JP2006281291A - Method for producing long cast block of active high melting point metal alloy - Google Patents

Method for producing long cast block of active high melting point metal alloy Download PDF

Info

Publication number
JP2006281291A
JP2006281291A JP2005106664A JP2005106664A JP2006281291A JP 2006281291 A JP2006281291 A JP 2006281291A JP 2005106664 A JP2005106664 A JP 2005106664A JP 2005106664 A JP2005106664 A JP 2005106664A JP 2006281291 A JP2006281291 A JP 2006281291A
Authority
JP
Japan
Prior art keywords
crucible
ingot
raw material
melting
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005106664A
Other languages
Japanese (ja)
Other versions
JP5048222B2 (en
Inventor
Tatsuhiko Sodo
龍彦 草道
Hiroshi Yokoyama
弘 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005106664A priority Critical patent/JP5048222B2/en
Publication of JP2006281291A publication Critical patent/JP2006281291A/en
Application granted granted Critical
Publication of JP5048222B2 publication Critical patent/JP5048222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a long cast block containing active high melting point metal elements such as Y, REM, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn and Re, as alloy components with a CCIM (Cold Crucible Induction Melting) method without developing component segregation. <P>SOLUTION: In a method for producing a long cast block of the active high melting point metal containing alloy, having the length of ≥1.5 times to the diameter or short side length of a copper crucible under vacuum or inert gas atmosphere with the CCIM method by using the water-cooling type copper crucible 2 whose bottom can be moved in the vertical direction and a high frequency induction heating coil 1 surrounding the outer periphery of the crucible 2; the production method is characterized in that a molten raw material is supplied into the copper crucible 2 under melting state and also, the crucible bottom is pulled down together with the molten metal pool while holding the shape of the molten metal pool 6 in the region of the heating coil 1 positioned at the upper side of the bottom part of the copper crucible and the molten metal is solidified from the lower part step by step and continuously performing casting. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、たとえば、TiAl基合金、NbTi基合金、Zr基合金、V基合金あるいはCr基合金等に代表される、希土類、Ti、Zr、V、NbあるいはCr等の活性高融点金属合金の長尺鋳塊を、高周波誘導加熱によるいわゆるコールドクルーシブル誘導溶解により連続的に製造する方法に関する。   The present invention relates to an active refractory metal alloy such as rare earth, Ti, Zr, V, Nb or Cr, represented by TiAl based alloy, NbTi based alloy, Zr based alloy, V based alloy or Cr based alloy, for example. The present invention relates to a method for continuously producing a long ingot by so-called cold crucible induction melting by high frequency induction heating.

広く実用されているチタン合金やジルカロイなどの活性高融点金属合金の鋳塊は、現在、真空アーク溶解、プラズマアーク溶解あるいは電子ビーム溶解等により製造されている。これらの溶解法は、いずれも水冷銅るつぼを溶解容器に用い、溶解原料の全量を一括して溶解せずに、少しずつ供給しつつ溶解し、形成される溶融金属浴を下方から逐次凝固させて鋳塊を製造するのが主流である。そして、工業的には1〜10トンの鋳塊をこれらの方法で製造している。   Ingots of active refractory metal alloys such as titanium alloys and zircaloy that are widely used are currently manufactured by vacuum arc melting, plasma arc melting, electron beam melting, or the like. In all of these melting methods, a water-cooled copper crucible is used for the melting container, and the entire amount of the melting raw material is not melted all at once, but it is melted while supplying little by little, and the molten metal bath that is formed is sequentially solidified from below. The mainstream is to produce ingots. And industrially, the ingot of 1-10 tons is manufactured with these methods.

上記真空アーク溶解法は、所定の合金組成に調合した溶解原料をプレス成形や溶接等により棒状に成形したものを消耗電極にして溶解し合金化する。この方法は、溶解原料を少しずつ逐次溶解し凝固させるので、融点差の大きい元素を多量に配合した合金成分の場合は、低融点の成分が先に、おくれて高融点の成分が溶解していくために、鋳塊に著しい成分偏析をもたらす問題がある。   In the vacuum arc melting method, a melting raw material prepared in a predetermined alloy composition is formed into a rod shape by press molding, welding, or the like, and is melted and alloyed. In this method, since the melting raw material is gradually dissolved and solidified little by little, in the case of an alloy component containing a large amount of elements having a large melting point difference, the low melting point component is put first and the high melting point component is dissolved. Therefore, there is a problem of causing significant component segregation in the ingot.

