JPS5825261A - Manufacture of semiconductor ic device - Google Patents

Manufacture of semiconductor ic device

Info

Publication number
JPS5825261A
JPS5825261A JP57120802A JP12080282A JPS5825261A JP S5825261 A JPS5825261 A JP S5825261A JP 57120802 A JP57120802 A JP 57120802A JP 12080282 A JP12080282 A JP 12080282A JP S5825261 A JPS5825261 A JP S5825261A
Authority
JP
Japan
Prior art keywords
electrode
oxide film
transistor
gate
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57120802A
Other languages
Japanese (ja)
Other versions
JPS5857911B2 (en
Inventor
Yoshiharu Fujimoto
藤本祥治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57120802A priority Critical patent/JPS5857911B2/en
Publication of JPS5825261A publication Critical patent/JPS5825261A/en
Publication of JPS5857911B2 publication Critical patent/JPS5857911B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Abstract

PURPOSE:To reduce a parasitic capacity between electrodes and impurity layers and thereby to obtain a device of high integration by forming first a large first electrode, making an impurity region by using this electrode as a mask, removing later a part of the first electrode, and providing a second electrode in the place from which the part is removed. CONSTITUTION:One main surface of an Si substrate 5 is covered with a thick oxide film 18, a gate oxide film 19 is formed selectively in a prescribed region, and a poly-Si gate electrode (the first electrode) 13 of a transistor Q3 is provided thereon. The oxide film 19 is etched by using the electrode 13 as a mask, impurity layers 3' and 4' are made thereon, thermal oxidation is applied, and thereby the electrode 13 and the layers 3' and 4' are covered with an oxide film 14. Next, a part of the electrode 13 is removed by etching so as to open the surface 20 of the channel part of the transistor Q3. Then, a gate oxide film 21 is made to grow in an opening part 20 by thermal oxidation, the remaining side surface of the electrode 13 is covered with an oxide film, and an Al gate electrode (the second electrode) 12 is provided. According to this constitution, an impurity laver between the serial connection elements Q2 and Q3 of a three- element memory cell is unnecessitated, and thereby an area occupied therby is reduced, while a parasitic capacity between the electrodes and the impurity layers is also reduced.

Description

【発明の詳細な説明】 本発明は半導体集積回路装置OII造方法kかかり、と
くに直列トランジスタの構造OIl造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor integrated circuit device OII, and particularly relates to a method for manufacturing a structure OII of a series transistor.

半導体メモリは従来のコアメモリと比較して高適応等が
可能であることtIX轡黴で性能に関しては古くからそ
の優位性が認められていたが夷俵**ビットaleの価
格等OIIでコアメ篭りに一歩譲っていた。ところがX
5HX技術の進歩によ勤チップ当)O集積度が飛躍的に
増大し、そO結果コスF的に4従東のコアメモリに充分
対抗で11ゐ所まで発展して11九。
Semiconductor memory has been recognized for a long time to be superior in terms of performance due to its ability to be highly adaptable compared to conventional core memory. He was giving up a step. However, X
With the advancement of 5HX technology, the integration density per chip has increased dramatically, and as a result, the cost has developed to 119, which is enough to compete with the core memory of the 4th generation chip.

本発明は上述の如く高密度化が工0メ490有用性を増
すという基本的な傾向にかんが拳、セルの機能なそζな
う事なくよ)小さい寸法會実現する九めO構造41K直
列トランジスタの構造を得るための有効壜製造方法を提
供しようとす為ものである。
The present invention is based on the basic trend that higher density increases the usability of the cell as described above, and the nine-point O structure 41K realizes a small size without affecting the function of the cell. The purpose is to provide an effective bottle manufacturing method for obtaining a series transistor structure.

