JPS5825265A - Manufacture of mosfet - Google Patents
Manufacture of mosfetInfo
- Publication number
- JPS5825265A JPS5825265A JP12379981A JP12379981A JPS5825265A JP S5825265 A JPS5825265 A JP S5825265A JP 12379981 A JP12379981 A JP 12379981A JP 12379981 A JP12379981 A JP 12379981A JP S5825265 A JPS5825265 A JP S5825265A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- gate electrode
- substrate
- poly
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 230000003647 oxidation Effects 0.000 claims abstract description 4
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims description 6
- 239000004065 semiconductor Substances 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 abstract description 6
- 238000000034 method Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 210000000554 iris Anatomy 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Local Oxidation Of Silicon (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はMOS r罵!の製造方法に関し、侍に多結
晶シリコンをゲート電極としたセル7アライン法を応用
した方法を提供するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention is a MOS r! Regarding the manufacturing method, the present invention provides a method applying the cell 7 alignment method using polycrystalline silicon as a gate electrode.
最近の菖01 r璽!の短チャンネル化に伴い、ソース
、ドレインの接合面は浅(,11たゲート酸化膜も薄く
する必要がある。Recent irises 01 r seal! As the channel becomes shorter, the junction surface between the source and drain must be made shallower (11), and the gate oxide film must also be thinner.
接合面を浅くしようとする結果、従来のp2o1のプレ
デポジシ替ン法でソース、ドレインをセル77ラインす
ると、ゲート電極を構成する多結晶シリコンへの導入不
純物が不足してゲート電極の抵抗値が高い家まとなり、
r罵!として使用出来ない、またイオン注入法に依って
ソース、ドレインを形成する場合は、その注入後にゲー
ト酸化膜をマスクとしてP2O,をルデポジシ1ン法を
用いて多結晶シリコンの抵抗値を下げる事は可能である
が、ゲート酸化膜が薄く設定されているのでP、0.の
拡散マスクとしての機能を果さなくなる。As a result of trying to make the junction surface shallower, when the source and drain are made in 77 cell lines using the conventional p2o1 pre-deposition method, there is not enough impurity introduced into the polycrystalline silicon that makes up the gate electrode, resulting in a high resistance value of the gate electrode. Together at home,
r-swear! In addition, when forming the source and drain by ion implantation, it is not possible to lower the resistance value of polycrystalline silicon by using the gate oxide film as a mask and depositing P2O after implantation. Although it is possible, since the gate oxide film is set thin, P, 0. It no longer functions as a diffusion mask.
本発明はこのような問題点EI!みて為されたものであ
って、以下に図面を参照しつつ詳述する。The present invention solves such problems EI! The details of this work will be explained below with reference to the drawings.
第1図は一導電型半導体基板1例えばplnのシリコン
基板(1)上にゲート酸化膜(2Jを介して多結晶シリ
コンから成るゲート電極(31を設けた状態を示してい
る。FIG. 1 shows a state in which a gate electrode (31) made of polycrystalline silicon is provided on a semiconductor substrate 1 of one conductivity type, eg, a silicon substrate (1) of PLN, via a gate oxide film (2J).
次にこのゲート電極(31をxm不純物の拡散に対する
マスクとして舅型の不純物1例えば?ffi’Iをプレ
デポジション法等を用いて拡散してMWlのソース、ド
レイン(4バ5)を形成するケ(第2図)。Next, using this gate electrode (31 as a mask for the diffusion of the xm impurity), a leg-shaped impurity 1, for example ?ffi'I, is diffused using a pre-deposition method to form the source and drain (4 bars 5) of the MW1. (Figure 2).
引合続いてこの第2図に示す状態の基板を高圧低温雰囲
気中で酸化し、多結晶シダコンから成るゲート電極(3
1並びにソース、ドレイン(4バ5)表面を酸化する。Subsequently, the substrate in the state shown in FIG. 2 was oxidized in a high-pressure, low-temperature atmosphere to form a gate electrode (3
1 as well as the source and drain (4 and 5) surfaces are oxidized.
この高圧低温酸化に依ると、多結晶シリコン表面に成長
する酸化膜の厚みと、単結晶シリコン表面に形成される
酸化膜の厚みが相違し。According to this high-pressure low-temperature oxidation, the thickness of the oxide film grown on the surface of polycrystalline silicon is different from the thickness of the oxide film formed on the surface of single-crystal silicon.
前者の方が後者より薄い。具体例を挙げて説明すると、
750℃”?’ 6 */am2. x f A I
I化ヲ40分間施すと、第3図に示す如く、多結晶シリ
コン(31表面には約1400ム0 の多結晶酸化膜(
6)が。The former is thinner than the latter. To explain with a specific example,
750℃"?' 6 */am2. x f A I
After 40 minutes of I conversion, a polycrystalline oxide film (approximately 1400 μm thick) was formed on the surface of the polycrystalline silicon (31), as shown in Figure 3.
