JPS5824369B2 - Tansozairiyounoseizohouhou - Google Patents
TansozairiyounoseizohouhouInfo
- Publication number
- JPS5824369B2 JPS5824369B2 JP50152513A JP15251375A JPS5824369B2 JP S5824369 B2 JPS5824369 B2 JP S5824369B2 JP 50152513 A JP50152513 A JP 50152513A JP 15251375 A JP15251375 A JP 15251375A JP S5824369 B2 JPS5824369 B2 JP S5824369B2
- Authority
- JP
- Japan
- Prior art keywords
- vinylidene chloride
- cellulose
- pitch
- adsorption
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】
本発明は塩化ビニリデン系高分子の内である限られた範
囲の組成のものを用い、なおかつ以下に記載する物質を
配合し、乾留することにより選択吸着性のある炭素材料
を製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention uses a vinylidene chloride-based polymer with a composition within a limited range, blends the substances described below, and carbonizes it by carbonation, which has selective adsorption properties. Relating to a method of manufacturing the material.
さらに詳しくは塩化ビニリデンの組成が70%〜100
%である塩化ビニリデン系高分子を脱塩酸することによ
り炭化物となし、限られた軟化点を持つピッチとセルロ
ース微結晶子集合物、水溶性セルロース誘導体、糖類よ
り選ばれた一種を配合し乾留することにより選択吸着性
のある炭素材料を製造する方法である。More specifically, the composition of vinylidene chloride is 70% to 100%.
% of vinylidene chloride-based polymer is dehydrochlorinated to form a carbonized product, and one selected from pitch with a limited softening point, cellulose microcrystallite aggregate, water-soluble cellulose derivative, and saccharide is blended and carbonized. This is a method for producing a carbon material with selective adsorption properties.
従来よりガス、液体の二種以上の混合物を分離及び精製
する方法としてチャバザイト、モルデナイト、エリオナ
イトの天然ゼオライト、あるいは合成ゼオライトが使用
されているが、これらはその結晶構造に起因して高温度
あるいは耐薬品性に弱いという欠点を有している。Conventionally, natural zeolites such as chabazite, mordenite, and erionite, as well as synthetic zeolites, have been used to separate and purify mixtures of two or more types of gases and liquids. It has the disadvantage of poor chemical resistance.
本発明は上記の問題を解決できる新しい選択吸着性材料
を提供するものである。The present invention provides a new selective adsorption material that can solve the above problems.
本発明にいう選択吸着性のある炭素材料とは、一般的に
広く云われているモレキュラ・シーブ効果のある炭素材
料のことであり、すなわち孔の開口半径が分子レベルの
大きさに相当しており、なおかつその開口半径が非常に
そろっているものの炭素材料である。The carbon material with selective adsorption properties as used in the present invention refers to carbon materials that have a molecular sieve effect, which is generally widely referred to as a carbon material with a pore opening radius corresponding to the size of the molecular level. It is a carbon material, and its opening radius is very uniform.
例えば孔の開口半径より吸着される分子の分子最少投影
半径が小さいものは吸着されるが、開口半径より大きい
ものでは吸着されない。For example, molecules whose minimum projected radius is smaller than the opening radius of the pore are adsorbed, but molecules larger than the opening radius are not adsorbed.
具体的な例で説明すると分子最少半径が、33オングス
トロームである炭酸ガスと、40であるメタンの混合物
から炭酸ガスを吸着したい場合は本発明の炭素材料によ
り分子半径が小さい炭酸ガスを選択的に吸着することが
できる。To explain with a specific example, when it is desired to adsorb carbon dioxide gas from a mixture of carbon dioxide gas with a minimum molecular radius of 33 angstroms and methane with a minimum molecular radius of 40 angstroms, the carbon material of the present invention can be used to selectively adsorb carbon dioxide gas with a small molecular radius. Can be adsorbed.
また、分子半径が4.9オングストロームであるn−パ
ラフィンと5.6の1so−パラフィンの混合物から両
者を分離したい場合は分子半径の小さいn−パラフィン
だけを選択的に吸着させることができる。Further, when it is desired to separate n-paraffin having a molecular radius of 4.9 angstroms and 1so-paraffin having a molecular radius of 5.6 angstroms from a mixture, only the n-paraffin having a small molecular radius can be selectively adsorbed.
塩化ビニリデン系高分子は特殊な分解を起すためヤシ殻
1石炭からの炭素材と比較して以前から研究の対象にな
ってきた。Vinylidene chloride-based polymers have long been the subject of research in comparison with carbon materials from coconut shells and coal because they cause special decomposition.
