JPS58217651A - Preparation of material for storing hydrogen - Google Patents
Preparation of material for storing hydrogenInfo
- Publication number
- JPS58217651A JPS58217651A JP10084682A JP10084682A JPS58217651A JP S58217651 A JPS58217651 A JP S58217651A JP 10084682 A JP10084682 A JP 10084682A JP 10084682 A JP10084682 A JP 10084682A JP S58217651 A JPS58217651 A JP S58217651A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- crucible
- electrode
- water
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Abstract
Description
【発明の詳細な説明】
本発明は水素貯蔵用材料の製造法に関するものであって
、凝固後の冷却速度を早くでき、しかも不純物の汚染が
少く、かつ、材料組成の偏析が少い均一な水素貯蔵用材
料、特にTi−Fe系合金からなる水素貯蔵用材料を製
造する方法を提供することを目的とするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a hydrogen storage material, which can speed up the cooling rate after solidification, reduce contamination with impurities, and produce a uniform material with less segregation of material composition. It is an object of the present invention to provide a method for manufacturing a hydrogen storage material, particularly a hydrogen storage material made of a Ti-Fe alloy.
現在水素貯蔵用材料としてはTi −Fe 系合金お
よびさらにこれにZr 、Mo 、Nb 、La 、C
e等のレアアースメタル等を添加し、真空中で溶解して
Ti−Fe 系合金からなる水素貯蔵用材料を製造し
ている。即ち、製造方法として水冷銅ハース上でタング
ステン電極を用い、真空またはアルゴン雰囲気中で小規
模に製造する所謂TIG 溶解で製造したものはルツ
ボからの汚染がなく、しかも合金が急冷されるため成分
が均一で偏析がなく水素吸蔵特性(水素吸蔵等、ヒステ
リシス、プラトー性など)が良い。しかし規模の大きい
溶解法として知られている高周波誘導炉中でルツボを用
いて溶解する方法では、ルツボと材料との反応による汚
染がさけられず、また水倹銅ルツボを用い、消耗電極式
アーク炉で溶解する方法は冷却速度が非常に遅く、従っ
て水素貯蔵用材料が均一とならず偏析し、水素吸蔵−特
性も良ないと云う欠点がある。Currently, hydrogen storage materials include Ti-Fe alloys and furthermore Zr, Mo, Nb, La, and C.
A hydrogen storage material made of a Ti-Fe alloy is manufactured by adding rare earth metals such as e and melting them in a vacuum. In other words, products manufactured by so-called TIG melting, which uses a tungsten electrode on a water-cooled copper hearth and is manufactured on a small scale in a vacuum or argon atmosphere, are free from contamination from the crucible, and because the alloy is rapidly cooled, the components are It is uniform, has no segregation, and has good hydrogen storage properties (hydrogen storage, hysteresis, plateau, etc.). However, in the method of melting using a crucible in a high-frequency induction furnace, which is known as a large-scale melting method, contamination due to the reaction between the crucible and the material is unavoidable. The method of melting in a furnace has the drawback that the cooling rate is very slow, so the hydrogen storage material is not uniform and segregated, and the hydrogen storage properties are also poor.
本発明は特許請求の範囲に記載した構成とすることによ
って、製品が大塊状を形成することなく急速に冷却する
ことができ、従って製品の偏析が々く均一組成の水素貯
蔵用材料を得ることができた。By adopting the structure described in the claims, the present invention can rapidly cool a product without forming large lumps, and therefore obtain a hydrogen storage material with a uniform composition and less segregation of the product. was completed.
第1図乃至第9図は本発明の実施に使用する装置の一例
を示したものであるが、つぎにこれら図面に基づいて本
発明を説明する。真空タンク1内に水冷銅ルツボ2が取
付けられており、これにFe及びTiの金属棒で形成さ
れている消耗式アーク電極(以下たんに電極と云う)3
がルツボ2上部から懸架されている。1 to 9 show an example of an apparatus used to carry out the present invention. Next, the present invention will be explained based on these drawings. A water-cooled copper crucible 2 is installed in a vacuum tank 1, and a consumable arc electrode (hereinafter simply referred to as an electrode) 3 made of metal rods of Fe and Ti is attached to the water-cooled copper crucible 2.
is suspended from the top of crucible 2.
