.

さらに第2図(A)はマスクHを1〜5/7の厚さに選
択的に形成して、ここに第1のフ第1・マスク■を用い
た。これは減圧プラズマ気相法により図面にて工G、 
F E Tの領域(ハ)においてソース領域QQ1  
ドレイン領域(ハ)、チャネル形成領域Q◇を構成させ
ている。
Furthermore, in FIG. 2(A), the mask H was selectively formed to have a thickness of 1 to 5/7, and the first mask (1) was used here. This was constructed using the reduced pressure plasma vapor phase method as shown in the drawings.
In the FET region (c), the source region QQ1
A drain region (c) and a channel forming region Q◇ are formed.

この後この」−1mに再びA 8寸たid’、 SA 
SX斗た(+−o) iJ: N型の半導体層(ハ)を0.1〜1μの厚さで
半導体層00と同様の方法にて形成した。この時N″!
、たはPチャネルI Q、F E Tを作るため、N丑
だ(l″j:P型の半導体層のそれぞれに対し、■価の
不純物であるリン、■価の不純物であるホウ素を0.2
〜2%被膜形成時に同時に添加した。かくして第1図(
A)を得た。
After this '-1m again A 8 cm id', SA
SX(+-o) iJ: An N-type semiconductor layer (c) was formed to a thickness of 0.1 to 1 μm in the same manner as the semiconductor layer 00. At this time N''!
, or to make a P-channel I .2
~2% was added at the same time as the film was formed. Thus, Figure 1 (
A) was obtained.

第2図(B)は第1図(A)の構造にてマスクHを超音
波を軽く加えてエツチング液に浸し溶去した。
In FIG. 2(B), a mask H having the structure of FIG. 1(A) was immersed in an etching solution with light application of ultrasonic waves to dissolve it.

すると領域QQと(イ)に一対を構成して一導電型の(
半導体層(ハ)、(30)がソース、ドレインとして形
成される。さらにこの上面にフィールド絶縁物(3])
を酸化月]素またはポリイミド樹脂膜によシ0、]〜1
μの厚さに形成して第2図を得た。
Then, a pair is formed in the regions QQ and (A), and one conductivity type (
Semiconductor layers (c) and (30) are formed as a source and a drain. Furthermore, field insulator (3) is placed on this top surface.
0,] to 1 to oxidize element or polyimide resin film
FIG. 2 was obtained by forming the film to a thickness of μ.

次に領域Q→に相当する部分および電極用コンタクト用
開穴(32)のフィールド絶縁物を選択的に第2のフォ
トマスク■によシ除去した。
Next, the field insulator in the area corresponding to the region Q→ and the electrode contact hole (32) was selectively removed using a second photomask (2).

この後ゲイト絶縁物(33)をプラズマ酸化法にて30
0〜200OAの厚さに形成した。すなわち酸素または
酸化性気体を2゜45G、Hz(出力100〜500W
)のマイクロ波によシ分解、活性化し、この活性化I〜
プこ酸化性気体中如基板を300−500’Oの温度に
て設置tL l、て、この表面に醒化物!11に1年0
0が珪素であった時は酸化升素膜を作製(〜た。
After that, the gate insulator (33) is removed by plasma oxidation method.
It was formed to a thickness of 0 to 200 OA. In other words, oxygen or oxidizing gas is heated at 2°45G, Hz (output 100-500W
) is decomposed and activated by microwaves, and this activation I~
The substrate was placed in an oxidizing gas at a temperature of 300-500'O, and there was a chemical substance on the surface! 11 to 1 year 0
When 0 was silicon, a phosphorus oxide film was fabricated.

酸化性気体のかわりにアンモニア智の窒化性気体であっ
てもよい。もちろんプラズマ気相法により酸化珪素、窒
化珪素等の絶ち(膜を300〜200OAの厚さに形成
しても」、い。さらに不揮発イ生メモリとするには、こ
のゲイト超ih冒1勿中r(半導体層たは金属の塊状の
クラスタ1/こ(ゎ1、e、す膜を形成し、電荷捕獲中
心とすると有効である。
A nitriding gas such as ammonia may be used instead of the oxidizing gas. Of course, even if a film of silicon oxide, silicon nitride, etc. is formed to a thickness of 300 to 200 OA using the plasma vapor phase method, it is impossible. It is effective to form a semiconductor layer or a metal cluster 1/co(ゎ1, e,) film and use it as a charge trapping center.