6) But.
またソース、ドレイン(4)(5)表面には約250
OA@の基板酸化膜(7)が夫々成長する。In addition, approximately 250
A substrate oxide film (7) of OA@ is grown respectively.
次に通常のmayエツチング法で多結晶酸化膜(6)並
びに基板酸化膜(7)をエツチングするのであるが、こ
のエツチング工程は重要で多結晶酸化膜(6)が除去さ
れた時点で終了する必要がある。このB11Fエツチン
グ法の場合、多結晶酸化膜(6)のエツチングレートも
基板酸化膜(7)のそれも同じであるので、比較的膜厚
の薄い多結晶酸化膜(6)が除去された時点でも基板酸
化膜(7)は第4図に示す如く100ロム0 程度残存
している。1ooo^0 程度の厚みの酸化膜は通常一
般に行われているP、O。Next, the polycrystalline oxide film (6) and the substrate oxide film (7) are etched using the normal may etching method, but this etching process is important and ends when the polycrystalline oxide film (6) is removed. There is a need. In the case of this B11F etching method, since the etching rate of the polycrystalline oxide film (6) and that of the substrate oxide film (7) are the same, the point at which the relatively thin polycrystalline oxide film (6) is removed is However, about 100 ROM remains of the substrate oxide film (7) as shown in FIG. The oxide film with a thickness of about 1 ooo^0 is usually made of P and O.
のプレデポジション法に依る拡散に対する1蔽効果を有
しているので、IN4図の状態の基板(IJにP2O、
のプレデポジション法に依る拡散を行うと多結晶シリコ
ンから成るゲート電極(31にのみ多量の燐が拡散され
、該電極(31の抵抗値を下げる事が出来る。Since it has a shielding effect on diffusion due to the pre-deposition method, the substrate in the state shown in the IN4 diagram (P2O in IJ,
When diffusion is performed by the pre-deposition method, a large amount of phosphorus is diffused only into the gate electrode (31) made of polycrystalline silicon, and the resistance value of the electrode (31) can be lowered.
本発明は以上の説明から明らかな如(、高圧低温酸化で
の多結晶シリコンと単結晶シリコンとの酸化膜の成長速
度の違いを用いてゲート電極にのみ不純物を拡散してい
るので、ソース、ドレインの接合深さが浅く、ゲート酸
化膜の厚みの薄いMOS PI?のゲート電極の抵抗
値を下げる事が出来、特性的に秀れたMOS Pm?
の製造が可能となる。As is clear from the above description, the present invention utilizes the difference in growth rate of oxide films between polycrystalline silicon and single crystal silicon in high-pressure low-temperature oxidation to diffuse impurities only into the gate electrode. With a shallow drain junction depth and a thin gate oxide film, it is possible to lower the resistance value of the gate electrode of MOS Pm?, which has excellent characteristics.
It becomes possible to manufacture
第1図乃至第4図は本発明法を工程順に示した断面図で
あって、(l)は基板、12Jはゲート酸化膜。
(31はゲート電極、(4バ51はソース、ドレイン、
(8)は多結晶酸化膜、(71は基板酸化膜、を夫々
示している。1 to 4 are cross-sectional views showing the method of the present invention in the order of steps, in which (l) is a substrate, and 12J is a gate oxide film. (31 is the gate electrode, (4 bars 51 are the source, drain,
(8) indicates a polycrystalline oxide film, and (71 indicates a substrate oxide film).
