JPS5828755B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS5828755B2
JPS5828755B2 JP3328378A JP3328378A JPS5828755B2 JP S5828755 B2 JPS5828755 B2 JP S5828755B2 JP 3328378 A JP3328378 A JP 3328378A JP 3328378 A JP3328378 A JP 3328378A JP S5828755 B2 JPS5828755 B2 JP S5828755B2
Authority
JP
Japan
Prior art keywords
heat sink
layer
heat
alloyed
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3328378A
Other languages
Japanese (ja)
Other versions
JPS54124990A (en
Inventor
恂 石井
悦司 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3328378A priority Critical patent/JPS5828755B2/en
Publication of JPS54124990A publication Critical patent/JPS54124990A/en
Publication of JPS5828755B2 publication Critical patent/JPS5828755B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To adhere a heat spreader composed of two kinds of metal to a heat sink hard enough in a region except the operating region of a semiconductor chip, without causing strain near the operating region. CONSTITUTION:On electrode 8 near luminous part 10 of semiconductor chip 1, metal layer 12 is formed approximate three times as wide as luminous part 10. This layer, plated with silver, copper, etc., is large in thermal conductivity and hard to be alloyed with In solder. On the remaining part on electrode 8, gold layer 13 is selectively formed which is easy to be alloyed with In. Heat spreaders 12 and 13 are mounted on heat sink 14 and then fixed by solder 15 and, in consequence, the solder remains as soft metal In is since layer 12 is never alloyed, so that no strain will appear in the active region of the chip. As a result, layer 13 is alloyed with In and comes in hard contact with the heat sink.

Description

【発明の詳細な説明】 この発明は半導体装置に係り、特に半導体チップのヒー
トシンクなどの金属体へのろう接構造に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a structure for soldering a semiconductor chip to a metal body such as a heat sink.

半導体チップに歪みを与えることなく、これをヒートシ
ンク上に接着性よ(マウントすることは、半導体装置の
動作特性を良好に保持するために極めて重要なことであ
る。
It is extremely important to adhesively mount a semiconductor chip on a heat sink without causing distortion to the semiconductor chip in order to maintain good operating characteristics of the semiconductor device.

以下、半導体レーザ装置を例にとって説明する。A semiconductor laser device will be explained below as an example.

通常半導体レーザのチップは放熱効果を大ならしめるた
めに、発熱部に近い電極側をヒートシンクに熱融着され
る。
Normally, the electrode side of a semiconductor laser chip, which is closer to the heat generating part, is thermally fused to a heat sink in order to increase the heat dissipation effect.

この場合、チップに歪みを生せしめないようにするには
、軟い金属であるインジウムがハンダ材として広く用い
られる。
In this case, indium, which is a soft metal, is widely used as a solder material in order to prevent distortion of the chip.

しかし、インジウムでは接着強度が不充分で、時間の経
過に伴なって、ヒートシンクと半導体レーザチップとの
はがれが生じ、ヒートシンクがその機能を失い、半導体
レーザチップの温度上昇を来し、当該チップの特性の劣
化という望ましくない現象が起る。
However, indium does not have sufficient adhesive strength, and over time, the heat sink and semiconductor laser chip peel off, causing the heat sink to lose its function and causing the temperature of the semiconductor laser chip to rise. An undesirable phenomenon of deterioration of characteristics occurs.

一方、接着強度を増すため、例えば錫Sn、金・錫Au
Sn合金、金・ケイ素AuSi合金などの硬いハンダ材
を用いると、チップ内に大きな歪みを誘起し、これまた
チップの急速な特性劣化を生じる。
On the other hand, in order to increase the adhesive strength, for example, tin Sn, gold/tin Au
The use of hard solder materials such as Sn alloys and gold-silicon AuSi alloys induces large strains within the chip, which also causes rapid characteristic deterioration of the chip.

従って、これらのハンダ材を用いて半導体レーザチップ
をヒートシンクに直接接着させることはできない。
Therefore, it is not possible to directly bond a semiconductor laser chip to a heat sink using these solder materials.

そこで、このような問題に対処する方法としてヒートス
プレッダをチップの電極上に設けるという方法が従来か
ら用いられている。
Therefore, a method of providing a heat spreader on the electrodes of the chip has been conventionally used as a method of dealing with such problems.

第1図は従来装置の一例を示す断面図で、この半導体レ
ーザチップ1は次のようにして作成される。
FIG. 1 is a sectional view showing an example of a conventional device, and this semiconductor laser chip 1 is manufactured as follows.