捷だMNO8構造にしてもよい。これらはこのIGFE
Tの応用によって決められる自由1」)1を本発明は有
する。
A simple MNO8 structure may also be used. These are this IGFE
The present invention has the freedom 1')1 determined by the application of T.

かくの如くにしてゲイト絶縁物(33)を形成した後記
3のフォトマスク■に」二リソース1:ノこd゛ドレイ
ン図面ではドレイン)に開)](:52)を設けた後電
極(35) 、 (34) 、リード(36)を金属膜
を:+′IIj沢的に第4のフォトマスクを用いて作製
(〜だ。
After forming the gate insulator (33) in this manner, the photomask (3) described later was provided with a "2 resource 1: saw (open to the drain in the drawing)" (:52), and then a back electrode (35). ), (34) The lead (36) is fabricated using the fourth photomask with a metal film (~).

この電極、リード線はアルミニューム舌の」′γ空蒸着
法およびフォトエツチング法を用いる方法捷たはニッケ
ル等の金属のへpp電界メッキ乙′−とフォー・エツチ
ング法を用いるのが有効である。
For these electrodes and lead wires, it is effective to use a method using the ``gamma vacuum deposition method'' and photo-etching method of aluminum tongue, or a PP electrolytic plating method and four-etching method of metal such as nickel. .

信頼作土それらの金属がその下側の絶縁膜またけ半導体
層にしみこむことがないようにするにはリフトオフ法と
無電界メッキ法を組合わせた方法が好丑しかった。すな
わち第2図(D)において電極リード(35) (36
)が設けられていない部分に第2図(A)と同様にマス
ク用レジストを設けこの上面およびその他−面に金属膜
を形成した後、マスクとその上の金属膜のみを選択的に
溶去、除去する方法である。
In order to prevent these metals from seeping into the underlying insulating film and semiconductor layer, it was preferable to use a combination of lift-off method and electroless plating method. That is, in FIG. 2(D), the electrode leads (35) (36
) is not provided, a mask resist is provided in the same manner as in FIG. , is a method of removing.

以上の如くにして第2図(D)に示されるたて断面図の
+i&造を有するI G、 F’ E Tを得た。この
時一対の不純物領域(ハ)、 (30)はソース、ドレ
インとして機能し、チャネル形成領域はそのチャネル長
を0.3〜20 lt特に2〜3μとすることができ、
従来のASを用いた第1図の構造に比べて10’〜lゝ ]−0倍もの高い周波数応答を得ることができた。
In the manner described above, IG, F'ET having the +i & structure in the vertical cross-sectional view shown in FIG. 2(D) was obtained. At this time, the pair of impurity regions (c) and (30) function as a source and a drain, and the channel forming region can have a channel length of 0.3 to 20lt, especially 2 to 3μ,
Compared to the structure shown in FIG. 1 using the conventional AS, it was possible to obtain a frequency response as high as 10' to 1-0 times.

さらに駆動電圧はコー05〜IOV代表的には5〜10
■で可能であり、従来の1/2〜115にまで下げゲイ
ト絶縁物(33)でおおわれており、下側電極を有する
薄い基板(1)土に形成さノ′1ており、特にチャネル
形成領域d、そのすべて上面、下面、側面とも絶縁膜、
半導体でおおわれており、大気が触れることによる劣化
がない。
Furthermore, the driving voltage is 05 to IOV, typically 5 to 10
■It is possible to lower the gate to 1/2 to 115 times lower than the conventional one and is covered with a gate insulator (33) and formed on a thin substrate (1) with a lower electrode, especially for channel formation. Region d, all of which have an insulating film on the upper surface, lower surface, and side surfaces;
It is covered with semiconductor and will not deteriorate due to exposure to the atmosphere.

実施例2 第3図は本発明の他の実施例を示すたて断面図である。Example 2 FIG. 3 is a vertical sectional view showing another embodiment of the present invention.