この分解状態についての詳細な研究を行なった結果塩化
ビニリデンの限られた組成の塩化ビニリデン系高分子に
おいてのみ上記した配合剤を加えることにより優れた選
択吸着性を示すことを見い出し、本発明を完成した。As a result of detailed research into this decomposition state, it was discovered that adding the above-mentioned compounding agent to vinylidene chloride-based polymers with limited compositions showed excellent selective adsorption, and the present invention was completed. did.
すなわち塩化ビニリデンの組成が70〜100%の範囲
においてのみ効果があり、70%未満ては、配合剤を加
えても優れた選択吸着性を示すには至らなかった。That is, it is effective only when the composition of vinylidene chloride is in the range of 70 to 100%, and when the composition is less than 70%, excellent selective adsorption cannot be exhibited even if the compounding agent is added.
この理由については明らかではないが塩化ビニリデン系
高分子を合成する際に塩化ビニリデン単量体の連鎖長が
必要条件を満すまで成長しないためであろうと思われる
。The reason for this is not clear, but it is thought to be because the vinylidene chloride monomer chain length does not grow until it satisfies the required conditions when synthesizing vinylidene chloride-based polymers.
本発明における塩化ビニリデン系高分子とはポリ塩化ビ
ニリデン及び塩化ビニリデンとラジカル重合可能なビニ
ル系単量体で塩化ビニル、酢酸ビニル、アクリレート、
メタクリレート等との多元共重合体である。In the present invention, the vinylidene chloride polymer refers to polyvinylidene chloride and vinyl monomers that can be radically polymerized with vinylidene chloride, including vinyl chloride, vinyl acetate, acrylate,
It is a multicomponent copolymer with methacrylate, etc.
塩化ビニリデン系高分子を脱塩酸する方法としては熱を
加えて不活性ガス中あるいは乾留状態で行なうことが可
能である。As a method for dehydrochloridizing vinylidene chloride polymers, it is possible to carry out the dehydrochlorination process by applying heat in an inert gas or under carbonized distillation.
脱塩酸を完全に行なうためには700°C程度で1〜2
時間を要する。In order to completely remove hydrochloric acid, heat at around 700°C for 1 to 2 hours.
It takes time.
熱分解したものは塊状の炭化物になることが′あるので
、後に配合剤を混合するため粉砕する必要がある。Since the thermally decomposed material may turn into lumpy carbide, it is necessary to crush it in order to mix the ingredients later.
充分に配合剤を配合するために100mesh以下が好
ましい。The mesh size is preferably 100 mesh or less in order to sufficiently mix the ingredients.
配合するピッチはその軟化点が50°C〜150℃の範
囲である必要がある。The pitch to be blended must have a softening point in the range of 50°C to 150°C.
一般的にピッチの軟化点は最終留分の温度あるいは特に
原料に依存する官能基の量、熱処理等による変質の程度
によるものでC/Hの原子比とも相関があるものである
。In general, the softening point of pitch depends on the temperature of the final distillate, the amount of functional groups depending on the raw material, the degree of alteration due to heat treatment, etc., and is also correlated with the C/H atomic ratio.
本発明において使用できるピッチの軟化点が50〜15
0℃に限定されるが、これは50°C以下であると造粒
、乾留した後の粒子強度が弱く用に耐えられないばかり
かその残留量が少ないため他の配合剤であるセルロース
類との組合せ効果が出てこなく選択吸着性を示すまでに
は到らない。The softening point of the pitch that can be used in the present invention is 50 to 15
The temperature is limited to 0°C, but if the temperature is below 50°C, the strength of the particles after granulation and carbonization will be too weak to withstand use, and the remaining amount will be too small, making it difficult to combine with other compounding agents such as cellulose. The combination effect does not appear and it does not reach the point where it shows selective adsorption.
また200℃以上になるとピッチが完全に流動状態にな
る前に他の配合剤であるセルロース類、糖類の分解が始
まりピッチ、セルロース類、糖類との組合せ効果が生じ
なく優れた選択性のある炭素材料にはならない。In addition, when the temperature exceeds 200℃, the other ingredients such as cellulose and sugar begin to decompose before pitch becomes completely fluid, and the combination effect with pitch, cellulose and sugar does not occur, resulting in excellent selectivity. It cannot be used as a material.
好ましくは150℃以下がよい。The temperature is preferably 150°C or lower.
