JPS5827364A - Insulated gate type field effect semiconductor device - Google Patents

Insulated gate type field effect semiconductor device

Info

Publication number
JPS5827364A
JPS5827364A JP12500381A JP12500381A JPS5827364A JP S5827364 A JPS5827364 A JP S5827364A JP 12500381 A JP12500381 A JP 12500381A JP 12500381 A JP12500381 A JP 12500381A JP S5827364 A JPS5827364 A JP S5827364A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor device
field effect
semiconductor
sas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12500381A
Other languages
Japanese (ja)
Other versions
JP2593639B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP56125003A priority Critical patent/JP2593639B2/en
Publication of JPS5827364A publication Critical patent/JPS5827364A/en
Application granted granted Critical
Publication of JP2593639B2 publication Critical patent/JP2593639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To obtain characteristics similar to a single crystal semiconductor even in a thin film structure of a field effect semiconductor device by forming a channel forming region under a gate at a semi-amorphous semiconductor having fine crystallinity formed on a substrate. CONSTITUTION:A pair of impurity regions 29, 30 are formed at both sides of a channel forming region on a semi-amorphous semiconductor 20 having fine crystallinity on a substrate 1. Gate electrodes 35 are formed on the channel forming region and an insulator 33. A field insulator 31 is formed on a pair of impurity regions 29, 30 forming a source and a drain.

Description

【発明の詳細な説明】 本発明は絶縁ゲイト型電界効果半導体装置(以下工GF
FiTという)に関するもので、特に基板上に設けられ
た5〜200Aの大きさの微結晶性を有するセミアモル
ファス半導体(以下SASという)をゲイト下のチャネ
ル形成領域に用いることにより薄膜型構造においても単
結晶半寺体と同様の特性を得んとしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated gate field effect semiconductor device (hereinafter referred to as GF
In particular, by using a microcrystalline semi-amorphous semiconductor (hereinafter referred to as SAS) provided on a substrate and having a size of 5 to 200 A for the channel formation region under the gate, it can also be applied to a thin film structure. The aim was to obtain properties similar to those of a single-crystal half body.

本発明は基板特にその上世の半纏体と反応をおこさない
基板例えばガラスまたはセラミック基板また導電性基板
においてはオーム接触をする基板上にプラズマOVD法
によりSASを形成し、これを積極的に工GFET K
用いんとしたものである。このSASに関しては、本発
明人の出願になる特許m(セミアモルファス半導体 特
願昭56−0658261956.4.30出願、特願
昭55−120322855.8.30出願)に記され
ている0 すなわち半纏体例えば珪素半導体における単結晶を有さ
ない特にアモルファス構造のガラス基板、多結晶構造の
ステンレス基板であってもその電気−光伝導度がAMI
 (100mW/c督)の光エネルギを与えた場合1×
10〜8X10 (Acm)を有しtきわめてすぐれた
特性を有していることが実験的に本発明人により見出さ
れたものである0 本発明はかかるSASの特性を工G’FKTに用いんと
したものである。
In the present invention, a SAS is formed by a plasma OVD method on a substrate, particularly a substrate that does not react with the semi-consolidated material above it, such as a glass or ceramic substrate, or a substrate with which ohmic contact is made in the case of a conductive substrate, and this is actively engineered. GFETK
This is something I wanted to use. Regarding this SAS, 0 is written in patent m (semi-amorphous semiconductor patent application filed on April 30, 1982, filed on April 30, 1982, patent application filed on August 30, 1987-120322855) filed by the present inventor. For example, even in the case of a glass substrate with an amorphous structure that does not have a single crystal in a silicon semiconductor, or a stainless steel substrate with a polycrystalline structure, its electric-photoconductivity is AMI.
When applying light energy of (100mW/c) 1×
The present inventor has experimentally discovered that the SAS has extremely excellent properties with It's quite something.