従来も直列トランジスタ構造は九とえば轡企昭4〒−4
saaxl会@に示畜れている。しかしこの構造は−w
E1のゲート電極と自己整壷釣にノース領域が形成書れ
ていないためにゲート電極との間O寄生容量が問題とな
勤かり十分な高密度化は計れない、これは第10ゲート
電極の一端部近傍に自己整合的と9−ス領域を形成する
すなわち@lOゲート電極をマスクとして半導体基II
に逆導電層の不純物を導入すると、この第1のゲート電
極の他端部近傍にもドレイン領域が形成されてしまい。
Traditionally, the series transistor structure was
Saaxl-kai@ is showing off. However, this structure is -w
Since the north region is not formed between the gate electrode of E1 and the self-aligning pot, O parasitic capacitance between the gate electrode and the gate electrode becomes a problem, and sufficient density cannot be achieved. A self-aligned 9-space region is formed near one end of the semiconductor substrate II using the @lO gate electrode as a mask.
When an impurity of a reverse conductive layer is introduced into the gate electrode, a drain region is also formed near the other end of the first gate electrode.

したがって所定の直列トランジスタ構造が得られないか
らである。
This is because a predetermined series transistor structure cannot therefore be obtained.

したがって本発明の特徴は、−導電瓢の半導体基板の所
定表面領域上に薄い絶縁属を形成する工程と、紋薄い絶
縁膜上に第1の電極を形状形成する工程と、骸第10電
極をマスクとして前記半導体基1[K逆導電層の不純物
を導入す為工1と、骸第1の電極の一部を除去する工程
と、残余せる誼第10電極の表面に熱酸化膜管形成すみ
工程と。
Therefore, the features of the present invention are as follows: - forming a thin insulating layer on a predetermined surface area of a conductive semiconductor substrate; forming a first electrode in shape on the thin insulating film; A step 1 for introducing impurities of the reverse conductive layer into the semiconductor substrate 1 as a mask, a step of removing a part of the first electrode, and a step of forming a thermal oxide film tube on the surface of the remaining tenth electrode. With the process.

前記第10電極が除去された個所を含んで位置し、かつ
該熱酸化膜を介して諌残余せる第1の電極に接して第2
0電極を形成する工1とを含む半導体集積回路装置の製
造方法にある。
A second electrode is located including the area where the tenth electrode has been removed, and is in contact with the first electrode that remains through the thermal oxide film.
A method of manufacturing a semiconductor integrated circuit device includes step 1 of forming a 0 electrode.

このように本発明は、始めに人動な第10電極を形成し
これをマスクとして不純物領域を形成ししかる後にヒの
第1の電極の一部を除去して、この除去した部分K11
lO電極を形成するという新しい発想に基づく。
In this way, the present invention first forms the tenth electrode manually, uses this as a mask to form the impurity region, and then removes a part of the first electrode, and this removed portion K11.
Based on the new idea of forming an IO electrode.

?−oような方法を用いれば電極と不純物領域と0間の
寄生容量を小とし、高集積度の装置が害鳥に得られるこ
ととなる。
? If such a method is used, the parasitic capacitance between the electrode, the impurity region, and 0 can be reduced, and a highly integrated device can be obtained.

次に本発明が適用されゐ半導体集積回路装置の一例を説
明する。
Next, an example of a semiconductor integrated circuit device to which the present invention is applied will be explained.

第1図は3素子セルの回路図であ)、書き込トランジス
タQ1.読み出しトランジスタq、及び情報記憶トラン
ジスタq、から威ゐ、書き込、読み出しトランジスタQ
* # Qaはそれヤれのゲートを書自込アドレス線l
、読み出しアドレス線2に接続されこれによって駆動さ
れる。情報はディジット線及びトランジスタQl を経
てトランジスタQs のゲート電極に電荷として供給さ
れる。トランジスタq1  がオフ状態になった後トラ
ンジスタq、のゲート電極に電荷があるかないかで記憶
内容が決tb、それはトランジスタ魁がオン状態かオフ
状態かに反映される。読み出しはトランジスタ魁をオン
状態にする事によ)、ディジット線表トランジスタQv
及びq、を通して電流が流れるか否かで検出されゐ。
FIG. 1 is a circuit diagram of a three-element cell), write transistor Q1. Read transistor q, information storage transistor q, write, read transistor Q
* # Qa is the write address line for that gate.
, are connected to the read address line 2 and driven thereby. Information is supplied as a charge to the gate electrode of transistor Qs via the digit line and transistor Ql. After the transistor q1 is turned off, the memory content is determined by whether or not there is a charge on the gate electrode of the transistor q, which is reflected in whether the transistor q1 is on or off. Readout is done by turning on the transistor Qv), digit line table transistor Qv
It is detected by whether or not current flows through and q.