また配合するピッチの量は15%〜40%に限定される
必要がある、15%未満であると造粒、乾留後の強度が
弱いはかりでなく炭化物に不完全にしか配合できないた
めか選択吸着性についても不完全な結果しか示さない。In addition, the amount of pitch to be blended needs to be limited to 15% to 40%. If it is less than 15%, the strength after granulation and carbonization will be weak, and it may be because it can only be incompletely blended into the carbide. Regarding gender, the results are also incomplete.
また40%以上になると後に記載するようにセルロース
類、糖類を多量に配合しても基本的性質の重要な素材で
ある塩化ビニリデン系高分子の炭化物の性質を完全にぬ
ぐいさることとなり選択吸着性を示さなくなる。In addition, if it exceeds 40%, as will be described later, even if a large amount of cellulose or saccharide is blended, the properties of the carbide of the vinylidene chloride polymer, which is an important material in basic properties, will be completely wiped out, resulting in selective adsorption. will no longer be shown.
また本発明における軟化点の測定方法は細いガラス管中
に試料を入れ拡大鏡でながめながら温度を上昇していき
液状になった温度をいう。In addition, in the method of measuring the softening point in the present invention, a sample is placed in a thin glass tube, and the temperature is increased while viewing it with a magnifying glass, and the softening point is the temperature at which the sample becomes liquid.
本発明にいうセルロース微結晶子集合物とは、インダス
トリアル、アンド、エンジニアリングケミストリー、4
2巻、502頁に記載されているものでセルロースを薬
品分解して得られる均一な重合度を有したセルロース集
合物である。The cellulose microcrystallite aggregate referred to in the present invention refers to Industrial, Engineering Chemistry, 4.
It is described in Volume 2, page 502, and is a cellulose aggregate with a uniform degree of polymerization obtained by chemically decomposing cellulose.
セルロース微結晶子集合物、水溶性セルロース誘導体お
よび糖蜜は水系で溶解するかあるいは微分散する性質を
持つものであり、造粒工程での作業を容易にし均一な粒
子を作ることができるばかりでなく、これらは500
’C以上に熱するとそのほとんどを分解飛散するもので
あり、ピッチの焼結効果と相まって特に優れた選択吸着
性を示すものである。Cellulose microcrystallite aggregates, water-soluble cellulose derivatives, and molasses have the property of dissolving or finely dispersing in aqueous systems, which not only facilitates the work in the granulation process and makes it possible to produce uniform particles. , these are 500
When heated to a temperature above 1000 C, most of it decomposes and scatters, and combined with the sintering effect of the pitch, it exhibits particularly excellent selective adsorption.
セルロース微晶子集合物水溶性セルロース誘導体及び糖
蜜の炭化物に対する配合量は、5%未満であると造粒操
作が不便であり均一な粒子が得られないばかりか上記ピ
ッチと相まっての良好なる選択吸着性のあるものが得ら
れない。If the blending amount of cellulose microcrystalline aggregate water-soluble cellulose derivative and molasses is less than 5%, the granulation operation will be inconvenient and uniform particles will not be obtained, and combined with the above-mentioned pitch, good selective adsorption will occur. I can't get anything sexual.
また40%以上になると本来重要である炭化物の微細孔
発達効果を失うこととなり好ましくない。Moreover, if it exceeds 40%, the originally important micropore development effect of carbide will be lost, which is not preferable.
それゆえ、5%〜40%に制限されるものである。Therefore, it is limited to 5% to 40%.
セルロース微結晶子集合物水溶性セルロース誘導体、糖
蜜を上記炭化物粉末に配合する方法は水に分散するか溶
解してニーダ−等で混合される。The cellulose microcrystallite aggregate, a water-soluble cellulose derivative, and molasses are blended into the above-mentioned carbide powder by dispersing or dissolving them in water and mixing them in a kneader or the like.
ピッチについては微粉砕して上記同様粉体のままで混合
するか、あるいは軟化点以上250℃以下で液状にして
混合する方法がありどちらでも利用できる。Pitch can be used either by finely pulverizing it and mixing it as a powder as described above, or by making it into a liquid at a temperature above the softening point and below 250° C., and either method can be used.
配合したものを造粒する方法としては水を加えディスク
ペレタイザーのような回転盤上で行なうかマルメライザ
゛−、エクストルーダーも使用できる。The blended product can be granulated by adding water and using a rotary disk such as a disk pelletizer, or by using a marmerizer or an extruder.
