JPS5822251B2 - Uranium adsorbent and its manufacturing method - Google Patents

Uranium adsorbent and its manufacturing method

Info

Publication number
JPS5822251B2
JPS5822251B2 JP3399679A JP3399679A JPS5822251B2 JP S5822251 B2 JPS5822251 B2 JP S5822251B2 JP 3399679 A JP3399679 A JP 3399679A JP 3399679 A JP3399679 A JP 3399679A JP S5822251 B2 JPS5822251 B2 JP S5822251B2
Authority
JP
Japan
Prior art keywords
uranium
titanium
polyacrylic acid
acid hydrazide
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3399679A
Other languages
Japanese (ja)
Other versions
JPS55127143A (en
Inventor
加藤俊作
宮井良孝
菅坡和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3399679A priority Critical patent/JPS5822251B2/en
Publication of JPS55127143A publication Critical patent/JPS55127143A/en
Publication of JPS5822251B2 publication Critical patent/JPS5822251B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は、新規なウラン吸着剤及びその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel uranium adsorbent and a method for producing the same.

海水中に溶存する微量のウランを回収して、資源として
利用しようとする試みは、かなり以前からなされており
、これまでウラン吸着剤として、金属水酸化物(特に水
酸化チタン)、チタン化ポリビニルアルコール、活性炭
と金属水酸化物との複合物、リン酸チタン化ポリビニル
アルコールな・どが提案されている。
Attempts have been made for a long time to recover trace amounts of uranium dissolved in seawater and use it as a resource. Up until now, metal hydroxides (particularly titanium hydroxide) and titanized polyvinyl have been used as uranium adsorbents. Alcohol, a composite of activated carbon and metal hydroxide, phosphate titanized polyvinyl alcohol, etc. have been proposed.

しかしながら、これらの従来のウラン吸着剤は、その調
製方法かばん雑であつたり、あるいは吸着効率が低いな
どの欠点があるため、実用に供するには、まだ十分満足
できるものとはいえない。
However, these conventional uranium adsorbents have drawbacks such as complicated preparation methods and low adsorption efficiency, so they are not yet fully satisfactory for practical use.

能力、ポリアクリル酸ヒドラジドは、カルボニル基とヒ
ドラジド基を有し、水酸液を加熱するか、あるいは室温
で放置すればゲル化し、このゲル状物が重金属イオンを
キレート結合して吸着することが知られている。
Polyacrylic acid hydrazide has a carbonyl group and a hydrazide group, and when a hydroxyl solution is heated or left at room temperature, it becomes a gel, and this gel-like substance can chelate and adsorb heavy metal ions. Are known.

しかし、このものは、いったん吸着した重金属イオンを
脱着しにくいため、これを重金属イオン吸着剤として利
用することは困難であるとされていた。
However, since it is difficult to desorb heavy metal ions once they have been adsorbed, it has been considered difficult to use this as a heavy metal ion adsorbent.

本発明者らは、かねてより海水中からのウランを回収す
るだめの、ウラン吸着剤を開発すべく種種研究を重ねて
いたが、その結果前記のポリアクリル酸ヒドラジドがチ
タン化合物と反応して不溶性のゲルを形成すること、及
びこのチタンを含むゲル状物質は効率よくウランを吸着
しうることを見出し、この知見に基づいて本発明をなす
に至った。
The inventors of the present invention have been conducting various researches for some time in order to develop a uranium adsorbent to recover uranium from seawater, but as a result, the above-mentioned polyacrylic acid hydrazide reacts with titanium compounds and becomes insoluble. It was discovered that titanium-containing gel is formed, and that this gel-like substance containing titanium can efficiently adsorb uranium, and based on this knowledge, the present invention was accomplished.

すなわち、本発明は、ポリアクリル酸ヒドラジドとチタ
ン化合物との含水ゲル状反応生成物から成るウラン吸着
剤を提供するものである。
That is, the present invention provides a uranium adsorbent comprising a hydrogel-like reaction product of polyacrylic acid hydrazide and a titanium compound.