即ち書き込みのときにトランジスタq、を通じてトラン
ジスタq、のゲートに電荷が与えられていればトランジ
スタQ、はオンの状態に保持されるから読み小時にトラ
ンジスタ魁 をオンに駆動するとディジット線3−トラ
ンジスタ魁−Q―を通じて電流が流れる。一方書き込み
時にトランジスタq、を通じてトランジスタQ、のゲー
トに電荷が与えられなければこの電流は流れない、従っ
てこの電流−IIX#lれるかどうかくよってflJr
OJの記憶出力が得られるものである。
In other words, if a charge is applied to the gate of transistor q through transistor q during writing, transistor Q is kept in the on state, so when transistor q is turned on during reading, digit line 3 - transistor q is turned on. Current flows through -Q-. On the other hand, this current will not flow unless charge is applied to the gate of transistor Q through transistor q during writing.Therefore, it depends on whether this current -IIX#l is generated or not.
The memory output of OJ is obtained.

3素子ダイナ建ツクメモリはこのように動作するもので
あるが、第2@はこの3素子ダイナ建プクメ毫りを工0
化し九場合の例を示す、第amムは平面図を示し、同図
Bは第3図のX −X’線上の断面図である。
The 3-element dyna-based memory operates in this way, but the second @ is designed to mimic this 3-element dyna-based memory.
3 shows a plan view, and FIG. 3B is a sectional view taken along the line X-X' in FIG.

第1図で示した接地電極番とディジット線3は単結晶半
導体基板5に形成したこれとは逆導電層の拡散領域4′
及び3′にて形成され書會込アドレス線1′、読み出し
アドレス線3′をアルζニウム電線で構成する。トラン
ジスタQs * Qv * Ql Oゲート電極はそれ
ぞれ11,12.13であゐ、即ちトランジスタq、O
ゲート電I’llはアドレス$ 27と一体に形成され
、トランジスタQv のゲート電極12は読出アドレス
線2′と一体に形成され。
The ground electrode number and digit line 3 shown in FIG.
and 3', and the writing address line 1' and the reading address line 3' are constructed of aluminum ζ wires. The gate electrodes of the transistors Qs * Qv * Ql O are 11 and 12.13, respectively, that is, the transistors q and O
Gate electrode I'll is formed integrally with address $27, and gate electrode 12 of transistor Qv is formed integrally with read address line 2'.

トランジスタq、のゲート電極13はトランジスタ船 
のソース領域6に@絖される。トランジスタq、のソー
ス領域は接地電極として形成した拡散領域4′が兼用さ
れ、これは表面上に形成され九IlI地導体用Oアル1
−ウム電線フに接続され為。
The gate electrode 13 of transistor q is a transistor ship.
It is connected to the source region 6 of . The source region of the transistor q also serves as a diffusion region 4' formed as a ground electrode, which is formed on the surface and connected to the ground conductor O1.
- Because it is connected to the um electric wire.

通常行なわれる。従来の構成ではトランジスタ魁及びQ
s  O直列結合に要す為寸法でメモリ竜ルO大きさが
決まる。即ちトランジスタQ* −Qaのゲート電極部
4xg、xsの領域3′と4′を結ぶ方向の長さ及びゲ
ート電極1mと13t−分離すゐKllする寸法との和
でディジタ) II !S’と接地一番′の間隔が決ま
)、それがメモリセルの大きSを決めゐ。
Usually done. In the conventional configuration, transistors Kai and Q
Since it is required for series connection, the size of the memory tank is determined by its dimensions. That is, the sum of the length in the direction connecting regions 3' and 4' of the gate electrode portions 4xg and xs of the transistors Q*-Qa and the dimension separating the gate electrodes 1m and 13t (digital) II! The distance between S' and ground number 1' is determined), which determines the size S of the memory cell.

次にこの発明が適用されゐ例を第5図ム、BK示す、直
列結合された2つのトランジスメQ−禦* Qaの中間
の拡散層1.sを省略し、そのゲート電極な互に絶縁層
を介して並設し、斯くしてトランジスタQ* s Qs
の占める面積を小さくしようとするものである。
Next, an example in which the present invention is applied is shown in FIGS. s is omitted, and the gate electrodes are arranged in parallel with each other with an insulating layer interposed between them, thus forming a transistor Q* s Qs
The aim is to reduce the area occupied by the

第3図は第1図の回路に適用した場合を示す。FIG. 3 shows a case where the circuit is applied to the circuit of FIG. 1.