さらに上記造粒したものを乾留する方法としては不活性
ガス、例えは窒素ガス気流中で加熱するか、あるいは酸
素ガスが入り込まない状態でむし焼きすることにより行
なえる。Further, the granulated product can be carbonized by heating it in a stream of an inert gas, for example, nitrogen gas, or by roasting it in a state where oxygen gas does not enter.
温度及び昇温速度については特に限定されるものではな
いが好ましくは400°C〜1000°Cで1°C/分
〜100C/分である。Although there are no particular limitations on the temperature and heating rate, it is preferably 1°C/min to 100°C/min at 400°C to 1000°C.
以下に実施例を示して更に本発明を説明する。The present invention will be further explained by showing examples below.
実施例 1
塩化ビニリデン80部塩化ビニル20部の共重合体粒子
を酸素が入り込まない状態で1分間当り5℃の昇温速度
で900°Cて30分間脱塩酸した。Example 1 Copolymer particles containing 80 parts of vinylidene chloride and 20 parts of vinyl chloride were dehydrochlorinated at 900° C. for 30 minutes at a heating rate of 5° C. per minute in the absence of oxygen.
得られた炭化物は塊状であったので微粉砕して10me
shふるいを通過させた。The obtained carbide was in the form of a lump, so it was finely pulverized to 10 m
passed through a sh sieve.
この炭化物10gに対しセルロース微結晶子集合体15
%及び軟化点的100℃のコールクールピッチの微粉砕
したもの25%を乳鉢でよく混合し炭化物粉末に加え混
合したのち水を適当量加え、ディスクペレクイザーにて
直径1%〜2Xの粒子を造粒した。15 cellulose microcrystallite aggregates per 10 g of this carbide
% and 25% of finely pulverized coal cool pitch with a softening point of 100°C was thoroughly mixed in a mortar, added to the carbide powder, mixed, an appropriate amount of water was added, and particles with a diameter of 1% to 2X were prepared using a disc pelletizer. was granulated.
このものを90°Cの送風乾燥機で30分間乾燥したの
ち、700°Cで1時間、窒素ガスを通しながら石英製
の横型乾留炉を使用して回転させながら乾留した。This product was dried in a blow dryer at 90°C for 30 minutes, and then carbonized at 700°C for 1 hour while rotating in a horizontal carbonization furnace made of quartz while passing nitrogen gas.
得られた炭素材料は強固なものであった。The obtained carbon material was strong.
この炭素材料のガスの選択吸着性を測定するため石英ス
プリングを用いた重量法により25°C1760mmH
gにおけるn−ブタン、isoブタンの吸着量を測定し
た。In order to measure the gas selective adsorption of this carbon material, a gravimetric method using a quartz spring was conducted at 25°C and 1760mmH.
The amount of adsorption of n-butane and isobutane in g was measured.
前処理として250℃で3時間、真空脱着を行なったも
のを使用した。As a pretreatment, vacuum desorption was performed at 250° C. for 3 hours before use.
比較のために、塩化ビニリデン50部塩化ビニル50部
の共重合体を試作し、上記と同様の方法で選択吸着性を
測定した。For comparison, a copolymer of 50 parts of vinylidene chloride and 50 parts of vinyl chloride was prepared, and its selective adsorption properties were measured in the same manner as above.
結果は次の通りであった。The results were as follows.
(本発明材料)
nブタン吸着量 120〜/l
1soブタン吸着量 12m9/g(比較材料:
塩化ビニリデン/塩化ビニルニ50150を用いたもの
)
nブタン吸着量 17〜/g
isoブタン吸着量 13rn4//g実施例
2
ポリ塩化ビニリデン粒子を用い実施例1と同様にして9
00°Cで1時間脱塩酸を行なった。(Material of the present invention) n-butane adsorption amount: 120~/l 1so-butane adsorption amount: 12 m9/g (comparative material:
(using vinylidene chloride/vinyl dichloride 50150) n-butane adsorption amount 17~/g iso-butane adsorption amount 13rn4//g Example
2. 9 in the same manner as in Example 1 using polyvinylidene chloride particles.
Dehydrochlorination was performed at 00°C for 1 hour.
得られた炭化物は切期の状態のままで炭化していたが微
粉砕して100メツシュ通過品とした。The obtained carbide was still carbonized at the cutting stage, but was finely pulverized into a product passing 100 mesh.
この炭化物にセルロース微結晶子集合体25%及び軟化
点70℃のコールタールピッチ30%を配合して造粒し
た。This carbide was blended with 25% cellulose microcrystallite aggregates and 30% coal tar pitch with a softening point of 70°C and granulated.