さらに本発明人はかかるSAS M従来よシ知らすなわ
ち従来アモルファス半導体(ASという)を用いた工G
FETとして第1図の如きたて断面図を有する構造が知
られている。第1図において絶縁基板(1)上にゲイト
電極(s)、Qlが耐熱性材料例えばモリブデンによシ
作られている。
Furthermore, the present inventor has proposed that such SAS
A structure having a vertical cross-sectional view as shown in FIG. 1 is known as an FET. In FIG. 1, a gate electrode (s), Ql, is made of a heat-resistant material such as molybdenum on an insulating substrate (1).

さらにゲイト絶縁膜(11)をCVD法によシ酸化珪素
を0.1〜0.5μの厚さに設ける。次にこの上面にA
sを形成し、(5) I (10)のチャネル型ゲイト
上のみに選択エッチをして形成する。さらにNチャネル
IGFET &におけるN型の半導体層(6)(7)を
選択的にフォトエッチ法を用いて形成し、またPチャネ
ル型工GFET(2)に対してはアルミニュームを真空
蒸着法で形成し選択エッチをしてソース(9)、ドレイ
ン(8)を作シ第1図の如く0/M OS ” F B
 Tを完成させている。
Furthermore, a gate insulating film (11) is formed of silicon oxide to a thickness of 0.1 to 0.5 μm by CVD. Next, on this top surface
s is formed, and selective etching is performed only on the channel type gate of (5) I (10). Furthermore, the N-type semiconductor layers (6) and (7) in the N-channel IGFET & are selectively formed using the photo-etching method, and aluminum is formed using the vacuum evaporation method for the P-channel IGFET (2). Form and selectively etch the source (9) and drain (8) as shown in Figure 1.
I have completed T.

この構造においてはゲイト絶縁物0])がCVD法で形
成されるため、高密度でなく、結果としてゲイト電極(
3)と半導体(5)とがショートしゃすく、そのため絶
縁物0])を0.3μ以上と厚くしなければならない。
In this structure, the gate insulator (0]) is formed by the CVD method, so the density is not high, and as a result, the gate electrode (
3) and the semiconductor (5) may be short-circuited, so the insulator 0]) must be made thicker than 0.3 μm.

結果としてゲイト電圧は20〜60Vと大きな電圧とな
り、いわゆる1、5〜5ス(6)、ドレイン(7)の−
琲を精密に位置合せが必要である。しかし基板上に凹凸
がある状態で1μ以上の高精度にて位置合せが不可能で
ある。
As a result, the gate voltage becomes a large voltage of 20 to 60 V, and the so-called 1, 5 to 5 gate voltage (6) and the drain (7) -
It is necessary to precisely align the wire. However, when there are irregularities on the substrate, alignment with a high accuracy of 1 μ or more is impossible.

結果として20〜30μものトレランスヲ作っておシ、
そのためドレイン電圧も50〜”OVと高くなシ、1.
5〜10vの低圧駆動が全く不可能である。
As a result, we created a tolerance of 20 to 30μ,
Therefore, the drain voltage is also as high as 50 to 50V.1.
Low voltage drive of 5-10v is completely impossible.

さらに構造敏感性を有するいわゆるチャネル形ドープさ
れた半導体【密着し、それを完全にエツチング除去しな
い限りこの部分でソース(6)。
In addition, the so-called channel-type doped semiconductor with structural sensitivity [closely adheres to the source (6) in this part unless it is completely etched away.

ドレイン(′7)がショートしてしまう。しかしこれさ
らにこの裏面が完成された第1図の構造になっても空気
中に露呈するため構造敏感性を有数感性がAsにおいて
はあまシ問題にならないかもしれないが、SASにおい
てはかかる第1図の場合は全く不適当である。
The drain ('7) is shorted. However, even if this back surface becomes the completed structure shown in Figure 1, it will be exposed in the air, so the structural sensitivity may not be a problem in As, but in SAS, such a first The case shown in the figure is completely inappropriate.