図面はO/MO8(相補型絶縁ゲイトスζ11電界効果
半導体装置)であって、NチャネルI O]r F、T
(4υおよびPチャネル■avgT(42)を同一基板
(1)上に複合化、集積化して設はブ辷ものである。
The drawing shows an O/MO8 (complementary insulated gate ζ11 field effect semiconductor device) with N-channel I O]r F, T
(The 4υ and P channel ■avgT (42) can be combined and integrated on the same substrate (1).

この実施例においても特(C明記してない部分は実施例
1と同様に作製しプζ。
In this example, the parts not specified were manufactured in the same manner as in Example 1.

図面(A)において基板(1)土にチャネル形成領域を
構成するため、真性寸たは実質的に真性のN5O8(5
3)似下単に1層という)を0゜]〜’ll−/1の厚
さに形成した。さらにこの」二面にマスクHを形成し、
N”型のN5O8(45)、P+型のNFIO8(ハ)
を同様にO01〜1μの厚さに選択的に作製した。
In drawing (A), in order to form a channel forming region in the soil of the substrate (1), an intrinsic size or substantially intrinsic N5O8 (5
3) A layer (hereinafter simply referred to as one layer) was formed to a thickness of 0°] to 'll-/1. Furthermore, a mask H is formed on these two sides,
N” type N5O8 (45), P+ type NFIO8 (c)
were similarly produced selectively to a thickness of O01 to 1μ.

図面ではさらにこの後1層のフィールド絶縁物干でのア
イソレイションを助長するため、イオン注入法により酸
素をとの1層中に10〜]、0の濃度で注入して、この
領域を高いエネルギバンド11」を有する絶縁膜にした
。かくしてアイソレイション領域(5→を設けた。
In the drawing, in order to promote isolation in the first layer of field insulation, oxygen is implanted into the first layer using ion implantation at a concentration of 10 to 0, and this region is exposed to high energy. The insulating film has a band 11''. Thus, an isolation region (5→) was established.

次に第3図(B)に示す如く、マスクt21)をリフト
オフ法にて除去した後フィールド絶縁物(31)を0゜
」〜211の厚さにプラズマCvD法により酸化珪素、
ポリイミド樹脂によるコーティング法にて作製した。
Next, as shown in FIG. 3(B), after removing the mask t21) by a lift-off method, the field insulator (31) is coated with silicon oxide by a plasma CVD method to a thickness of 0° to 211°.
It was manufactured using a coating method using polyimide resin.

さらにゲイト絶縁物(33) (43)を実施例1と同
様に作製した後電極の開口(32)を設けて第3図(C
)をイ4Iた。
Furthermore, gate insulators (33) and (43) were prepared in the same manner as in Example 1, and then electrode openings (32) were formed.
) was I4I.

さらに第3図(D)に示される如く、ゲイト電極にろ5
) (45)およびリード(34)を設けてf8孫型の
インバーター構造の複合半導体装置を作った。
Furthermore, as shown in FIG. 3(D), the gate electrode is
) (45) and leads (34) were provided to fabricate a composite semiconductor device having an f8 grandchild type inverter structure.

図面より明らかな如く、この第3図(D)において工程
は下から上方向に積層する順序ですべてが形成されてお
り、多層配線に対しても何らの支障がない。丑だN型チ
ャネルエGFET(41)のドレイン(30)とPチャ
ネルエG F E T (42)のドレインの工程を必
要とすることなく、同一平面十にふたつのドレイン(S
O) (39)を作ることができ、平面的に積層して集
積化構造を作る場合きわめて好都合の構造を有している
As is clear from the drawing, all steps in FIG. 3(D) are performed in the order of lamination from bottom to top, and there is no problem with multilayer wiring. Two drains (S
O) (39) can be made, and has an extremely convenient structure when an integrated structure is made by laminating them in a plane.

実施例3 第4図(A)にこの実施例のたて断面図を示す。Example 3 FIG. 4(A) shows a vertical sectional view of this embodiment.