この造粒物を実施例1と同様にして450°Cで1時間
乾留した。This granulated product was carbonized at 450°C for 1 hour in the same manner as in Example 1.
この炭素材の炭酸ガス、正ブタンの選択吸着性を測定し
た。The selective adsorption of carbon dioxide and normal butane of this carbon material was measured.
結果は次の通りであった。CO2吸着量 70〜/
g
正ブタン吸着量 5ml?/g
比較のためにピッチ、セルロース微結晶子集合物を配合
しない状態の脱塩酸炭化物の炭酸ガス、正ブタンの吸着
性を測定した。The results were as follows. CO2 adsorption amount 70~/
g Normal butane adsorption amount 5ml? /g For comparison, the carbon dioxide and orthobutane adsorption properties of the dehydrochlorinated carbonized product without pitch or cellulose microcrystallite aggregates were measured.
結果は次の通りであった。The results were as follows.
CO2吸着量 1.41〜/g
正ブタン吸着量 163〜/g
本結果より本発明品は分子径の小さい炭酸ガスを選択的
に吸着することがわかる。CO2 adsorption amount: 1.41~/g Normal butane adsorption amount: 163~/g These results show that the product of the present invention selectively adsorbs carbon dioxide gas with a small molecular diameter.
実施例 3
塩化ビニリデン90部塩化ビニル10部の塩化ビニリデ
ン系高分子を600°Cで2時間脱塩酸を行ない炭化物
を得た。Example 3 A vinylidene chloride polymer containing 90 parts of vinylidene chloride and 10 parts of vinyl chloride was dehydrochlorinated at 600°C for 2 hours to obtain a carbide.
この炭化物粉末にコールタールピッチ30%と廃糖蜜1
0%を配合して造粒し、900℃で1時間、窒素ガス気
流中で乾留を行ない炭素材料を得た。To this carbide powder, 30% coal tar pitch and 1 part blackstrap molasses.
0%, granulated, and carbonized at 900° C. for 1 hour in a nitrogen gas stream to obtain a carbon material.
この炭素材料のCO2、正ブタンの吸着量を測定した。The amount of adsorption of CO2 and normal butane on this carbon material was measured.
結果は次の通りであった。CO2吸着量 98m
9/g
正ブタン吸着量 11m9/g
比較例 1
塩化ビニリデン80部塩化ビニル20部の塩化ビニリデ
ン系高分子を900°Cで1時間脱塩酸を行ない炭化物
を得た。The results were as follows. CO2 adsorption amount 98m
9/g Normal butane adsorption amount 11 m9/g Comparative Example 1 A vinylidene chloride polymer containing 80 parts of vinylidene chloride and 20 parts of vinyl chloride was dehydrochlorinated at 900°C for 1 hour to obtain a carbide.
この炭化物粉末に軟化点が・約300°Cの変質石油ピ
ッチ30%とセルロース微結晶子集合物8%を配合して
造粒したこの造粒物を600°Cで1時間乾留したもの
の炭酸ガスと正ブタンの吸着量を測定した。This carbide powder is granulated by blending 30% altered petroleum pitch with a softening point of approximately 300°C and 8% cellulose microcrystallite aggregate, and the granulated product is carbonated at 600°C for 1 hour, resulting in carbon dioxide gas. The amount of adsorption of normal butane was measured.
結果は次の通りであった。The results were as follows.
CO□吸着量 68ヤ/g
正ブタン吸着量 53Tn9/、?
この結果より本発明におけるピッチの軟化点が300℃
のものを使用した場合は本発明の効果がないことがわか
る。CO□ adsorption amount 68 Y/g normal butane adsorption amount 53Tn9/,? From this result, the softening point of the pitch in the present invention is 300°C.
It can be seen that the effect of the present invention is not obtained when using the same.
Claims (1)
分子であって塩化ビニリデン重量組成が70%〜100
%のものを脱塩酸し、これを微粉砕したるのち、軟化点
が50°C〜150°Cの範囲であるピッチを脱塩酸物
に対し15〜40%、及びセルロース微結晶子集合物、
水溶性セルロース誘導体、糖類より選はれた一種を脱塩
酸物に対し5〜40%をそれぞれ配合し、造粒したるの
ち乾留することを特徴とする炭素材料の製造方法。1 A vinylidene chloride-based polymer containing vinylidene chloride as a main component, with a weight composition of vinylidene chloride of 70% to 100%.