本発明はチャネル形成領域にSASを用い、その下側、
上側、側部の、すべてを絶縁物または高不純物濃度を有
する半導体でおおっており、この半導体としての構造敏
感性を菅禦粘キ利用してゲイトも制御することを特徴と
している。そのため従来の40〜80V駆動というので
はなく、ゲイト電圧、ドレイン電圧とも5〜IOV駆動
が可能となり、さらに1.5■駆動もその構造において
本質的に可能であるという特徴を有する。
In the present invention, SAS is used for the channel forming region, and the lower side,
The upper and side parts are all covered with an insulator or a semiconductor with a high impurity concentration, and the gate is also controlled by utilizing the structural sensitivity of this semiconductor. Therefore, instead of the conventional 40-80V drive, it is possible to drive at 5-IOV for both the gate voltage and the drain voltage, and furthermore, it has the feature that 1.5-IOV drive is essentially possible due to its structure.

さらに第1図においては4回のフォトマスクを用いて作
るもゲイト電極(4)、ソース(6)、ドレイン(7)
は異種材料であシ、基板上にリード配線を抵抗の小さい
金属で作ろうとすると、さらにこの上面に2回のフォト
マスクを必要とし、計6回になるにもかかわらずi4配
線しかできなも同時に一体化して作シやすいことがチャ
ネル形成領域をSASで作るに加えてデバイスとして有
する大きな特徴である。
Furthermore, in Figure 1, the gate electrode (4), source (6), and drain (7) are made using photomasks four times.
are made of different materials, and if you try to make lead wiring on the board with a metal with low resistance, you will need two photomasks on the top surface, making it six times in total, but only I4 wiring can be done. In addition to making the channel forming region with SAS, it is also a major feature of having it as a device that it can be integrated and manufactured easily.

以下図面に従って本発明の詳細な説明する実施例1 第2図は本発明のIGFIiiTの製造工程を示すたて
断面図である。
Embodiment 1 The present invention will be described in detail below with reference to the drawings. Embodiment 1 FIG. 2 is a vertical sectional view showing the manufacturing process of IGF IiiT of the present invention.

第2図(4)において基板(1)側が絶縁性であシかた
はポリシラン)またはフッ化珪素をヘリュ−ムまたは水
素で希釈し、0.01〜10torr例えば0、3to
rrの反応炉内に導゛びき、100〜400@O例えば
3000”に加熱された基板上に前記反応性気体に直流
、高周波(500KH2〜50MHz例えば13、56
MHz )またはマイクロ波(1〜l0IH2例えば2
.45GH2)(7)電磁エネルギを2O−200Wの
出力を加えてグロー放電またはアーク放電を行わしめ、
これら反応性気体およびキャリアガスをプラズマ化し、
分解、反応せしめ、基板上に微結晶性を有する真性また
は実質的に真性のSASを形成させたものである。
In Figure 2 (4), the substrate (1) side is insulating (polysilane) or silicon fluoride is diluted with helium or hydrogen, and the
rr reactor and heated to 100~400@O, e.g. 3000'', the reactive gas is applied with direct current, high frequency (500KH2~50MHz e.g. 13,56
MHz) or microwave (1~10IH2 e.g. 2
.. 45GH2) (7) Apply electromagnetic energy with an output of 2O-200W to cause glow discharge or arc discharge,
These reactive gases and carrier gases are turned into plasma,
An intrinsic or substantially intrinsic SAS having microcrystalline properties is formed on a substrate by decomposition and reaction.