図面においてIGFET(50)に加えて1層による抵
抗(5])、キャパシタ(52)を設けている。
In the drawing, in addition to the IGFET (50), a single-layer resistor (5) and a capacitor (52) are provided.

図面においてIGFET(50)に↑ソース(2(J)
、ドレイン(30)、ゲイト絶縁物(33)、ゲイト電
極(35)を実施例1と同様の製造工程で作製した。同
時に41(抗(51)は一方の電極(30) 、他方の
電極(55)との間にフィールド絶縁物(31)の下に
1層(b 6)に31−り設けられている。−またキャ
パシタ(52) I(、土一方の電極(59)、誘電体
(57)、上1+111電極(5B)が設けられ、誘電
体(57)はゲイト絶縁物03)と丑だ上側電極(5B
)はゲイト電・i夕(35)と同一4」湘1により同一
71−1!で作られている。
In the drawing, IGFET (50) is connected to ↑ source (2 (J)
, a drain (30), a gate insulator (33), and a gate electrode (35) were manufactured using the same manufacturing process as in Example 1. At the same time, the resistor (51) is provided in one layer (b6) under the field insulator (31) between one electrode (30) and the other electrode (55). In addition, a capacitor (52) I (one electrode (59), a dielectric (57), and an upper 1+111 electrode (5B) are provided, and the dielectric (57) is connected to the gate insulator 03) and the upper electrode (5B).
) is the same as Gate Den/i-Yu (35) 4'' is the same as 71-1 by Sho 1! It is made of.

かくして同一基板上にI G F E Tのみならず他
の要素も特にその工程を変更することなくマスクの設計
仕様に基すき作ることができることが本発明の特徴であ
る。
Thus, a feature of the present invention is that not only the IGFET but also other elements can be formed on the same substrate based on the design specifications of the mask without changing the process.

実施例4 と(7)実施例は基板(1)土にイLZtlWl f)
IGFET (50)(5Φをマl−IJラックス成し
て配列せしめ、そのソース側に液晶を用いたキャパシタ
を設け、平面型の両像著〒、装置を設けたものである。
Example 4 and (7) Examples are the substrate (1) soil LZtlWl f)
IGFET (50) (5Φ) is arranged in a multi-IJ rack, a capacitor using liquid crystal is provided on the source side, and a planar type device is provided.

第4図(B)はその一部の半導体装置のたて断面図を示
したものである。
FIG. 4(B) shows a vertical sectional view of a part of the semiconductor device.

図面において基板(1)上にIG、FET (50)と
そのソース(ハ)、ドレイン(30)、ゲイト絶縁物(
33)、ゲイト電極(35)が設けられ、ドレイン(3
0)はひとつのキャパシタが下側電* (59) 、、
誘電体(””) 、上側電極(58)よりなる。またそ
れと並列に他のキャパシタのコンタク)(’72)、下
側電極(6υ、液晶による誘電体(63)に側電極(6
2)透光性基板(64)よりなっている。
In the drawing, on the substrate (1) are IG, FET (50), its source (c), drain (30), and gate insulator (
33), a gate electrode (35) is provided, and a drain (33) is provided.
0), one capacitor is the lower side voltage* (59), ,
It consists of a dielectric ("") and an upper electrode (58). In parallel, there is another capacitor contact ('72), a lower electrode (6υ), a liquid crystal dielectric (63) and a side electrode (6υ).
2) Consists of a translucent substrate (64).

基板(64)より光が入射しその一部が液晶部にて反射
し他部が造品してそのコントラストにより明暗が構成さ
れる。これを530X530またはmXn (m、n、
  任意定数)のマトリックス(功 構成をせしめ、画像表示装置を作った。l01j’ET
(5へキャパシタ(5小はその積 に配列されたりであ
る。
Light enters from the substrate (64), a part of which is reflected by the liquid crystal part, and other parts are created, and the contrast constitutes brightness and darkness. This is 530X530 or mXn (m, n,
I created an image display device by creating a matrix (arbitrary constant).l01j'ET
(5 to capacitor (5 small is arranged in the product).