After dehydrochlorinating and finely pulverizing this, 15 to 40% of pitch with a softening point in the range of 50 ° C to 150 ° C, and cellulose microcrystallite aggregate,
A method for producing a carbon material, which comprises blending 5 to 40% of a water-soluble cellulose derivative and a saccharide to a dehydrochloride, granulating the mixture, and then carbonizing the mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50152513A JPS5824369B2 (en) | 1975-12-19 | 1975-12-19 | Tansozairiyounoseizohouhou |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50152513A JPS5824369B2 (en) | 1975-12-19 | 1975-12-19 | Tansozairiyounoseizohouhou |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5275690A JPS5275690A (en) | 1977-06-24 |
JPS5824369B2 true JPS5824369B2 (en) | 1983-05-20 |
Family
ID=15542082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50152513A Expired JPS5824369B2 (en) | 1975-12-19 | 1975-12-19 | Tansozairiyounoseizohouhou |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5824369B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54105897A (en) * | 1978-02-06 | 1979-08-20 | Kureha Chemical Ind Co Ltd | Adsorber for artificial organ |
JPS6037046B2 (en) * | 1978-02-06 | 1985-08-23 | 呉羽化学工業株式会社 | Low-pulverization high-strength activated carbon and its manufacturing method |
US4933314A (en) * | 1987-03-10 | 1990-06-12 | Kanebo Ltd. | Molecular sieving carbon |
US5261948A (en) * | 1992-09-10 | 1993-11-16 | University Of Delaware | Carbon molecular sieve for the kinetic separation of acid gases and fluorocarbons |
JP3702300B2 (en) * | 1994-03-11 | 2005-10-05 | 旭化成株式会社 | Manufacturing method of electrode for electric double layer capacitor |
JP3527789B2 (en) * | 1994-12-29 | 2004-05-17 | 旭化成ケミカルズ株式会社 | Electrode for electric double layer capacitor and its manufacturing method |
JPH09213589A (en) * | 1996-02-02 | 1997-08-15 | Takeda Chem Ind Ltd | Activated carbon for electric double-layer capacitor and manufacture thereof |
WO2017035023A1 (en) * | 2015-08-22 | 2017-03-02 | Entegris, Inc. | Microcrystalline cellulose pyrolyzate adsorbents and methods of making and using name |
-
1975
- 1975-12-19 JP JP50152513A patent/JPS5824369B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5275690A (en) | 1977-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4820681A (en) | Preparation of hydrophobic carbon molecular sieves | |
JP5950491B2 (en) | Composition and method for sealing flue gas mercury in concrete | |
US8759253B2 (en) | Chemically activated carbon and methods for preparing same | |
US5726118A (en) | Activated carbon for separation of fluids by adsorption and method for its preparation | |
US4820318A (en) | Removal of organic compounds from gas streams using carbon molecular sieves | |
JP3071429B2 (en) | Agglomerates based on activated carbon, methods for their preparation and their use as adsorbents | |
US4228037A (en) | Spherical activated carbon having low dusting property and high physical strength and process for producing the same | |
TWI492780B (en) | Compositions and methods to sequester flue gas mercury in concrete | |
EP0401285A1 (en) | Carbon dioxide removal using aminated carbon molecular sieves. | |
EP0204700A1 (en) | Activated carbon adsorbent with increased heat capacity and the production thereof. | |
JPS5824369B2 (en) | Tansozairiyounoseizohouhou | |
US5130288A (en) | Cogelled mixtures of hydrated zinc oxide and hydrated silica sulfur sorbents | |
CA2737283A1 (en) | Sorbent compositions and processes for reducing mercury emissions from combustion gas streams | |
CN106082256A (en) | The preparation method that ethylene is dedicated molecular sieve used | |
JP2828268B2 (en) | Activated carbon for advanced treatment of purified water | |
JPS61151012A (en) | Method of activating carbide | |
JP2009057239A (en) | Activated carbon preparation method | |
US3985689A (en) | Sorbent foam material | |
JP4708409B2 (en) | Molded activated carbon for waste gas treatment and method for producing the same | |
US2988519A (en) | Activation of clay by acid treatment and calcination in the presence of carbonaceous aterial | |
EP0394350B1 (en) | Hydrophobic carbon molecular sieves | |
JPS61293546A (en) | Acidic gas removing agent | |
JPS5833172B2 (en) | Method for producing granular molecular sieve carbon material from coal | |
US12054678B2 (en) | Polymer-metal salt composite for the dehydration of water from sweet gas and liquid condensate streams | |
JP2000281325A (en) | Production of activated carbon and treatment of water |