上述に於て使用する電極は第2図及び第3図に示すよう
に、水素貯蔵用材料としてのTi及びFe の配合組成
に合せてTi 棒4の外周にFe棒5の複数本が前記
Ti棒4を囲繞して取付けられたものである。As shown in FIGS. 2 and 3, the electrodes used in the above are arranged so that a plurality of Fe rods 5 are arranged around the outer periphery of the Ti rod 4 in accordance with the composition of Ti and Fe as the hydrogen storage material. It is attached to surround the rod 4.
また、前記における水冷銅ルツボ2は第9図に示すよう
にルツボ2内側に銅ライナー6が取付けられておシ、該
銅ライナー6の外周及び底面下部に水が導通できる空隙
7が形成されたものである。Furthermore, as shown in FIG. 9, the water-cooled copper crucible 2 described above has a copper liner 6 attached to the inside of the crucible 2, and a gap 7 through which water can conduct is formed at the outer periphery and lower part of the bottom surface of the copper liner 6. It is something.
上述装置に於て、電極3をニューマチックシリンダー8
で引下げて水冷銅ルツボ2内へ挿入すると共に、真空タ
ンク1内を、乙〜ざX / 0−3To’rrに減圧排
気した後前記電極3と水冷銅ルツボ2とに直流電圧を印
加してアーク放電を発生させ、電極3を水冷銅ルツボ2
内へ溶解させる。同時に前記水冷銅ルツボ2の空隙7に
水を導通する。In the above device, the electrode 3 is connected to the pneumatic cylinder 8.
The electrode 3 is lowered and inserted into the water-cooled copper crucible 2, and the inside of the vacuum tank 1 is depressurized to 0-3 To'rr, and then a DC voltage is applied to the electrode 3 and the water-cooled copper crucible 2. An arc discharge is generated and the electrode 3 is placed in a water-cooled copper crucible 2.
dissolve inward. At the same time, water is introduced into the void 7 of the water-cooled copper crucible 2.
従って、水冷銅ルツボ2内に溶解された電極3の銅ライ
ナー6に接触している極く薄い部分は水冷によって急速
に凝固して銅ライナー6内 ′面に薄いスカル(厚
さ30WR以内)を形成するため、前記スカル内側の溶
融部は組成の均一なものとして保持することができる。Therefore, the very thin part of the electrode 3 melted in the water-cooled copper crucible 2 that is in contact with the copper liner 6 is rapidly solidified by water cooling, and a thin skull (within a thickness of 30 WR) is formed on the inner surface of the copper liner 6. Because of this, the molten zone inside the skull can be kept uniform in composition.
以上の操作によって所定の重量を溶解した後ニューマチ
ックシリンダー8によって電極3の溶は残り分を引上げ
た後、水冷銅ルツボ2をノ・ンドル9を操作して傾動し
、水冷銅ルツボ2内の溶融部分を黒鉛漏斗10内へ傾注
し、さらに該溶融部分を合金が飛散しない程度の速度で
回転している分散用回転テーブル11上に固定された銅
製板状鋳型12上に注入して冷却し、冷却をまって水冷
銅ルツボ2内に付着しているスカル、黒鉛漏斗10の付
着物及び銅製板状鋳型12内の板状インゴットを採シ出
す。After melting a predetermined weight through the above operations, the pneumatic cylinder 8 pulls up the remaining portion of the melt on the electrode 3, and then the water-cooled copper crucible 2 is tilted by operating the nozzle 9, and the melt inside the water-cooled copper crucible 2 is The molten portion is poured into a graphite funnel 10, and then the molten portion is poured onto a copper plate-shaped mold 12 fixed on a dispersion rotary table 11 which is rotating at a speed that does not cause the alloy to scatter, and is cooled. After cooling, the skull adhering to the water-cooled copper crucible 2, the deposits on the graphite funnel 10, and the plate-shaped ingot in the copper plate-shaped mold 12 are taken out.