このSASは5〜20OAのショートレンジオーダの大
きさの結晶性を有するのみならず、珪素の不対結合手を
中和させ・る水素、フッ素の如きハロゲン元素による再
結合中心中和剤に0.01中和するため、リチューム、
ナトリュームまたはカリュームの如きアルカリ金属を1
0〜10 c m−’の濃度に添加してもよい。
This SAS not only has crystallinity on the order of a short range of 5 to 20 OA, but also has zero recombination center neutralizing agents using halogen elements such as hydrogen and fluorine, which neutralize dangling bonds in silicon. .01 To neutralize, lithium,
1 alkali metal such as sodium or potassium
It may be added to a concentration of 0 to 10 cm-'.

このSASは暗伝導度1×10〜3×10(fLcm)
′を有し、Asの10’−10’ (A Cm5’に比
べてもlo〜1t3倍も太きい。光伝導度はAMIの条
件下にてIXIσ′〜8×10L(ユCm)′を実験的
に有し、特にAsの10〜3X10 (acJに比べて
10〜10倍も大きい。
This SAS has a dark conductivity of 1 x 10 to 3 x 10 (fLcm)
', and is 10'-10' (A Cm5', lo ~ 1t 3 times thicker than As. The photoconductivity is IXIσ' ~ 8 x 10L (U Cm)' under AMI conditions. Experimentally, it has 10-3X10 of As (10-10 times larger than acJ).

そのためこのSASを流れる電子りホールの464j/
lもAsの10辷1d倍も大きく、このSASを工GF
ETのチャネル形成領域用の半導体として用いることは
高速応答用の半導体装置を作る上にきわめて重要である
〇 さらに第2図(A)はマスクQ1)を1〜5μの厚さに
選択的に形成して、ここに第1のフォトマスク■を用い
た。これは減圧プラズマ気相法によシ酸化珪素または耐
熱性有機樹脂であるポリイミド膜、P工Qであってもよ
い。
Therefore, the electron hole flowing through this SAS is 464j/
l is also 10 x 1d times larger than As, and this SAS is
Its use as a semiconductor for the channel formation region of ET is extremely important in making semiconductor devices for high-speed response. Furthermore, Figure 2 (A) shows the mask Q1) selectively formed to a thickness of 1 to 5 μm. Then, the first photomask (2) was used here. This may be a silicon oxide film or a polyimide film made of a heat-resistant organic resin, or a polyimide film made by a low pressure plasma vapor phase method.

図面にて工GFETの領域(イ)においてソース領域(
ハ)、ドレイン領域(イ)、チャネル形成領域(ハ)を
構成させている。
In the drawing, the source region (
c), a drain region (a), and a channel forming region (c).

この後この上面に再びAS’JたはSASの半導体層(
ハ)を0.1〜1μの厚さで半導体層−と同様の方法に
て形成した。この時NまたはPチャネル11 t め IGFET 曇苧咋挙dXNまたはP型の半導体層のそ
れぞれtj日、v価の不純物であるリン、■価の不純物
であるホウ素を0.2〜2チ添加した。
After this, the AS'J or SAS semiconductor layer (
C) was formed to a thickness of 0.1 to 1 μm in the same manner as the semiconductor layer. At this time, 0.2 to 2 t of phosphorus, which is a V-valent impurity, and boron, which is a ■-valent impurity, were added to the N- or P-channel IGFET dXN or P-type semiconductor layer, respectively. .

かくして第1図(A)を得た。Thus, FIG. 1(A) was obtained.

すると領域(ハ)と(イ)に一対を構成して一導電型の
半導体層H,(30)がソース、ドレインとして形成さ
れる。さらにこの上面にフィールド絶縁物(31)をば
化珪素またはポリイミド4()1膜により0.1〜1μ
の厚さに形成して第2図を得た。
Then, a pair of semiconductor layers H, (30) of one conductivity type are formed in regions (c) and (a) as a source and a drain. Furthermore, a field insulator (31) is formed on this upper surface by a film of silicon carbide or polyimide 4 () with a thickness of 0.1 to 1 μm.
Figure 2 was obtained by forming it to a thickness of .