本発明のウラン吸着剤は、文献未載の新規物質であり、
水心性チタン化合物例えば硫酸チタンの水酸液又は四塩
化チタンにポリアクリル酸ヒドラジドを粉末状又は粒状
の1Lあるいは水に溶解して加えることにより生成する
The uranium adsorbent of the present invention is a new substance that has not been described in any literature,
It is produced by adding polyacrylic acid hydrazide in powdered or granular form to 1 L of a water-centered titanium compound, such as a hydroxyl solution of titanium sulfate or titanium tetrachloride, or by dissolving it in water.

この場合、ポリアクリル酸ヒドラジドは、あらかじめ常
法に従ってゲル化したものを用いてもよい。
In this case, the polyacrylic acid hydrazide may be gelled in advance according to a conventional method.

また、チタン化合物をこのポリアクリル酸ヒドラジド尚
り1〜9モルの割合で混合される。
Further, a titanium compound is mixed with the polyacrylic acid hydrazide at a ratio of 1 to 9 moles.

なお、チタン含量は混合するチタン化合物の割合が増す
につれて増大するが、g当量以上ではほぼ一定になった
Note that the titanium content increases as the proportion of the titanium compound to be mixed increases, but becomes almost constant above g equivalent.

本発明のウラン吸着剤は、X線回析によると無定形であ
り、赤外線吸収スペクトルにおいては、ヒドラジド基に
基づ(990crfL ’の吸収は消失し、1180c
IrL ” と850CrIL ”に特性吸収がみられ
る。
The uranium adsorbent of the present invention is amorphous according to X-ray diffraction, and in the infrared absorption spectrum, it is based on hydrazide groups (absorption at 990crfL' disappears and absorption at 1180crfL' disappears,
Characteristic absorptions are seen in IrL'' and 850CrIL''.

また、熱分析の結果、ポリアクリル酸ヒドラジドについ
ては、60〜70°Cで吸熱を伴った重量減少が、17
0〜180’Cで重量減少がそれぞれ認められ、また3
50〜380℃に大きな発熱ピークを、500〜550
℃にブロードな発熱ピークをそれぞれ伴った重量減少が
認められる。
Additionally, as a result of thermal analysis, for polyacrylic acid hydrazide, the weight loss accompanied by endotherm at 60-70°C was 17%.
Weight loss was observed between 0 and 180'C, and 3
Large exothermic peak at 50-380℃, 500-550℃
Weight loss accompanied by a broad exothermic peak at °C was observed.

次に、水酸化チタンとポリアクリル酸ヒドラジドとを単
に混合した場合は、ポリアクリル酸ヒドラジド単独の場
合とほとんど変化は認められない。
Next, when titanium hydroxide and polyacrylic acid hydrazide are simply mixed, almost no change is observed compared to when polyacrylic acid hydrazide is used alone.

これに対し、本発明のウラン吸着剤の場合は、60〜7
0℃に吸熱を伴った重量減少300〜350°Cに小さ
な発熱ピークを伴った重量減少、500〜550℃に大
きな発熱ピークを伴った重量減少がそれぞれ認められ、
ポリアクリル酸ヒドラジドの場合とは全く異なっている
On the other hand, in the case of the uranium adsorbent of the present invention, 60 to 7
A weight loss accompanied by an endotherm at 0°C, a weight loss accompanied by a small exothermic peak at 300-350°C, and a weight loss accompanied by a large exothermic peak at 500-550°C were observed, respectively.
This is completely different from the case of polyacrylic acid hydrazide.

このことからも、本発明のウラン吸着剤は、ポリアクリ
ル酸ヒドラジドとチタン化合物との単なる混合物ではな
く、両者の反応によって生じた新規な物質であることが
わかる。
This also shows that the uranium adsorbent of the present invention is not a simple mixture of polyacrylic acid hydrazide and a titanium compound, but a novel substance produced by the reaction of both.