以上の如く本発明は水冷銅ルツボ2内では該ルツボ2内
面にスカルを形成することによって該水冷銅ルツボ2内
の溶湯、の組成の均一化が保持できると共に、該水冷銅
ルツボ2内の溶湯を黒鉛漏斗10及び銅製板状鋳型12
内で鋳造するため、製品は従来の如き大塊状物を形成せ
ず急速に冷却され、かつ、組成の均一化を図ることがで
きる。As described above, in the present invention, by forming a skull on the inner surface of the crucible 2, the composition of the molten metal in the water-cooled copper crucible 2 can be maintained uniform, and the molten metal in the water-cooled copper crucible 2 can be kept uniform. A graphite funnel 10 and a copper plate mold 12
Since the product is cast within the mold, it is rapidly cooled without forming large lumps as in the conventional method, and the composition can be made uniform.
また、真空タンク1は前述操作では真空としているが真
空に限らずアルゴン、ヘリウム等の不活性ガス雰囲気と
することができ、従って必要によって適宜Zr、Mo
又は各種レアアースメタル等を添加できると共にTi
、Zr又はレアアースメタル等の活性金属の汚染、さら
にまた水冷銅ルツボ2を使用しているため、従来の如き
ルツボ材との反応による汚染は皆無である。Further, although the vacuum tank 1 is kept in a vacuum state in the above-mentioned operation, it is not limited to vacuum and can be in an inert gas atmosphere such as argon or helium.
Or various rare earth metals etc. can be added and Ti
, Zr, or rare earth metals, and since the water-cooled copper crucible 2 is used, there is no contamination due to reaction with the crucible material as in conventional methods.
さらに本発明では従来使用されている真空加熱装置を使
用でき、殆んど従来の真空加熱法と同様の操作で製造で
きるため、本発明の適用に当り水冷銅ルツボを使用する
ほかは何等特別な装置2手段を要さず製造できると云う
利点がある。Furthermore, the present invention can use conventionally used vacuum heating equipment, and can be manufactured using almost the same operations as conventional vacuum heating methods. It has the advantage that it can be manufactured without requiring two devices.
また、図示例に於ては電極が消耗されて水素貯蔵用材料
を製造するものであるが、これに限定されるものではな
く、非消耗電極アーク加熱。Further, in the illustrated example, the electrode is consumed to produce a hydrogen storage material, but the present invention is not limited to this, and non-consumable electrode arc heating can be used.
プラズマアーク加熱、プラズマ電子ビーム加熱又は電子
ビーム加熱等の各種加熱方式が採用できること勿論であ
る。Of course, various heating methods such as plasma arc heating, plasma electron beam heating, or electron beam heating can be employed.
実施例
第1図乃至第9図に示す装置及び部材を用い、Fe 、
Ti 、Zr およびNbの原子比が0.9’l:o
、q乙: o、o 11.: o、oグ(重量比99尾
:’l 3.’l : 3.!; : 3.左)のTi
−Fe 系合金からなる水素貯蔵用材料を製造した。Example Using the apparatus and members shown in FIGS. 1 to 9, Fe,
The atomic ratio of Ti, Zr and Nb is 0.9'l:o
, q O: o, o 11. : o, og (weight ratio 99 fish:'l 3.'l: 3.!; : 3. left) Ti
A hydrogen storage material made of a -Fe-based alloy was manufactured.
尚、この場合の溶解条件、収率は次の通りである。The dissolution conditions and yield in this case are as follows.