この方法によれば、典型的なTi・6Al4VやTi・15V3Al3Cr3Sn等のように、Al(融点660℃)やSn(融点232℃)のごとき低融点の合金元素の含有量が少ない合金の場合は、上記した成分偏析が発生せずに均質の合金鋳塊が製造できる。しかし、多量のAlを含有するTiAl系金属間化合物の場合は、高融点のTi(融点1680℃)と低融点のAlとの組み合わせで作った消耗電極を真空溶解すると、Alが先行溶解する。そして、Tiは溶解不足になって、消耗中に未溶解のまま残存し、同電極が強度不足になって未溶解のままで落下し、あるいはAl溶解後はTiだけの溶解になるおそれがある。その結果、合金化が不十分となり、成分偏析の大きい鋳塊になりやすい。   According to this method, in the case of an alloy with a low content of low melting point alloy elements such as Al (melting point 660 ° C.) or Sn (melting point 232 ° C.), such as typical Ti · 6Al4V and Ti · 15V3Al3Cr3Sn A homogeneous alloy ingot can be produced without causing the above-described component segregation. However, in the case of a TiAl-based intermetallic compound containing a large amount of Al, when a consumable electrode made of a combination of high melting point Ti (melting point 1680 ° C.) and low melting point Al is vacuum melted, Al is dissolved first. Then, Ti becomes insufficiently dissolved and remains undissolved during wear, and the electrode becomes insufficiently strong and falls undissolved, or after dissolving Al, only Ti may be dissolved. . As a result, alloying becomes insufficient, and an ingot having a large component segregation tends to be formed.

また、プラズマアーク溶解法および電子ビーム溶解法の場合は、水冷銅製のハースすなわち皿状の溶解容器を使用することにより、ハース内で溶融金属浴での均質な合金化はできる。しかし、この溶融金属浴部の体積は、目的とする鋳塊全体の体積に比しあまりにも小さいため、原料配合工程で微小サイズに調整した原料を必要とし、工業上の制約を受ける。一方、高真空を必要とする電子ビーム溶解は、AlやSn等の合金成分の蒸発ロスによる鋳塊の成分変動が起こりやすい難点がある。   Further, in the case of the plasma arc melting method and the electron beam melting method, by using a water-cooled copper hearth, that is, a dish-shaped melting vessel, homogeneous alloying in a molten metal bath can be performed in the hearth. However, the volume of the molten metal bath is too small as compared with the entire volume of the target ingot, so that a raw material adjusted to a minute size in the raw material blending process is required, and is subject to industrial restrictions. On the other hand, the electron beam melting that requires high vacuum has a difficulty in that the ingot components tend to fluctuate due to evaporation loss of alloy components such as Al and Sn.

これらの方法に対して、高周波コイルを装備した水冷銅るつぼを使用するコールドクルーシブル誘導溶解法(CCIM法。)は、溶解原料を一括で全量溶解し、合金化してから凝固させて鋳塊を製造する。この方法は、融点差が大きい元素間の合金化溶解が容易で、合金成分の均質な溶湯が得られる。下記特許文献1は、水冷銅るつぼ内で原料を溶解し、そのまま凝固させるCCIM法を開示するが、直径に対し長尺の鋳塊をこの方式で製造するには、長尺の高周波コイルを必要とし現実的でない。たとえば、長さ/直径比が1.5以上にもなるような長尺鋳塊の製造には設備上の問題を残す。このCCIM法において、水冷銅るつぼ内の溶湯を鋳型に注入して長尺鋳塊を得ることができるが、溶融金属の凝固時に鋳塊の中心部に引け巣欠陥を発生する危険がある。   In contrast to these methods, the cold-crucible induction melting method (CCIM method) using a water-cooled copper crucible equipped with a high-frequency coil is used to melt the entire melting raw material at once, alloy it, and then solidify it to produce an ingot. To do. This method facilitates alloying and melting between elements having a large melting point difference, and a molten metal having a homogeneous alloy component can be obtained. Patent Document 1 below discloses a CCIM method in which a raw material is melted in a water-cooled copper crucible and solidified as it is, but in order to produce a long ingot with respect to the diameter by this method, a long high-frequency coil is required. And not realistic. For example, the production of a long ingot having a length / diameter ratio of 1.5 or more leaves a facility problem. In this CCIM method, a molten ingot in a water-cooled copper crucible can be poured into a mold to obtain a long ingot, but there is a risk that a shrinkage defect will occur at the center of the ingot when the molten metal is solidified.