すなわち、n形ガリウム・ヒ素GaAs基板2の上に順
次、n形ガリウム・アルミニウム・ヒ素GaAlAs層
3、P形GaAs層4およびP形GaAlAs層5を液
相成長法などによって成長させ、電流を集中させるべき
部分に絶縁マスク6を用いて亜鉛拡散領域7を形成した
後に電極8,9を設ける。
That is, an n-type gallium-aluminum-arsenide GaAlAs layer 3, a p-type GaAs layer 4, and a p-type GaAlAs layer 5 are sequentially grown on an n-type gallium-arsenide GaAs substrate 2 by a liquid phase growth method, and a current is concentrated. Electrodes 8 and 9 are provided after a zinc diffusion region 7 is formed using an insulating mask 6 in the area to be exposed.

このような半導体レーザチップ1はP形GaAs層4の
電流集中部位が発光部10を形成する。
In such a semiconductor laser chip 1, a current concentration portion of the P-type GaAs layer 4 forms a light emitting portion 10.

そこで、放熱効果を良好ならしめるために、発光部10
に近い電極8上に熱伝導率の大きい金属層からなるヒー
トスプレッダ11を形成する。
Therefore, in order to improve the heat dissipation effect, the light emitting section 10
A heat spreader 11 made of a metal layer with high thermal conductivity is formed on the electrode 8 near the electrode 8 .

このヒートスプレッダ11は厚さ5〜10μmの金属層
からなり、発光部10で生じ、半導体層を流れてきた熱
流を横方向に広げたのちに、この上に接着されたヒート
シンクへ流しこむ作用をする。
This heat spreader 11 is made of a metal layer with a thickness of 5 to 10 μm, and has the function of spreading the heat flow generated in the light emitting part 10 and flowing through the semiconductor layer laterally, and then flowing it into the heat sink bonded thereon. .

従って、チップとの接着性のよくない場合、もしくは一
部に「はがれ」を生じた場合でも、熱はヒートスプレッ
ダ11内で広がった後にヒートシンクへ流れこむので、
熱抵抗の極端な増大は防止される。
Therefore, even if the adhesion to the chip is not good or if a part of the chip peels off, the heat will spread within the heat spreader 11 and then flow into the heat sink.
An extreme increase in thermal resistance is prevented.

しかし、このヒートスプレッダ11を用いる方法では、
ヒートスプレッダ11を構成している金属層の厚さが厚
いので、ヒートシンクの熱融着時にハンダ材であるイン
ジウムとの合金化カ急速ニ進み、大きな歪みが残り、レ
ーザチップ1の特性劣化の誘因になることがしばしばあ
った。
However, in the method using this heat spreader 11,
Since the metal layer constituting the heat spreader 11 is thick, alloying with indium, which is a solder material, rapidly progresses during thermal fusion of the heat sink, leaving large distortions and causing characteristic deterioration of the laser chip 1. It was often the case.

そこで、上記合金化を防ぐために、インジウムと合金を
生じ難い銀などでヒートスプレッダ11を構成するとい
う試みもあったが、合金化が起こり難いということは、
接着強度が小さいことを意味し、この而での問題が多か
った。
Therefore, in order to prevent the above-mentioned alloying, there has been an attempt to construct the heat spreader 11 with silver, etc., which is difficult to form an alloy with indium, but the fact that alloying is difficult to occur means that
This meant that the adhesive strength was low, and there were many problems in this respect.

この発明は以上のような点に鑑みてなされたもので、ヒ
ートスプレッダを2種の金属で構成することによって、
半導体チップの動作領域近傍には歪みを発生させること
なく、その他の領域部分でヒートシンクとの所望の接着
強度が得られるようにした半導体装置の構造を提供せん
とするものである。
This invention was made in view of the above points, and by configuring the heat spreader with two types of metals,
It is an object of the present invention to provide a structure of a semiconductor device in which a desired adhesive strength with a heat sink can be obtained in other regions without causing distortion in the vicinity of the operating region of a semiconductor chip.

第2図はこの発明の一実施例の構成を示す斜視図で、半
導体レーザチップ1は第1図で従来装置の説明に用いた
ものと同一である。
FIG. 2 is a perspective view showing the structure of an embodiment of the present invention, and the semiconductor laser chip 1 is the same as that used to explain the conventional device in FIG.