同図中ムは平面図、Bは断面図である。配線巾。In the figure, M is a plan view, and B is a sectional view. Wiring width.

間隔などは第2図と同じであ為。The spacing etc. are the same as in Figure 2.

第31ElilCJiPいては単結晶半導体基1[15
の一方の面に臨んでζO半導体基板6の導電型とは逆導
電型の拡散領域3′と番′を設けゐ。この拡散領域3′
と4′は先に説明したディジット線と接地電極に相当す
る。との拡散領域3′と4′の間の基@ S O面上に
所要の厚さを有するゲート絶縁層19を被着形成し、こ
のゲート絶縁層19の上面に拡散領域3′と4′を結ぶ
方向に亙に絶縁されたゲート電極12と15を並役す1
本めである。ゲート電極12はアル5二りムで形成し、
これはトランジスタq、のゲート電極として使われ、ゲ
ート電極13は例えば多結晶シリコンで形成され、これ
はトランジスタQv f)ゲート電極として使われる。
31st EliilCJiP single crystal semiconductor base 1 [15
A diffusion region 3' and a diffusion region 3' of a conductivity type opposite to that of the ζO semiconductor substrate 6 are provided facing one surface of the ζO semiconductor substrate 6. This diffusion region 3'
and 4' correspond to the digit line and ground electrode described above. A gate insulating layer 19 having a required thickness is deposited on the base @SO plane between the diffusion regions 3' and 4', and the diffusion regions 3' and 4' are formed on the upper surface of the gate insulating layer 19. The gate electrodes 12 and 15 are insulated in parallel in the direction connecting the 1
It's true. The gate electrode 12 is formed of aluminum 52,
This is used as the gate electrode of the transistor q, and the gate electrode 13 is made of polycrystalline silicon, for example, and is used as the gate electrode of the transistor Qvf).

ζO第5図にシいては、ゲート絶縁層19上に先ず多結
晶シリコンによってトランジスタCps Oゲート電極
13を形成し、そのゲート電極13上を例えば熱酸化或
は陽極酸化によつて酸化膜14にて被い、その後アルオ
ニつ五によるトランジスタ魁のゲート電極1mを形成す
為、この場合アル1−ウム電極1mはその一部がゲート
電極ls上に重なるように形成するを可とする。このよ
うに重なり部分を持つととにようてゲート電極1カの形
成位置が多少ズしてもゲート電極18とIIsとの間が
酸化膜140厚み以上に間隔が生ずることもなく両ゲー
ト電極l怠と150rRを絶縁を保うた状態で可及的に
近接して形成できるものである。
ζO In FIG. 5, a transistor CpsO gate electrode 13 is first formed of polycrystalline silicon on a gate insulating layer 19, and an oxide film 14 is formed on the gate electrode 13 by, for example, thermal oxidation or anodic oxidation. After that, the gate electrode 1m of the transistor is formed using aluminum. In this case, the aluminum electrode 1m can be formed so that a part thereof overlaps with the gate electrode Is. With such an overlapping portion, even if the formation position of one gate electrode 1 is shifted slightly, there will be no gap between the gate electrode 18 and IIs that is more than the thickness of the oxide film 140, and both gate electrodes 1 150rR can be formed as close as possible while maintaining insulation.

ζOように構成するととによってトランジスタ魁は拡散
領域S′をドレインとし電極13をゲート電極とし、ま
たトランジスタQsはドレインを拡散領域S′とし、電
極15をゲート電極とする。
ζO, the transistor Qs has the diffusion region S' as the drain and the electrode 13 as the gate electrode, and the transistor Qs has the drain as the diffusion region S' and the electrode 15 as the gate electrode.

このように2つの互に直列接続されるトランジスタQ*
 t cLaO共通両端に相当する拡散領域を省略する
ことによル、その結果第1■と比較すれば明らかな様に
メ4 リセルO面積は約半分11mK縮小で1為。
In this way, two transistors Q* connected in series with each other
By omitting the diffusion regions corresponding to both ends of the common LaO, as a result, the area of the cell O is reduced by about half by 11 mK, as is clear from the comparison with Part 1.