Claims (1)
結晶シリコンから成るゲート電極を形成し、このゲート
電極をマスクとして上記基板に逆導電型の不純物を導入
してソース、ドレインを設け1次に高圧低温酸化雰囲気
中でゲート電極を構成している多結晶シリコンと上記ソ
ース、ドレインとを酸化して多結晶シリコン上に比較的
薄い多結晶酸化膜とソース、ドレイン表面に比幀的厚い
基板酸化膜とを形成し、続いて基板酸化膜は残存させた
状態で多結晶酸化膜を除去して多結晶シリコンを露出し
、最後にこの露出多結晶シリコンの表面から不純物を多
量にドープしてゲート電極としての抵抗値を下げる事を
特徴としたMOS r罵!の製造方法。1) - Form a gate electrode made of polycrystalline silicon on the surface of a conductive type semiconductor substrate through a gate electrode, and use this gate electrode as a mask to introduce impurities of the opposite conductivity type into the substrate to form a source and a drain. First, the polycrystalline silicon constituting the gate electrode and the source and drain are oxidized in a high-pressure, low-temperature oxidation atmosphere to form a relatively thin polycrystalline oxide film on the polycrystalline silicon and the surface of the source and drain. A thick substrate oxide film is formed, then the polycrystalline oxide film is removed while the substrate oxide film remains to expose the polycrystalline silicon, and finally a large amount of impurities is doped from the surface of this exposed polycrystalline silicon. A MOS that is characterized by lowering the resistance value as a gate electrode. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12379981A JPS5825265A (en) | 1981-08-06 | 1981-08-06 | Manufacture of mosfet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12379981A JPS5825265A (en) | 1981-08-06 | 1981-08-06 | Manufacture of mosfet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5825265A true JPS5825265A (en) | 1983-02-15 |
Family
ID=14869597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12379981A Pending JPS5825265A (en) | 1981-08-06 | 1981-08-06 | Manufacture of mosfet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5825265A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61216332A (en) * | 1985-01-04 | 1986-09-26 | テキサス インスツルメンツ インコ−ポレイテツド | Thermal xidization of silicon member |
US4644637A (en) * | 1983-12-30 | 1987-02-24 | General Electric Company | Method of making an insulated-gate semiconductor device with improved shorting region |
US5637514A (en) * | 1995-10-18 | 1997-06-10 | Micron Technology, Inc. | Method of forming a field effect transistor |
US6576939B1 (en) | 1998-07-30 | 2003-06-10 | Micron Technology, Inc. | Semiconductor processing methods, methods of forming electronic components, and transistors |
US6844252B2 (en) | 1996-09-17 | 2005-01-18 | Micron Technology, Inc. | Semiconductor processing methods of forming a conductive gate and line |
-
1981
- 1981-08-06 JP JP12379981A patent/JPS5825265A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4644637A (en) * | 1983-12-30 | 1987-02-24 | General Electric Company | Method of making an insulated-gate semiconductor device with improved shorting region |
JPS61216332A (en) * | 1985-01-04 | 1986-09-26 | テキサス インスツルメンツ インコ−ポレイテツド | Thermal xidization of silicon member |
US5637514A (en) * | 1995-10-18 | 1997-06-10 | Micron Technology, Inc. | Method of forming a field effect transistor |
US5940692A (en) * | 1995-10-18 | 1999-08-17 | Micron Technology, Inc. | Method of forming a field effect transistor |
US6844252B2 (en) | 1996-09-17 | 2005-01-18 | Micron Technology, Inc. | Semiconductor processing methods of forming a conductive gate and line |
US7170139B2 (en) | 1996-09-17 | 2007-01-30 | Micron Technology, Inc. | Semiconductor constructions |
US6576939B1 (en) | 1998-07-30 | 2003-06-10 | Micron Technology, Inc. | Semiconductor processing methods, methods of forming electronic components, and transistors |
US6713355B2 (en) | 1998-07-30 | 2004-03-30 | Micron Technology, Inc. | Semiconductor processing method |
US6838365B2 (en) | 1998-07-30 | 2005-01-04 | Micron Technology, Inc. | Methods of forming electronic components, and a conductive line |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4210993A (en) | Method for fabricating a field effect transistor | |
US4640721A (en) | Method of forming bipolar transistors with graft base regions | |
JPS5825265A (en) | Manufacture of mosfet | |
JPS62274665A (en) | Manufacture of semiconductor device | |
JPS59107572A (en) | Manufacture of semiconductor device | |
US3977920A (en) | Method of fabricating semiconductor device using at least two sorts of insulating films different from each other | |
JPH04162420A (en) | Manufacture of semiconductor device | |
JPS6351677A (en) | Semiconductor device provided with junction-type effect transistor | |
JPS6039868A (en) | Manufacture of semiconductor device | |
JPS62130562A (en) | Manufacture of field effect transistor | |
JPS6395664A (en) | Semiconductor device and manufacture thereof | |
JPS63240068A (en) | Manufacture of semiconductor device | |
JPH023268A (en) | Manufacture of bi-cmos by trenching | |
JPS6188543A (en) | Manufacture of semiconductor device | |
JPS6265324A (en) | Manufacture of semiconductor device | |
JPS61147575A (en) | Manufacture of semiconductor device | |
JPS58108772A (en) | Manufacture of transistor | |
JPH01138757A (en) | Manufacture of charge-coupled element | |
JPS6123670B2 (en) | ||
JPS63142863A (en) | Manufacture of semiconductor device | |
JPH0425125A (en) | Manufacture of semiconductor device | |
JPS6331167A (en) | Manufacture of semiconductor device | |
JPH04321233A (en) | Manufacture of semiconductor device | |
JPS583391B2 (en) | The power of transistors is high. | |
JPS61280670A (en) | Manufacture of semiconductor device |