さらに、上記CCIM方式に類似のインダクトスラグメルティング法と呼ばれる方法で、長尺の鋳塊を製造する方式が下記非特許文献1に紹介されている。この方法は、水冷銅るつぼ内にできている溶湯を、るつぼ底を下方に引き抜くことにより連続鋳造する。この場合、るつぼと溶湯との間にフッ化カルシウム等のフッ化物系スラグを添加し、精錬効果、電気絶縁効果あるいは引き抜き時の潤滑効果を図っている。この方法により、スポンジチタンから長尺の鋳塊を製造できることを示すが、溶湯に上記フッ化物が接触して鋳塊中に数ppmものフッ化物が混入し、活性高融点金属元素を含有する合金材の高清浄鋳塊を製造するのに問題がある。   Further, Non-Patent Document 1 below introduces a method of manufacturing a long ingot by a method called an induct slag melting method similar to the CCIM method. In this method, the molten metal formed in the water-cooled copper crucible is continuously cast by pulling out the bottom of the crucible. In this case, a fluoride-based slag such as calcium fluoride is added between the crucible and the molten metal to achieve a refining effect, an electrical insulation effect, or a lubrication effect during drawing. This method shows that a long ingot can be produced from titanium sponge, but an alloy containing an active refractory metal element in which the fluoride contacts the molten metal and several ppm of fluoride is mixed in the ingot. There are problems in producing a highly clean ingot of material.

なお、このようなスラグを使用しないで、高周波コイルからの電磁気力により、溶湯を保持した状態でるつぼ底を引き下げるようにして、CCMI方式により上記インダクトスラグメルテイング法と同様に、長尺鋳塊をつくることが考えられる。このようにすれば、上述したようなスラグ汚染は回避できるが、複雑な合金組成の鋳塊を製造する場合、余程適切な操業条件にしないと、添加した溶解原料が溶け残ったままで鋳塊中に残留し、均質健全な長尺鋳塊を得るのに困難をともなう。
特開2003−293051号公報 US Bureau of Mines Bulletin 673、1982.P.G.Clitesr 「InductslagMelting Process.」
It should be noted that, without using such slag, the bottom of the crucible is pulled down by the electromagnetic force from the high frequency coil while the molten metal is held, and the CCMI method is used in the same manner as the above induct slag melting method in the long casting. It is possible to make a lump. In this way, slag contamination as described above can be avoided. However, when producing an ingot having a complicated alloy composition, the ingot remains with the added molten raw material remaining undissolved unless the operating conditions are so appropriate. It remains in the process, and it is difficult to obtain a uniform and sound long ingot.
JP 2003-293051 A US Bureau of Mines Bulletin 673, 1982. PG Clitsler "InductslagMelting Process."

本発明は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Yまたは希土類等の活性高融点金属元素を合金成分として含有する長尺の鋳塊、すなわち直径あるいは短辺長さに対する長さが1.5以上の鋳塊を、CCIM法の利用により連続的に製造するにあたって、既述したような成分偏析を鋳塊中に発生させないようにすることを課題とする。   The present invention is a long ingot containing an active refractory metal element such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Y or rare earth as an alloy component, that is, a diameter. Alternatively, when continuously producing an ingot having a length with respect to the short side length of 1.5 or more by using the CCIM method, the problem is to prevent the occurrence of component segregation as described above in the ingot. And