次に領域(ハ)’I JIF 5する部分および電極用
コンタクト用開穴(32)のフィールド絶縁物を選択的
に第2のフォトマスク■によシ除去した。
Next, the field insulator in the region (c)' I JIF 5 and the electrode contact hole (32) was selectively removed using a second photomask (3).

この後ゲイト絶縁物(3りをプラズマ酸化法にて300
〜200OAの厚さに形成した。すなわち酸素または酸
化性気体を2.45GHz @力lOO〜500W)の
マイクロ波により分解、活性化し、この活性化した酸化
性気体中に基板を300〜500”Cの温度にて設置し
て、この表面に酸化物特にSAS翰が珪素であった時は
酸化珪素膜を作製した。
After this, the gate insulator (3 oxide film) was processed by plasma oxidation method to 300%
It was formed to a thickness of ~200OA. That is, oxygen or an oxidizing gas is decomposed and activated by microwaves of 2.45 GHz @power 1OO~500 W), and the substrate is placed in this activated oxidizing gas at a temperature of 300~500''C. An oxide film, especially a silicon oxide film, was formed on the surface when the SAS wire was made of silicon.

によシ酸化珪素、窒化珪素等の絶縁膜を300〜200
OAの厚さに形成してもよい。さらに不揮発性メモリと
するには、このゲイト絶縁物中に半導体または金属の塊
状のクラスタまたは薄膜を形成し、電荷捕獲中心とする
と有効である。
Insulating film of silicon oxide, silicon nitride, etc.
It may be formed to the thickness of OA. Furthermore, in order to obtain a non-volatile memory, it is effective to form a cluster or a thin film of semiconductor or metal in the gate insulator and use it as a charge trapping center.

またMNO8Jfj4造にしてもよい。これらはこの工
GFETの応用によって決められる自由度を本発明は有
する。
Alternatively, it may be MNO8Jfj4. The present invention has a degree of freedom in determining these factors depending on the application of the GFET.

かくの如くにしてゲイト絶縁物(33)を形成した後第
3の7オトマスク■によりソースまたはドレイン(図面
ではドレイン)に開口(32)を設けた後電極(35)
 、 (34) !J−ド(36)を金属膜を洒択的に
第4のフォトマスクを用いて作製した。
After forming the gate insulator (33) in this manner, an opening (32) is formed in the source or drain (drain in the drawing) using a third 7-oto mask (3), and then an electrode (35) is formed.
, (34)! J-do (36) was fabricated using a metal film selectively using a fourth photomask.

この電極、リード想はアルミニューム等の真空蒸着法お
よびフォトエツチング法を用いる方法またはニッケル等
の金属の無電界メッキ法とフォトエツチング法を用いる
のが有効である。
It is effective to form the electrodes and leads by using vacuum evaporation and photoetching of aluminum or the like, or electroless plating and photoetching of metal such as nickel.

?t tr 4−L二それらの金属がその下側の絶縁膜
または半導体層にしみこむことがないようにするにはリ
フトオフ法と無電界メッキ法を組合わせた方法が好まし
かった。すなわち第2図(D)において電極リード(3
5) (Qj”が設けられていない部分に第2図(A)
と同様にマスク用レジストを設けこの上面およびその他
−面に金属膜を形成した後、マスクとその上の金橋膜の
みを選択的に溶去、除去する方法である。
? t tr 4-L2 In order to prevent these metals from penetrating into the underlying insulating film or semiconductor layer, a method combining a lift-off method and an electroless plating method was preferred. That is, in FIG. 2(D), the electrode lead (3
5) (See Figure 2 (A) for the part where Qj” is not provided.
In this method, a resist for a mask is provided and a metal film is formed on the upper surface and other surfaces of the resist, and then only the mask and the gold bridge film thereon are selectively eluted and removed.