半導体レーザチップ10発光部10に近い側の電極8の
上に、発光部100幅をおx5ように、例えば発光部1
00幅の1.0〜3.0倍の幅の第1の金属層12を形
成する。
For example, the light emitting part 1 is placed on the semiconductor laser chip 10 on the electrode 8 on the side closer to the light emitting part 10 so that the width of the light emitting part 100 is x5.
A first metal layer 12 having a width of 1.0 to 3.0 times the 00 width is formed.

この第1の金属層12は熱伝導率が大きく、しかもイン
ジウム・ハンダ材と合金しにくい金属、例えば銀、銅、
アルミニウム、ニッケルなどをメッキして形成するのが
簡便である。
This first metal layer 12 is made of a metal that has high thermal conductivity and is difficult to alloy with indium solder material, such as silver, copper, etc.
It is convenient to form it by plating aluminum, nickel, etc.

次に、電極8上のこの第1の金属層12が形成されてい
ない部分に、例えば金からなるインジウムと合金化し易
い第2の金属層13を選択的に形成する。
Next, a second metal layer 13 made of gold, which is easily alloyed with indium, is selectively formed on a portion of the electrode 8 where the first metal layer 12 is not formed.

この場合、第1の金属層12と第2の金属層13とは当
然ながら、厚さを等しくするのが望ましく、厚さは前述
のように5〜10μmが適当である。
In this case, it is naturally desirable that the first metal layer 12 and the second metal layer 13 have the same thickness, and the appropriate thickness is 5 to 10 μm as described above.

第3図はこの実施例の半導体レーザチップをヒートシン
クへ装着した状況を示す断面図で、ヒートシンク14の
上にヒートスプレッダを構成する第1の金属層12およ
び第2の金属層13を下にして半導体レーザチップ1を
ハンダ材15を用いてマウントしである。
FIG. 3 is a cross-sectional view showing the state in which the semiconductor laser chip of this embodiment is mounted on a heat sink. The laser chip 1 is mounted using a solder material 15.

このような構成になっているので、ヒートシンク14へ
の熱融着工程での昇温時に、ハンダ材15であるインジ
ウムと合金しやすい第2の金属層13を構成する金は金
・インジウム合金となりヒートシンク14へ強固に接着
する。
With such a configuration, when the temperature is increased during the thermal fusion process to the heat sink 14, the gold constituting the second metal layer 13, which easily alloys with the indium that is the solder material 15, becomes a gold-indium alloy. It is firmly adhered to the heat sink 14.

一方、半導体レーザチップ1の能動域をおx5第1の金
属層12はインジウムとの合金が進まないので、ハンダ
材15はやわらかい金属インジウムのまSで存在するこ
とになり、緩衝作用を果し、半導体レーザチップ10発
光部10などの能動域に歪みを導入することがない。
On the other hand, since alloying with indium does not progress in the first metal layer 12 of the active region of the semiconductor laser chip 1, the solder material 15 exists in the form of soft metal indium, which acts as a buffer. , no distortion is introduced into the active region of the semiconductor laser chip 10, the light emitting section 10, etc.

以上の実施例では半導体レーザチップに適用したものに
ついて述べたが、この発明は発光ダイオード、ガンダイ
オード、インバットダイオードなどの半導体素子にも広
く適用できるものであり、また、ヒートスプレッダを構
成する金属層の形状も、実施例における長方形に限定さ
れるものでないことも勿論である。
Although the above embodiments have been described as being applied to semiconductor laser chips, this invention can also be widely applied to semiconductor devices such as light emitting diodes, Gunn diodes, and invat diodes. Of course, the shape is not limited to the rectangle in the embodiment.

以上詳述したように、この発明では半導体チップの発熱
を伴う能動域近傍では・・ンダ材が合金化して硬化する
ことの少い第1の金属層を設けであるので、この領域に
は歪みを導入することなく、また、その他の部分ではハ
ンダ材が合金化し易い第2の金属層を設けであるので、
・・ンダ材を用いて接着したヒートシンクとの接着強度
はこの部分で十分確保できる。
As detailed above, in this invention, near the active region of the semiconductor chip that generates heat, the first metal layer is provided where the solder material is less likely to alloy and harden, so this region is strained. In addition, since the second metal layer is provided in other parts where the solder material is easily alloyed,
...The adhesive strength with the heat sink bonded using the soldering material can be ensured sufficiently in this part.