本発明のウラン吸着剤は、非常に良好なウラン吸着性を
示し、例えば海水のようなウランの希薄溶液から効率よ
くウランを吸着することができる。
The uranium adsorbent of the present invention exhibits very good uranium adsorption properties, and can efficiently adsorb uranium from a dilute uranium solution such as seawater, for example.

本発明のウラン吸着剤を用いて、ウラン含有啓液中より
ウランを回収する方法には、特に制限は:なく、単に両
者を接触させればよいが、カラム法すなわちウラン吸着
剤を適当なカラムに充てんし、この中をウラン含有心液
を通過させる方法が実用上有利である。
There are no particular limitations on the method for recovering uranium from uranium-containing solution using the uranium adsorbent of the present invention, and it is sufficient to simply bring the two into contact. Practically advantageous is a method in which the uranium-containing heart fluid is passed through the chamber.

乙のようにして、海水中より、60μg/g−Ad・6
日(500μg/g−Ti6、日)という高い吸着量で
ウランを回収することができる。
60μg/g-Ad・6 from seawater as shown in Otsu
Uranium can be recovered with a high adsorption amount of 500 μg/g-Ti6, day.

次に実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 粒状ポリアクリル酸ヒドラジドをポリアクリル酸ヒドラ
ジド当りチタンが1〜g当量になるように、四塩化チタ
ン及びその水溶液(1〜9mol/l)に加え、室温で
24時間放置することによりチタン含量3〜15係で、
Ti/ポリアクリル酸4ヒドラジドが0.05〜0.5
の範囲にあるゲル状生成物を得た。
Example 1 Particulate polyacrylic acid hydrazide was added to titanium tetrachloride and its aqueous solution (1 to 9 mol/l) so that titanium was equivalent to 1 to 1 g per polyacrylic acid hydrazide, and titanium was prepared by leaving it at room temperature for 24 hours. With content 3 to 15,
Ti/polyacrylic acid 4 hydrazide is 0.05 to 0.5
A gel-like product was obtained in the range of .

このチタン含量14.7係(TiC14とPAHの混合
割合6:1のものの赤外線吸収スペクトルを第1図にA
として示す。
The infrared absorption spectrum of this titanium content of 14.7% (mixing ratio of TiC14 and PAH of 6:1) is shown in Figure 1A.
Shown as

なお、比較のために、ポリアクリル酸ヒドラジゲルB、
水酸化チタンC及びポリアクリル酸ヒドラジドを13重
量係になるように水酸化チタンと混合した混合物りにつ
いても示す。
For comparison, polyacrylic acid hydrazigel B,
A mixture of titanium hydroxide C and polyacrylic acid hydrazide mixed with titanium hydroxide in a weight ratio of 13 is also shown.

この図から明らかなように、ポリアクリル酸ヒドラジド
と四塩化チタンとの反応生成物は、単なる混合物の場合
とは異なる1180cIrL ’、850cfn’に特
性吸収を有し、ヒドラジド基に基づく’990C1rL
’の吸収は消滅している。
As is clear from this figure, the reaction product of polyacrylic acid hydrazide and titanium tetrachloride has characteristic absorptions at 1180cIrL' and 850cfn', which are different from those of a simple mixture, and '990C1rL' based on the hydrazide group.
' absorption has disappeared.

まだ、第2図は前記の生成物A、ポリアクリル酸ヒドラ
ジドゲルB及びポリアクリル酸ヒドラジドと水酸化チタ
ンとの混合物りについての熱分析の結果を示したもので
あるが、これによっても、ポリアクリル酸ヒドラジドと
四塩化チタンとの反応生成物が、両者の単なる混合物で
はないことがわかる。
However, Fig. 2 shows the results of thermal analysis of the above-mentioned product A, polyacrylic acid hydrazide gel B, and a mixture of polyacrylic acid hydrazide and titanium hydroxide. It can be seen that the reaction product of acrylic acid hydrazide and titanium tetrachloride is not a mere mixture of the two.