本発明は、上記課題を解決するために完成されたのであって、
(1)るつぼ底が上下方向に駆動できる水冷式銅るつぼおよび同るつぼの外周を取り巻く高周波誘導加熱コイルを使用し、真空または不活性ガス雰囲気下において、高周波誘導加熱により、上記銅るつぼの直径または短辺長さに対し1.5倍以上の長さを有する活性高融点金属含有合金の長尺鋳塊を製造する方法であって、所定配合の溶解原料を溶融状態で銅るつぼ内へ供給するとともに、銅るつぼ底部の上側に位置する加熱コイルの領域において溶湯プールを形成保持しながら、るつぼ底を溶湯プールとともに引き下げ、下方から溶湯を逐次凝固させて連続的に鋳造することを特徴とする活性高融点金属含有合金の長尺鋳塊製造法、
(2)棒状の溶解原料を、銅るつぼの内部に、加熱コイルの上端の高さ位置よりも下側にまで上方から装入し、その先端部を凝固界面に接触させないようにして逐次溶解することを特徴とする上記(1)に記載の活性高融点金属含有合金の長尺鋳塊製造法、
(3)棒状の溶解原料の先端部を、加熱コイルからの誘導発熱により溶解し、もしくは同先端部を溶湯プールに浸漬させて同プールからの伝熱により溶解し、またはこれら誘導加熱および伝熱の両者同時の加熱により溶解することを特徴とする上記(2)に記載の活性高融点金属含有合金の長尺鋳塊製造法、
(4)Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Yおよび希土類から選ばれる1種または2種以上の金属元素を含有する鋳塊を溶製することを特徴とする上記(1)〜(3)のいずれかに記載の活性高融点金属含有合金の長尺鋳塊製造法、ならびに、
(5)るつぼ底の引き下げにより、鋳塊を毎分50mm以下、好ましくは30mm以下、さらに好ましくは2〜25mmの速度で引き抜くことを特徴とする上記(1)〜(4)のいずれかに記載の活性高融点金属含有合金の長尺鋳塊製造法である。
The present invention has been completed in order to solve the above problems,
(1) Using a water-cooled copper crucible whose crucible bottom can be driven in the vertical direction and a high-frequency induction heating coil surrounding the outer periphery of the crucible, the diameter of the copper crucible or the above-mentioned by high-frequency induction heating in a vacuum or an inert gas atmosphere A method for producing a long ingot of an active refractory metal-containing alloy having a length of 1.5 times or more with respect to a short side length, wherein a melting raw material of a predetermined composition is supplied in a molten state into a copper crucible The crucible bottom is pulled down together with the molten pool while the molten metal pool is formed and held in the heating coil region located above the bottom of the copper crucible, and the molten metal is sequentially solidified from below to continuously cast the activity. Long ingot manufacturing method for refractory metal-containing alloy,
(2) The rod-shaped melting raw material is charged into the inside of the copper crucible from the upper side to the lower side than the height position of the upper end of the heating coil, and is sequentially melted so as not to contact the solidification interface. A method for producing a long ingot of an active refractory metal-containing alloy as described in (1) above,
(3) The tip of the rod-shaped melting raw material is melted by induction heat generation from the heating coil, or the tip is immersed in the molten metal pool and melted by heat transfer from the pool, or these induction heating and heat transfer The method for producing a long ingot of an active refractory metal-containing alloy according to the above (2), characterized in that it is melted by simultaneous heating of both,
(4) Melting an ingot containing one or more metal elements selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Y and rare earth. A method for producing a long ingot of an active refractory metal-containing alloy according to any one of (1) to (3) above, and
(5) The ingot is pulled out at a speed of 50 mm or less, preferably 30 mm or less, more preferably 2 to 25 mm per minute by pulling down the crucible bottom. This is a method for producing a long ingot of an active high melting point metal-containing alloy.

本発明は、上述したように、CCIM法により、連続的に活性高融点金属合金の長尺鋳塊を溶製するに際し、溶解原料を常に溶解した状態のもとで銅るつぼ内に添加することにしたので、固形上の原料を供給する場合に見られる上述のような問題を生じない。すなわち、TiAl基合金、NbTi基合金やZr、V、Cr基各合金等の活性高融点合金の長尺鋳塊が、成分偏析や中心部における凝固欠陥のない状態で製造できる。したがって、この種合金系のさまざまの新組成の長尺高級合金鋳塊の製造に途を開くことができる   As described above, in the present invention, when continuously melting a long ingot of an active refractory metal alloy by the CCIM method, a melting raw material is always added to a copper crucible under a molten state. As a result, the above-mentioned problems seen when supplying raw materials on solid are not caused. That is, a long ingot of an active high-melting-point alloy such as a TiAl-based alloy, NbTi-based alloy, Zr, V, or Cr-based alloy can be manufactured without component segregation or solidification defects in the central portion. Therefore, it is possible to open the way to the production of long high-grade alloy ingots of various new compositions of this kind of alloy system.

本発明は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Yおよび希土類から選ばれる1種または2種以上の金属元素を含有する活性高融点金属合金鋳塊の製造が目的である。たとえば、TiAl基合金、NbTi基合金、Zr基合金、V基合金、Cr基合金等であって、直径あるいは短辺長さに対し、1.5倍以上の長さを持つ円柱あるいは角柱状の長尺鋳塊を製造する。   The present invention relates to an active refractory metal alloy casting containing one or more metal elements selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Y and rare earths. The purpose is to produce lumps. For example, TiAl-based alloy, NbTi-based alloy, Zr-based alloy, V-based alloy, Cr-based alloy, etc., which are cylinders or prisms having a length of 1.5 times or more the diameter or short side length Produces long ingots.