次に本発明の実施例管第4mで説明す為。Next, an embodiment of the present invention will be explained using tube No. 4m.

まず第4IIムに示す如く単結晶半導体基板6の一方0
11t*Ifl厚い酸化膜18で被い、その後トランジ
スタのソース、ドレイン、チャンネル部を飽括すゐ領域
O酸化膜18を除来し、この部分にゲート蒙化IElG
を成長させる。畜らにその上に全11K)ランジスタq
、のゲート電極用多結晶シリコyすなわち第1の電極を
成長させ所定の電極ISO形に威岸す為。
First, as shown in the fourth II, one side 0 of the single crystal semiconductor substrate 6 is
11t*Ifl covered with a thick oxide film 18, and then removed the region O oxide film 18 that saturates the source, drain, and channel portions of the transistor, and deposited a gate oxide film 18 on this part.
grow. Damn it all 11K) Langista q
, in order to grow polycrystalline silicon for the gate electrode, that is, the first electrode, and form it into a predetermined electrode ISO shape.

次に第4図BK示す如くポリシリーン電極1sをiメク
にして酸化膜19をエツチングし不純物領域8′と4′
を作成する。
Next, as shown in FIG. 4BK, the polysilicon electrode 1s is etched and the oxide film 19 is etched to form impurity regions 8' and 4'.
Create.

次に第4110に示す如く熱酸化によ勤ポリシリコン電
極1s及び拡散不純物領域S′と4′の表面を酸化膜1
4でおおう。
Next, as shown in No. 4110, the surfaces of the polysilicon electrode 1s and the diffusion impurity regions S' and 4' are coated with an oxide film 1 by thermal oxidation.
Cover with 4.

次に第4111DK示す様にフォトレジスト法によ〕第
10電@18〇一部を除去し、トランジスタ魁 のチャ
ンネル部分となゐ基I[表両20會開口する。最後に熱
酸化によ)開口llm6にゲート酸化膜jail威長さ
せ、叉、残金すb第1の電極lsO側表曹に熱酸化膜を
設けその上にアルR&りムによゐゲート電極1禽すなわ
ち第3の電極を設けて製作を完了する。
Next, as shown in No. 4111DK, a part of the 10th conductor 180 is removed using a photoresist method, and an opening is opened on both sides of the base I, which will become the channel part of the transistor. Finally, by thermal oxidation, a gate oxide film is formed in the opening (llm6), and then a thermal oxide film is formed on the surface of the remaining metal (b) on the first electrode IsO side, and on top of that, the gate electrode 1 is formed by aluminum (R&R). A third electrode is provided to complete the fabrication.

【図面の簡単な説明】[Brief explanation of the drawing]

第LIEはS素子メ噌リセルを示す回路■である。 第3園はS素子メ49七ルの一例O平菖■シよび漸面図
である。第S■は本発ll0II論例によ)作られ九S
素子メモリセルO千wIlおよび新画−であゐ。第4!
Ilは本発−の実施例を示す新曹閣であゐ。 Qs t Qs :亙に直列接続されたトランジスタ。 5:単結晶半導体基板、 5′、4/@拡散領域、1m
。 13:ゲート電極、19:ゲート絶縁層。 茅1 珂 v−2日
The No. LIE is a circuit (2) showing an S-element memory cell. The third garden is an example of the S element 497 rules. Part S■ was created based on the original Il0II example) and 9S
There are 0,000 element memory cells and a new image. Fourth!
Il is Shinsokaku, which shows an example of the present invention. Qs t Qs: Transistor connected in series. 5: Single crystal semiconductor substrate, 5', 4/@diffusion region, 1m
. 13: Gate electrode, 19: Gate insulating layer. 1 kaya v-2 days

Claims (1)