以上の如くにして第2図(D)に示されるたて断面図の
構造を有するIGNETを得た。この時一対の不純物領
域(ハ)+(30)はソース、ドレインとして機能し、
チャネル形成領域αつはそのチャネル長を0゜3〜20
μ特に2〜3μとすることができ従来のAsを用いた第
1図の構造に比べて10〜10“倍もの高い周波数応答
を得ることができた。
In the manner described above, an IGNET having the vertical cross-sectional structure shown in FIG. 2(D) was obtained. At this time, a pair of impurity regions (c) + (30) function as a source and a drain,
The channel forming region α has a channel length of 0°3 to 20°.
In particular, μ can be set to 2 to 3 μ, and a frequency response 10 to 10 times higher than that of the conventional structure shown in FIG. 1 using As can be obtained.

さらに駆動電圧は1.5.〜IOV代表的には5〜10
Vで可能であシ、従来の1/2〜115にまで下げるこ
とができた。図面よシ明らかな如く、チャネル形成領域
0燵を構成するSASはその上側をゲイト絶縁物(33
)でおおわれており、下側電極を有する薄い基板(1)
上に形成されており、特にチャネル形成領域はそのすべ
て上面、下面、側面とも絶縁膜、半導体でおおわれてお
勺、大気が触れることによる劣化がない。
Furthermore, the driving voltage is 1.5. ~IOV typically 5-10
It was possible with V, and it was possible to lower it to 1/2 to 115 of the conventional value. As is clear from the drawing, the SAS constituting the channel forming region 0 has a gate insulator (33
) and has a lower electrode (1)
In particular, the channel forming region is all covered with an insulating film and a semiconductor on the top, bottom, and side surfaces, so there is no deterioration due to exposure to air or air.

また本発明においてSASがASに比べてきゎラス基板
等61AS ’4反応をしない材料上に形成しまたこの
SASのチャネル形成領域上には不純物題がない等の特
徴を有する。
Furthermore, in the present invention, the SAS has the characteristics that it is formed on a material that does not react with 61AS'4, such as a glass substrate, and there is no impurity problem on the channel formation region of the SAS, compared to the AS.

本発明は単にひとつの工GFETを示したが、これは複
数の工GFETを同一基板上に集積化して設けることも
容易であり、さらにリード(36)上に眉間絶縁物を設
は第2のリードを多層配列して設けることも容易である
Although the present invention shows only one mechanical GFET, it is easy to integrate and provide a plurality of mechanical GFETs on the same substrate. It is also easy to arrange the leads in multiple layers.

また基板(1)を透光性のガラスとした時、下層より光
を照射してその光の有無程度を検出するフォトトランジ
スタとして作用させることが可能である。またこれを集
積化して撮像用半導体装置として用いることも可能であ
る等種々の応用が可能である。
Further, when the substrate (1) is made of translucent glass, it is possible to make it act as a phototransistor that irradiates light from the lower layer and detects the presence or absence of the light. Furthermore, various applications are possible, such as integrating this and using it as an imaging semiconductor device.

本発明は珪素を中心如記した。しかしsicイ(0イx
zl) 、 Si、N、−、(0< x<4)であって
も、またゲルマニューム、I−V化合物テあっテモよい
The present invention focuses on silicon. But sic i (0i x
zl), Si, N, -, (0<x<4), germanium, IV compounds are also suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置のたて断面図である0 第2図は本発明の半導体およびその製造工程を示したた
て断面図である。 纂1図
FIG. 1 is a vertical cross-sectional view of a conventional semiconductor device. FIG. 2 is a vertical cross-sectional view showing the semiconductor of the present invention and its manufacturing process. Summary 1

Claims (1)