溶解重量 aθ3.!;に9
溶解条件 アーク電流 /θKA
アーク電圧 Il、2V(D、C)
圧 力 乙、vg X / (1)−3
Torr溶解時間 37分
製品重量 銅製板状鋳型 /37.3kgスカル
乙/、3に9
黒鉛漏斗部 コ、グkg
また、得られた製品の組成は次の表の通シである。Dissolved weight aθ3. ! 9 Melting conditions Arc current /θKA Arc voltage Il, 2V (D, C) Pressure Otsu, vg X / (1)-3
Torr melting time: 37 minutes Product weight: Copper plate mold / 37.3 kg skull
B/, 3 to 9 Graphite funnel part K, G kg The composition of the obtained product is as shown in the following table.
素吸蔵特性(水素吸蔵量、ヒステリシス、プラトー性等
)は、水冷銅ハース上で、タングステン電極を用い、ア
ルゴンガス雰囲気で製造する所i TIG 溶解法に
よシ造塊した試料に優るとも劣らない特性を有するもの
たらしめることができる。The elemental storage properties (hydrogen storage capacity, hysteresis, plateau properties, etc.) are superior to those produced by agglomeration using the TIG melting method on a water-cooled copper hearth using a tungsten electrode in an argon gas atmosphere. It can be made to have certain characteristics.
第1図は本発明に使用する装置の一例の断面図、第Ω図
は電極の一例を示す側面図、第3図は第コ図中III−
III線断面図、第9図は水冷銅ルツボの断面図″’Q
ある。
1:真空タンク、2:水冷銅ルツボ、3:消耗式アーク
電極、10;黒鉛漏斗、12:銅製板状鋳型。
特許出願人 日本重化学工業株式会社同
日本真空技術株式会社
同 真空冶金株式会社
代 理 人 市 川 理 吉日本重化学工業
株式会社C外2名)
代理人市川理吉
第1頁の続き
0発 明 者 賀集誠一部
千葉県印施郡へ街町八街に053
の233
@出 願 人 日本真空技術株式会社
茅ケ崎市萩園2500
■出 願 人 真空冶金株式会社
千葉県山武郡山武町横田516Fig. 1 is a sectional view of an example of the device used in the present invention, Fig. Ω is a side view showing an example of an electrode, and Fig. 3 is a sectional view showing an example of the electrode.
III line sectional view, Figure 9 is a sectional view of a water-cooled copper crucible''Q
be. 1: Vacuum tank, 2: Water-cooled copper crucible, 3: Consumable arc electrode, 10: Graphite funnel, 12: Copper plate mold. Patent applicant: Japan Heavy and Chemical Industry Co., Ltd.
Japan Vacuum Technology Co., Ltd. Vacuum Metallurgy Co., Ltd. Agent: Osamu Ichikawa, Japan Heavy Chemical Industry Co., Ltd. (2 persons other than C) Agent: Rikichi Ichikawa (Continued from page 1) 0 Inventor: Seiichi Kashu To Inse District, Chiba Prefecture 053-233 in Machachi Yachimata @Applicant Japan Vacuum Technology Co., Ltd. 2500 Hagizono, Chigasaki City ■Applicant Vacuum Metallurgy Co., Ltd. 516 Yokota, Sammu-cho, Sammu-gun, Chiba Prefecture
Claims (1)
は不活性ガス雰囲気中で溶解して、前記水冷銅ルツボ内
壁面にスカルを形成すると共に、前記スカル内部の溶融
材料を前記真空若しくは不活性ガス雰囲気中で水冷銅ル
ツボを傾動して銅製板状鋳型に注入して急冷した後、前
記スカル及び銅製板状鋳型内の製品を採取することを特
徴とする水素貯蔵用材料の製造法。A raw material for a hydrogen storage material is melted in a water-cooled copper crucible in a vacuum or an inert gas atmosphere to form a skull on the inner wall surface of the water-cooled copper crucible, and the molten material inside the skull is melted in a vacuum or inert gas atmosphere. A method for producing a hydrogen storage material, which comprises tilting a water-cooled copper crucible in a gas atmosphere, injecting it into a copper plate-shaped mold, rapidly cooling it, and then collecting the skull and the product inside the copper plate-shaped mold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57100846A JPS6051545B2 (en) | 1982-06-12 | 1982-06-12 | Method for manufacturing hydrogen storage materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57100846A JPS6051545B2 (en) | 1982-06-12 | 1982-06-12 | Method for manufacturing hydrogen storage materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58217651A true JPS58217651A (en) | 1983-12-17 |
JPS6051545B2 JPS6051545B2 (en) | 1985-11-14 |
Family