次にこの生成物チタン含量14.7%を、粒径0、25
〜0.5mmφに製粒し、直径25mm、長さ200m
mのカラムに層厚20mvt程度充てんし、海水を線速
度20crIL/分の割合で供給した。
Next, this product with a titanium content of 14.7% was mixed with a particle size of 0, 25
Granulated to ~0.5mmφ, diameter 25mm, length 200m
The column was filled with a layer thickness of about 20 mvt, and seawater was supplied at a linear velocity of 20 crIL/min.

このようにして、6日間の通水で300μg/g−Ti
のウランを吸着することができた。
In this way, 300μg/g-Ti
was able to adsorb uranium.

なお、従来の含水酸化チタンを用いた場合のウラン吸着
量はioo〜200μg/g−Tiである。
Note that when conventional hydrous titanium oxide is used, the amount of uranium adsorbed is ioo to 200 μg/g-Ti.

実施例 2 ポリアクリル酸ヒドラジドを水に溶解して濃度3.3係
の水溶液を調製し、これを1〜9 mol/ lの濃度
の四塩化チタン水溶液と所定の割合Tic14/PAH
=1〜9)で混合し室温で24時間反応させることによ
りTi/ポリアクリル酸ヒドラジドの比が0.05〜0
.5の範囲にある生成物を得た。
Example 2 Polyacrylic acid hydrazide was dissolved in water to prepare an aqueous solution with a concentration of 3.3, and this was mixed with a titanium tetrachloride aqueous solution with a concentration of 1 to 9 mol/l and a predetermined ratio of Tic14/PAH.
= 1 to 9) and reacted at room temperature for 24 hours, resulting in a Ti/polyacrylic acid hydrazide ratio of 0.05 to 0.
.. Products in the range of 5 were obtained.

このようにして得た、チタン含量2.7〜13優に相当
する生成物を用い、実施例1と同様にして海水中のウラ
ンの吸着試験を行った。
Using the thus obtained product having a titanium content of 2.7 to 13, a uranium adsorption test in seawater was conducted in the same manner as in Example 1.

その結果を第3図に示す。The results are shown in FIG.

図中の実線は、6日通水した場合、破線は3日通水した
場合である。
The solid line in the figure is the case when water was passed for 6 days, and the broken line is the case when water was passed for 3 days.

ウラン吸着量は最高約500μg/ g −T i 6
日であった。
The maximum amount of uranium adsorbed is approximately 500 μg/g -T i 6
It was day.

【図面の簡単な説明】 第1図は本発明のウラン吸着剤、原料各成分及びその混
合物の赤外線吸収スペクトル図、第2図は同じものの示
差熱曲線図、第3図はチタン含量の異なる本発明のウラ
ン吸着剤の吸着量の変化を示すグラフである。
[BRIEF DESCRIPTION OF THE DRAWINGS] Figure 1 is an infrared absorption spectrum diagram of the uranium adsorbent of the present invention, raw material components, and mixtures thereof, Figure 2 is a differential thermal curve diagram of the same product, and Figure 3 is a diagram of books with different titanium contents. 3 is a graph showing changes in adsorption amount of the uranium adsorbent of the invention.