【特許請求の範囲】 ■、 基板上に設けられた微結晶性を有するセミアモル
ファス半導体にゲイト下のチャネル形成領域が設けられ
たことを特徴とする絶縁ゲイト型電界効果半導体装置0 2、基板上の微結晶性を有するセミアモルファス半褥体
上にチャネル形成領域をはさんで一対の不純物領域が設
けられるとともに前記チャネル形成領域上および該絶縁
物上3、 特許請求の範囲第・2項において、ソースお
よびドレインを形成する一対の不純物領域上にはフィー
ルド絶縁物が設けられたことを特徴とする絶縁ゲイト型
電界効果半導体装置。
[Claims] (1) An insulated gate field effect semiconductor device 02, characterized in that a semi-amorphous semiconductor having microcrystalline properties is provided on a substrate, and a channel formation region under the gate is provided. A pair of impurity regions are provided on a semi-amorphous semi-substrate having microcrystallinity with a channel forming region in between, and on the channel forming region and on the insulator. An insulated gate field effect semiconductor device characterized in that a field insulator is provided on a pair of impurity regions forming a source and a drain.
JP56125003A 1981-08-10 1981-08-10 Insulated gate field effect semiconductor device Expired - Lifetime JP2593639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56125003A JP2593639B2 (en) 1981-08-10 1981-08-10 Insulated gate field effect semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56125003A JP2593639B2 (en) 1981-08-10 1981-08-10 Insulated gate field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS5827364A true JPS5827364A (en) 1983-02-18
JP2593639B2 JP2593639B2 (en) 1997-03-26

Family

ID=14899464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56125003A Expired - Lifetime JP2593639B2 (en) 1981-08-10 1981-08-10 Insulated gate field effect semiconductor device

Country Status (1)

Country Link
JP (1) JP2593639B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221409A (en) * 1985-03-25 1986-10-01 Sanshin Kensetsu Kogyo Kk Ground improvement method
US4624606A (en) * 1985-03-12 1986-11-25 N.I.T. Co., Ltd. Foundation improvement process and apparatus thereof
JPS6235039U (en) * 1985-08-15 1987-03-02
US4971480A (en) * 1989-01-10 1990-11-20 N.I.T. Co., Ltd. Ground hardening material injector
US5006017A (en) * 1989-01-27 1991-04-09 Kajima Corporation Method for improving ground of large section area
JPH04242724A (en) * 1990-12-25 1992-08-31 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JPH07158050A (en) * 1993-12-03 1995-06-20 Nissan Kensetsu Kk Soil improvement work method by high-pressure injection and agitation
US5701167A (en) * 1990-12-25 1997-12-23 Semiconductor Energy Laboratory Co., Ltd. LCD having a peripheral circuit with TFTs having the same structure as TFTs in the display region
US5859445A (en) * 1990-11-20 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device including thin film transistors having spoiling impurities added thereto
US5944454A (en) * 1997-04-18 1999-08-31 Melegari; Cesare Land reclamation method and equipment for soil involving the introduction into the subsoil layers of a high-pressure liquid jet together with a fluid containing particles of a solid agent
US6221701B1 (en) 1984-05-18 2001-04-24 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor and its manufacturing method
US6337731B1 (en) 1992-04-28 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6448577B1 (en) 1990-10-15 2002-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with grain boundaries
US6693681B1 (en) 1992-04-28 2004-02-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
USRE39393E1 (en) 1990-11-30 2006-11-14 Semiconductor Energy Laboratory Co., Ltd. Device for reading an image having a common semiconductor layer
JP2008045218A (en) * 2007-10-01 2008-02-28 Dowa Holdings Co Ltd Plating method and patterning method on metal-ceramic composite member, wet treatment apparatus and metal-ceramic composite member for power module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151329A (en) * 1979-05-14 1980-11-25 Shunpei Yamazaki Fabricating method of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151329A (en) * 1979-05-14 1980-11-25 Shunpei Yamazaki Fabricating method of semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660574B1 (en) 1984-05-18 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Method of forming a semiconductor device including recombination center neutralizer
US6221701B1 (en) 1984-05-18 2001-04-24 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor and its manufacturing method
US4624606A (en) * 1985-03-12 1986-11-25 N.I.T. Co., Ltd. Foundation improvement process and apparatus thereof
JPS61221409A (en) * 1985-03-25 1986-10-01 Sanshin Kensetsu Kogyo Kk Ground improvement method
JPS6235039U (en) * 1985-08-15 1987-03-02
US4971480A (en) * 1989-01-10 1990-11-20 N.I.T. Co., Ltd. Ground hardening material injector
US5006017A (en) * 1989-01-27 1991-04-09 Kajima Corporation Method for improving ground of large section area
US6448577B1 (en) 1990-10-15 2002-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with grain boundaries
US5859445A (en) * 1990-11-20 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device including thin film transistors having spoiling impurities added thereto
US6011277A (en) * 1990-11-20 2000-01-04 Semiconductor Energy Laboratory Co., Ltd. Gate insulated field effect transistors and method of manufacturing the same
USRE39393E1 (en) 1990-11-30 2006-11-14 Semiconductor Energy Laboratory Co., Ltd. Device for reading an image having a common semiconductor layer
US5701167A (en) * 1990-12-25 1997-12-23 Semiconductor Energy Laboratory Co., Ltd. LCD having a peripheral circuit with TFTs having the same structure as TFTs in the display region
JPH04242724A (en) * 1990-12-25 1992-08-31 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US6337731B1 (en) 1992-04-28 2002-01-08 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6693681B1 (en) 1992-04-28 2004-02-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US7554616B1 (en) 1992-04-28 2009-06-30 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
JPH07158050A (en) * 1993-12-03 1995-06-20 Nissan Kensetsu Kk Soil improvement work method by high-pressure injection and agitation
US5944454A (en) * 1997-04-18 1999-08-31 Melegari; Cesare Land reclamation method and equipment for soil involving the introduction into the subsoil layers of a high-pressure liquid jet together with a fluid containing particles of a solid agent
JP2008045218A (en) * 2007-10-01 2008-02-28 Dowa Holdings Co Ltd Plating method and patterning method on metal-ceramic composite member, wet treatment apparatus and metal-ceramic composite member for power module