この液晶の明暗はマトリックス化させた要素の丁G F
E ’I’をON、OF’Fに制御して設け/こ。この
マトリックス構成さぜ/こその周辺)・rl(にil’
、 ’;:4”、’ 4図(A)に示されたIGFET
等によりテ:I−グ、ドライバーを設ければよい。
The brightness and darkness of this liquid crystal is determined by matrix elements.
E Provided by controlling 'I' to ON and OFF'F. This matrix structure is
, ';:4'',' 4 IGFET shown in Figure (A)
For example, a tag and driver may be provided.

以」−の説明より明らかな111<にして本冗明の工G
FETおよびその作製方法を得/ζ。
It is clear from the explanation of ``111'' that this redundant work G
Obtained FET and its manufacturing method/ζ.

本発明は珪素を中心に記した。しかしS 1. Cl−
4(0< x< 1) 、 S i、N、−4(0< 
x< 4−)であっても、寸たゲルマニューム、l1l
−V化合物であってもよい。
The present invention has been mainly described with respect to silicon. But S1. Cl-
4(0<x<1), S i,N,-4(0<
Even if x < 4-), the small germanium, l1l
-V compounds may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置のたて断面図であるO 第2図、第3図は本発明の半導体装11イJ・・よびそ
の製造工程を示したたて断1r11図である。 第4図は本発明の他の半導体装置のだて断面図を示す。      ″+1’i1’l°出19〔i人! 5152          蓼3区 ¥L囚
FIG. 1 is a vertical cross-sectional view of a conventional semiconductor device; FIGS. 2 and 3 are vertical cross-sectional views 1r11 showing a semiconductor device 11aJ of the present invention and its manufacturing process. FIG. 4 shows a vertical sectional view of another semiconductor device of the present invention. ″+1'i1'l°out 19 [i person! 5152 Tate 3 Ward ¥ L Prisoner

Claims (1)

【特許請求の範囲】 1、基板上に非単結晶半導体と該半導体上に互いに離間
して一対の不純物と前記半導体のチャネル形成領域上で
あって前記不純物領域の間にゲイト絶縁物と該絶縁物上
にゲイト電極が設けられたことを特徴とする半導体装置
。 2 基板上に非単結晶半導体を形成する工程に前記非単
た晶半導俸上に一4電型をXする半導体層を形成する工
程と前記マスクおよびマスクの外周辺の半導体層を除云
して一対の不純物層を形成する工程と前記チャネル形成
領域上および前記一対の不純物層上または側面上にゲイ
ト絶縁物と該k ’k vIJ上にゲイト電極を形成す
る工程を有することを特徴とする半導体装置作製方法。
[Claims] 1. A non-single crystal semiconductor on a substrate, a pair of impurities spaced apart from each other on the semiconductor, and a gate insulator and the insulator on the channel forming region of the semiconductor and between the impurity regions. A semiconductor device characterized in that a gate electrode is provided on an object. 2. The step of forming a non-single-crystal semiconductor on the substrate includes the step of forming a semiconductor layer of 14-voltage type X on the non-single-crystal semiconductor layer, and removing the mask and the semiconductor layer around the outside of the mask. and a step of forming a gate insulator on the channel forming region and the pair of impurity layers or on the side surfaces, and a gate electrode on the k'k vIJ. A method for manufacturing a semiconductor device.
JP56126141A 1981-08-12 1981-08-12 Semiconductor device and manufacture thereof Pending JPS5828873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56126141A JPS5828873A (en) 1981-08-12 1981-08-12 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56126141A JPS5828873A (en) 1981-08-12 1981-08-12 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5828873A true JPS5828873A (en) 1983-02-19