従って、半導体チップの特性を損することなく、放熱効
果の良好な半導体装置が得られる。
Therefore, a semiconductor device with good heat dissipation effect can be obtained without impairing the characteristics of the semiconductor chip.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の一例を示す断面図、第2図はこの発
明の一実施例を示す斜視図、第3図はこの実施例をヒー
トシンクへ装着した状況を示す断面図である。 図において、1は半導体チップ、8,9は電極、10は
発光部(発熱部)、12は第1の金属層、13は第2の
金属層、14はヒートシンク、15はハンダ材である。 なお、図中同一符号は同一もしくは相当部分を示す。
FIG. 1 is a sectional view showing an example of a conventional device, FIG. 2 is a perspective view showing an embodiment of the present invention, and FIG. 3 is a sectional view showing this embodiment mounted on a heat sink. In the figure, 1 is a semiconductor chip, 8 and 9 are electrodes, 10 is a light emitting part (heat generating part), 12 is a first metal layer, 13 is a second metal layer, 14 is a heat sink, and 15 is a solder material. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体チップをハンダ材を介してヒートシンクに接
着し上記半導体チップ内の発熱を放散させるようにした
ものにおいて、上記半導体チップ内の発熱部位に近い側
の上記半導体チップの表面に設けられた電極上の上記発
熱を伴う能動域に対向する部分には上記・・ンダ材と合
金化し難い第1の金属層を、上記電極上のその他の部分
には上記ハンダ材と合金化し易い第2の金属層を形成し
、これら第1および第2の金属層の上面に上記ハンダ材
を介してヒートシンクを接着したことを特徴とする半導
体装置。
1. In a device in which a semiconductor chip is bonded to a heat sink via a solder material to dissipate heat generated within the semiconductor chip, an electrode provided on the surface of the semiconductor chip on the side closer to the heat generating part within the semiconductor chip. A first metal layer that is difficult to alloy with the solder material is placed on the part facing the active area that generates heat, and a second metal layer that is easy to alloy with the solder material is placed on the other part of the electrode. 1. A semiconductor device comprising a heat sink bonded to the upper surfaces of the first and second metal layers via the solder material.
JP3328378A 1978-03-22 1978-03-22 semiconductor equipment Expired JPS5828755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3328378A JPS5828755B2 (en) 1978-03-22 1978-03-22 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328378A JPS5828755B2 (en) 1978-03-22 1978-03-22 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS54124990A JPS54124990A (en) 1979-09-28
JPS5828755B2 true JPS5828755B2 (en) 1983-06-17

Family

ID=12382197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328378A Expired JPS5828755B2 (en) 1978-03-22 1978-03-22 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS5828755B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512186A1 (en) * 1991-05-03 1992-11-11 International Business Machines Corporation Cooling structures and package modules for semiconductors

Also Published As

Publication number Publication date
JPS54124990A (en) 1979-09-28

Similar Documents

Publication Publication Date Title
JP3271475B2 (en) Electrical element joining material and joining method
JP2004537171A (en) Light emitting device including modifications for submount bonding and method of making same
JP2006287226A (en) Semiconductor chip having layer sequence regulated for forming solder joints, and method for forming solder joint between support and the semiconductor chip
JP2001358371A (en) Optical semiconductor device
US9324674B2 (en) Die substrate assembly and method
JP2012069545A (en) Method for mounting light-emitting element
US3480842A (en) Semiconductor structure disc having pn junction with improved heat and electrical conductivity at outer layer
JPS5828755B2 (en) semiconductor equipment
JPH0637403A (en) Semiconductor laser device
KR20070039195A (en) Semiconductor device having advanced thermal stability and preparation method thereof
JPH0531317B2 (en)
JPH06188516A (en) Semiconductor device and fabrication thereof
JPS6222556B2 (en)
JP3407536B2 (en) Nitride semiconductor device
US4921158A (en) Brazing material
JPH01138777A (en) Submount for optical semiconductor element
JPS606117B2 (en) Injection type semiconductor light emitting device
JP2996367B2 (en) Semiconductor device and manufacturing method thereof
US20230387062A1 (en) Semiconductor device
JPS62122157A (en) Electrode structure of heat sink for photosemiconductor
JPS6081884A (en) Semiconductor light emitting device
JP2809799B2 (en) Semiconductor device
JP3854467B2 (en) Manufacturing method of semiconductor device
KR850005175A (en) Light-receiving diode and its manufacturing method
JPS60105241A (en) Package for semiconductor element