Also Published As

Publication number Publication date
JP2593639B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
JPS5827364A (en) Insulated gate type field effect semiconductor device
US4823180A (en) Photo-transistor in MOS thin-film technology and method for production and operation thereof
JP2838318B2 (en) Photosensitive device and manufacturing method thereof
US3514676A (en) Insulated gate complementary field effect transistors gate structure
EP0140965A1 (en) Method of making a nonvolatile semiconductor memory device.
US4651182A (en) Insulated-gate field effect transistor and method of fabricating the same
US5060029A (en) Step cut type insulated gate SIT having low-resistance electrode and method of manufacturing the same
JPS5828873A (en) Semiconductor device and manufacture thereof
JPS5827365A (en) Semiconductor device and manufacture thereof
EP0063915B1 (en) A metal insulator semiconductor transistor
JPH06188421A (en) Insulation gate type field effect semiconductor device
TWI814340B (en) Semiconductor device and manufacturing method thereof
JPS5825266A (en) Mos-type semiconductor device and manufacture thereof
JP2535721B2 (en) Insulated gate type semiconductor device
JPS5818966A (en) Manufacture of thin film field-effect transistor
JPS63237570A (en) Manufacture of thin film transistor
JPH06188448A (en) Phototransistor
JP2006120885A (en) Process for fabricating semiconductor element
JP3125982B2 (en) Insulated gate field effect semiconductor device
JPS60158670A (en) Thin-film transistor and manufacture thereof
JPH0750414A (en) Manufacturing method of insulating gate type field-effect semiconductor device
JPS5867066A (en) Insulating gate type field-effect semiconductor device
JPS5867068A (en) Insulating gate type field effect semiconductor device
JPS58132973A (en) Insulated gate type field effect semiconductor device and preparation thereof
JPS5867067A (en) Manufacture of insulating gate type field effect semiconductor device