Family

ID=14927683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56126141A Pending JPS5828873A (en) 1981-08-12 1981-08-12 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5828873A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119577A (en) * 1986-11-07 1988-05-24 Toshiba Corp Thin film transistor
JPH0521794A (en) * 1991-02-04 1993-01-29 Semiconductor Energy Lab Co Ltd Dieleciric gate type field effect semiconductor device and fabrication thereof
US6028264A (en) * 1982-08-24 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor having low concentration of carbon
US6043105A (en) * 1985-05-07 2000-03-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor sensitive devices
US6180991B1 (en) 1982-12-23 2001-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor having low concentration of phosphorous
US6221701B1 (en) 1984-05-18 2001-04-24 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor and its manufacturing method
USRE37441E1 (en) 1982-08-24 2001-11-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US6346716B1 (en) 1982-12-23 2002-02-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material having particular oxygen concentration and semiconductor device comprising the same
US6566175B2 (en) 1990-11-09 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
US6664566B1 (en) 1982-08-24 2003-12-16 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method of making the same
US6803600B2 (en) 1991-08-26 2004-10-12 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices and method of manufacturing the same
USRE38727E1 (en) 1982-08-24 2005-04-19 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method of making the same
US6979840B1 (en) 1991-09-25 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors having anodized metal film between the gate wiring and drain wiring
US7038238B1 (en) 1985-05-07 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a non-single crystalline semiconductor layer

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38727E1 (en) 1982-08-24 2005-04-19 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method of making the same
US6028264A (en) * 1982-08-24 2000-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor having low concentration of carbon
US6664566B1 (en) 1982-08-24 2003-12-16 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method of making the same
USRE37441E1 (en) 1982-08-24 2001-11-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US6346716B1 (en) 1982-12-23 2002-02-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material having particular oxygen concentration and semiconductor device comprising the same
US6180991B1 (en) 1982-12-23 2001-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor having low concentration of phosphorous
US6503771B1 (en) 1983-08-22 2003-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor photoelectrically sensitive device
US6660574B1 (en) 1984-05-18 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Method of forming a semiconductor device including recombination center neutralizer
US6221701B1 (en) 1984-05-18 2001-04-24 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor and its manufacturing method
US6043105A (en) * 1985-05-07 2000-03-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor sensitive devices
US7038238B1 (en) 1985-05-07 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a non-single crystalline semiconductor layer
JPS63119577A (en) * 1986-11-07 1988-05-24 Toshiba Corp Thin film transistor
US6566175B2 (en) 1990-11-09 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
US7507615B2 (en) 1990-11-09 2009-03-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
JPH0521794A (en) * 1991-02-04 1993-01-29 Semiconductor Energy Lab Co Ltd Dieleciric gate type field effect semiconductor device and fabrication thereof
US6803600B2 (en) 1991-08-26 2004-10-12 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices and method of manufacturing the same
US7456427B2 (en) 1991-08-26 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices and method of manufacturing the same
US7821011B2 (en) 1991-08-26 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices and method of manufacturing the same
US6979840B1 (en) 1991-09-25 2005-12-27 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors having anodized metal film between the gate wiring and drain wiring
US7642584B2 (en) 1991-09-25 2010-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same

Similar Documents

Publication Publication Date Title
JPS5828873A (en) Semiconductor device and manufacture thereof
JPS5940297B2 (en) Method of manufacturing large-scale integrated circuits
EP0141425A1 (en) Small area thin film transistor
JPS5827364A (en) Insulated gate type field effect semiconductor device
US4994401A (en) Method of making a thin film transistor
TWI222227B (en) Method for forming LDD of semiconductor devices
JPS5827365A (en) Semiconductor device and manufacture thereof
JPS6188565A (en) Field-effect type transistor
JPS6066854A (en) Semiconductor device and manufacture thereof
JPH06151852A (en) Thin film transistor
JPS597231B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP2996025B2 (en) Method of manufacturing insulating film and thin film transistor device using the same
JPS5764927A (en) Manufacture of semiconductor device
JPS59189676A (en) Semiconductor device
JPS59124165A (en) Insulated gate type transistor and manufacture thereof
JPH0572749B2 (en)
JPS5867066A (en) Insulating gate type field-effect semiconductor device
JPS54157496A (en) Manufacture of tunnel junction
JP2646614B2 (en) Method for manufacturing semiconductor device
KR840002055B1 (en) The method of mos with metalic electrode fabrication
JPS5660064A (en) Manufacture of semiconductor device
JPH06324349A (en) Method and apparatus for producing semiconductor device
JPS60157258A (en) Thin film transistor and manufacture thereof
JPS5867067A (en) Manufacture of insulating gate type field effect semiconductor device
JPH02117166A (en) Semiconductor device