【特許請求の範囲】[Claims] 一導電璽の半導体基板の所定表面領域上に薄い絶縁膜を
形成すゐ工種と、皺薄す絶縁膜上に第1の電極を形状形
成する工種と、該第10電極をマスクとして前記半導体
基1[K逆導電渥の不純物を導入する工程と、誼第1の
電極〇一部を除去する工程と、残余せゐ誼s10電極6
表Wk熱酸化膜を形成すゐ工種と、前記第10電極が除
去された個所を含んで位置しかつ諌熱酸化膜を介して該
残余せる第14D電極に*L、て第2の電極を形成する
工種とを含むことを特徴とする半導体集積回路装置の製
造方法。
One type of process involves forming a thin insulating film on a predetermined surface area of a conductive semiconductor substrate, the other type involves forming a first electrode in shape on a wrinkled insulating film, and the process type forms a thin insulating film on a predetermined surface area of a conductive semiconductor substrate. 1. Step of introducing impurity of K reverse conductivity, step of removing part of the first electrode, and step of removing the remaining electrode 6.
A second electrode is formed on the remaining 14D electrode via the thermal oxide film, which is located including the area where the 10th electrode has been removed, and which is located at a position including the area where the 10th electrode has been removed. 1. A method for manufacturing a semiconductor integrated circuit device, comprising: forming a semiconductor integrated circuit device.
JP57120802A 1982-07-12 1982-07-12 Method for manufacturing semiconductor integrated circuit device Expired JPS5857911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57120802A JPS5857911B2 (en) 1982-07-12 1982-07-12 Method for manufacturing semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57120802A JPS5857911B2 (en) 1982-07-12 1982-07-12 Method for manufacturing semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP49129222A Division JPS5154789A (en) 1974-11-09 1974-11-09

Publications (2)

Publication Number Publication Date
JPS5825261A true JPS5825261A (en) 1983-02-15
JPS5857911B2 JPS5857911B2 (en) 1983-12-22

Family

ID=14795347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57120802A Expired JPS5857911B2 (en) 1982-07-12 1982-07-12 Method for manufacturing semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5857911B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0673071A2 (en) * 1994-03-11 1995-09-20 WaferScale Integration Inc. Flash EEPROM and EPROM arrays
US5623443A (en) * 1994-03-11 1997-04-22 Waferscale Integration, Inc. Scalable EPROM array with thick and thin non-field oxide gate insulators

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6895650B2 (en) 2017-10-10 2021-06-30 パナソニックIpマネジメント株式会社 Communication harness and relay connector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0673071A2 (en) * 1994-03-11 1995-09-20 WaferScale Integration Inc. Flash EEPROM and EPROM arrays
EP0673071A3 (en) * 1994-03-11 1995-12-20 Waferscale Integration Inc Flash EEPROM and EPROM arrays.
US5623443A (en) * 1994-03-11 1997-04-22 Waferscale Integration, Inc. Scalable EPROM array with thick and thin non-field oxide gate insulators
US5910016A (en) * 1994-03-11 1999-06-08 Waferscale Integration, Inc. Scalable EPROM array

Also Published As

Publication number Publication date
JPS5857911B2 (en) 1983-12-22

Similar Documents

Publication Publication Date Title
US4970564A (en) Semiconductor memory device having stacked capacitor cells
US5389558A (en) Method of making a semiconductor memory circuit device
JPH05326872A (en) Formation of capacitor of ic device and formation of semiconductor ic dram cell
JPS60231357A (en) Semiconductor memory device
JPH03209868A (en) Manufacture of ic capacitor and semiconductor ic device
JPS6321351B2 (en)
US5299155A (en) Dynamic random access memory device with capacitor between vertically aligned FETs
JPH05299603A (en) Semiconductor device and manufacture of the same
US4131906A (en) Dynamic random access memory using MOS FETs and method for manufacturing same
JPS6014462A (en) Semiconductor memory element
JPS6155258B2 (en)
JPH09232527A (en) Ferroelectric memory device and manufacture thereof
JPH046106B2 (en)
JPS5825261A (en) Manufacture of semiconductor ic device
JPH0821685B2 (en) Method of manufacturing semiconductor memory
JP2550590B2 (en) Method for manufacturing semiconductor device
JPS63226955A (en) Manufacture of capacitive element
JPH0529571A (en) Semiconductor storage device and manufacture thereof
JPH0320906B2 (en)
JPS6240765A (en) Read-only semiconductor memory and manufacture thereof
JPH0321103B2 (en)
KR930000717B1 (en) Dram with a stacked capacitor
JPS60234360A (en) Semiconductor memory
JPH05283651A (en) Semiconductor device
JP2607508B2 (en) Semiconductor storage device