ID=14284677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57100846A Expired JPS6051545B2 (en) | 1982-06-12 | 1982-06-12 | Method for manufacturing hydrogen storage materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6051545B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS627035A (en) * | 1985-07-03 | 1987-01-14 | Casio Comput Co Ltd | Light source device |
US4827313A (en) * | 1988-07-11 | 1989-05-02 | Xerox Corporation | Mechanism and method for controlling the temperature and output of an amalgam fluorescent lamp |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5340613A (en) * | 1976-09-27 | 1978-04-13 | Matsushita Electric Ind Co Ltd | Production of hydrogen storing aloy |
JPS53114713A (en) * | 1977-03-18 | 1978-10-06 | Yoshitake Nishi | Melting method of titanium alloy using induction furnace |
JPS5521510A (en) * | 1978-07-31 | 1980-02-15 | Daido Steel Co Ltd | Manufacture of manganese or manganese-base alloy ingot |
JPS5650776A (en) * | 1979-09-28 | 1981-05-08 | Sumitomo Metal Ind Ltd | Manufacture of longitudinally short steel ingot |
-
1982
- 1982-06-12 JP JP57100846A patent/JPS6051545B2/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5340613A (en) * | 1976-09-27 | 1978-04-13 | Matsushita Electric Ind Co Ltd | Production of hydrogen storing aloy |
JPS53114713A (en) * | 1977-03-18 | 1978-10-06 | Yoshitake Nishi | Melting method of titanium alloy using induction furnace |
JPS5521510A (en) * | 1978-07-31 | 1980-02-15 | Daido Steel Co Ltd | Manufacture of manganese or manganese-base alloy ingot |
JPS5650776A (en) * | 1979-09-28 | 1981-05-08 | Sumitomo Metal Ind Ltd | Manufacture of longitudinally short steel ingot |
Also Published As
Publication number | Publication date |
---|---|
JPS6051545B2 (en) | 1985-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4738713A (en) | Method for induction melting reactive metals and alloys | |
JP4744872B2 (en) | Equipment for metal production or purification | |
US6144690A (en) | Melting method using cold crucible induction melting apparatus | |
US8668760B2 (en) | Method for the production of a β-γ-TiAl base alloy | |
US3072982A (en) | Method of producing sound and homogeneous ingots | |
US3565602A (en) | Method of producing an alloy from high melting temperature reactive metals | |
Bomberger et al. | The melting of titanium | |
US3548915A (en) | New procedure for chill casting beryllium composite | |
JPH04314836A (en) | Method and equipment for manufacturing alloy composed mainly of titanium and aluminum | |
JP2006281291A (en) | Method for producing long cast block of active high melting point metal alloy | |
EP2298473A2 (en) | Method for making and using a rod assembly as feedstock material in a smelting process | |
JPH04504981A (en) | Induced skull spinning of reactive alloys | |
US3771585A (en) | Device for melting sponge metal using inert gas plasmas | |
US5174811A (en) | Method for treating rare earth-transition metal scrap | |
JPS58217651A (en) | Preparation of material for storing hydrogen | |
Breig et al. | Induction skull melting of titanium aluminides | |
US3867976A (en) | Electroflux melting method and apparatus | |
JPH11242098A (en) | Device and method for melting and ingot-making | |
US2890109A (en) | Melting refractory metals | |
Rengstorff et al. | Preparation and Arc Melting of High Purity Iron | |
JPS6092432A (en) | Method and device for plasma arc melting | |
RU2731540C1 (en) | Method of producing chromium bronze | |
JPH0541715B2 (en) | ||
JPS62153108A (en) | Fusion synthesis method | |
Dutta et al. | Methods of Refining |