Claims (1)

【特許請求の範囲】 1 ポリアクリル酸ヒドラジドと、塩化チタン又は硫酸
チタンなどの可溶性チタン化合物との含水ゲル状反応生
成物から成るウラン吸着剤。 2 ポリアクリル酸ヒドラジドの水晦液あるいは粒状の
ポリアクリル酸ヒドラジドを、塩化チタン又は硫酸チタ
ンなどの可溶性チタン化合物の溶液に添加混合して、反
させることを特徴とするウラン吸着剤の製造方法。
[Scope of Claims] 1. A uranium adsorbent comprising a hydrogel-like reaction product of polyacrylic acid hydrazide and a soluble titanium compound such as titanium chloride or titanium sulfate. 2. A method for producing a uranium adsorbent, which comprises adding and mixing an aqueous solution of polyacrylic acid hydrazide or granular polyacrylic acid hydrazide to a solution of a soluble titanium compound such as titanium chloride or titanium sulfate, and stirring the mixture.
JP3399679A 1979-03-22 1979-03-22 Uranium adsorbent and its manufacturing method Expired JPS5822251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3399679A JPS5822251B2 (en) 1979-03-22 1979-03-22 Uranium adsorbent and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3399679A JPS5822251B2 (en) 1979-03-22 1979-03-22 Uranium adsorbent and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS55127143A JPS55127143A (en) 1980-10-01
JPS5822251B2 true JPS5822251B2 (en) 1983-05-07

Family

ID=12402073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3399679A Expired JPS5822251B2 (en) 1979-03-22 1979-03-22 Uranium adsorbent and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5822251B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102A (en) * 1980-06-02 1982-01-05 Sansho Kk Cationization of acrylic acid hydrizide polymer compound
JPH0668556B2 (en) * 1985-12-09 1994-08-31 株式会社日立製作所 Treatment method of radioactive waste liquid

Also Published As

Publication number Publication date
JPS55127143A (en) 1980-10-01

Similar Documents

Publication Publication Date Title
Bauman et al. Fundamental properties of a synthetic cation exchange resin
Nabi et al. Synthesis, ion exchange properties and analytical applications of stannic silicomolybdate: effect of temperature on distribution coefficients of metal ions
Weiner et al. Complex formation between ethyllithium and t-butyllithium
US5300677A (en) Method of preparing insoluble hydrolysable tannin and method of treating waste liquid with the tannin
JPS5822251B2 (en) Uranium adsorbent and its manufacturing method
Calogero et al. Crystal structure of tricyclohexyltin chloride
JPH032010B2 (en)
JPH038439A (en) Granular lithium adsorbent and method for recovering lithium by using this adsorbent
KR950009706B1 (en) Method of preparing metal element adsorbent and method of adsorbing and separating metal
US5320664A (en) Method of preparing metal element adsorbent and method of adsorbing and separating metal element using the same
JPH024442A (en) High performance lithium adsorbent and its preparation
JPS5824369B2 (en) Tansozairiyounoseizohouhou
JPS6362545A (en) Lithium adsorbent and its production and recovering method for lithium by using same
Hasany et al. Studies on the Adsorption of Traces of Zirconium on Manganese Dioxide from Acid Solutions
Qureshi et al. Synthesis and ion exchange properties of thermally stable, thorium (IV)-selective tin (IV) molybdosilicate: comparison with other tin (IV)-based ion exchangers
JPS5869724A (en) Oxygen-stabilized intermetallic compound able to absorbing hydrogen reversibly
JPS6380844A (en) Preparation of novel lithium adsorbent
JP2850309B2 (en) Method for producing lithium adsorbent
Ingram The use of silver vanadates as absorbents for sulphur dioxide
Shakshooki et al. Mixed insoluble acidic salts of tetravalent metals: IX. Effect of γ-radiation and drying temperature on mixed glassy type hafnium-titanium phosphates
Rawat et al. Equilibrium studies for the sorption of Cu2+ on lanthanum diethanolamine—a chelating material
JPH0147217B2 (en)
Olson et al. The Racemization of the Dimethyl Ester of l-Bromosuccinic Acid by Lithium Bromide in Acetone.
Qureshi et al. Synthesis and ion-exchange properties of thorium tungstate: separation of La 3+ from Ba 2+, Sr 2+, Ca 2+, and Y 3+ and of VO 2+ from Fe 3+ and Mn 2+
CN115216025A (en) Method for preparing defective Mg-MOF-74 by adopting hydrothermal reaction method