本発明は、図1に示したように、高周波誘導加熱コイル(1)を外装した銅るつぼ(2)を使用して溶解原料を溶解そして凝固させるいわゆるCCIM法を基本とする。本発明では、銅るつぼの底盤(3)を適当な引き抜き機構により、上下方向に駆動できるようにし、また溶解原料は別に製造しておいた固形の棒状原料(4)を支持体(5)に取り付け、銅るつぼ(2)の内部中心に垂下させる。なお、この装置全体は、操業に際し真空もしくは不活性ガス雰囲気下におく。   As shown in FIG. 1, the present invention is based on the so-called CCIM method in which a melting raw material is melted and solidified using a copper crucible (2) with a high frequency induction heating coil (1). In the present invention, the bottom plate (3) of the copper crucible can be driven in the vertical direction by an appropriate drawing mechanism, and the solid rod-shaped raw material (4), which has been manufactured separately from the melting raw material, is used as the support (5). Attach and hang to the center of the copper crucible (2). The entire apparatus is placed in a vacuum or an inert gas atmosphere during operation.

棒状原料(4)は、成分調整した所定の合金材を事前に溶解して棒状に鋳造する方法、あるいはスクラップや原料等を機械的にプレス成形する方法により製作する。   The rod-shaped raw material (4) is manufactured by a method in which a predetermined alloy material whose components have been adjusted is melted in advance and cast into a rod shape, or a method in which scrap, raw material, or the like is mechanically press-formed.

そして、上記装置および原料を用いて本発明の方法を実施するには、装入すべき溶解原料を溶融状態にて銅るつぼ内に供給し、溶湯プール(6)の体積をほぼ一定に保持しつつ、下方からの冷却にて凝固する鋳塊(8)を下方へ引きおろす。
この場合必要なことは、溶湯プールの体積を一定に維持すると同時に、その凝固界面(7)の進行速度も一定に維持することである。そのために、冷却能力によって定まる凝固界面の進行速度に応じて鋳塊(8)を引き抜くと同時に、その引き抜き量に応じた量の溶解原料を供給する。
And in order to implement the method of this invention using the said apparatus and raw material, the molten raw material which should be charged is supplied in a copper crucible in a molten state, and the volume of the molten metal pool (6) is kept substantially constant. Meanwhile, the ingot (8) solidified by cooling from below is pulled down.
In this case, what is necessary is to keep the molten pool volume constant and at the same time keep the progress speed of the solidification interface (7) constant. For this purpose, the ingot (8) is pulled out in accordance with the progress speed of the solidification interface determined by the cooling capacity, and at the same time, the molten raw material in an amount corresponding to the amount of drawing is supplied.

この方法では、同るつぼに内接して形成される溶湯プール(6)の凝固界面(7)のレベルは、図1のように、加熱用コイル(1)の下端と上端との間に位置した状態のもとで、液状の溶解原料を上方から供給することが重要である。   In this method, the level of the solidification interface (7) of the molten metal pool (6) formed inscribed in the crucible is located between the lower end and the upper end of the heating coil (1) as shown in FIG. Under the condition, it is important to supply a liquid melting raw material from above.

なお、液状の溶解原料を得るには、別に準備されたCCIM設備による溶解法、プラズマアーク溶解法あるいはアーク溶解法等によるのもよいが、このような専用設備は大掛かりで経済的でもない。したがって、図1に例示した手段および方法によるのがもっとも実用的であるが、本発明はこの方法に限定されない。   In addition, in order to obtain a liquid melt | dissolution raw material, although it is good by the melt | dissolution method by the CCIM equipment prepared separately, the plasma arc melt | dissolution method, or the arc melt | dissolution method etc., such special equipment is large-scale and not economical. Therefore, although it is most practical to use the means and method illustrated in FIG. 1, the present invention is not limited to this method.

図1の方法について説明すると、下記する初装原料が溶解して定常状態になってからは、棒状の溶解原料(4)を、その先端部分が凝固界面(7)に直接に接触することがないように、支持体(5)により上方から保持する。そして、溶湯プール(6)の上端付近のレベルで溶解原料を溶解させる。このためには、棒状の溶解原料(4)を加熱用コイルからの誘導加熱により溶融してもよいし、溶湯プール自身に棒状の溶解原料の先端部分を浸漬し、溶湯プールからの伝熱にて溶融させてもよい。いずれの方法によるも、溶解原料(4)を図1のように、加熱コイル(1)の上端レベルよりも下方へ下がったレベルで溶解して供給することが不可欠である。もし、このレベルより上方位置で棒状の溶解原料が早めに溶融すると、液滴になって落下するか、あるいは直接溶湯に吸収されて溶湯プールの量が増加し、前述した速度制御が困難となって成分偏析等の欠陥の原因になる。   The method shown in FIG. 1 will be described. After the initial raw material described below has melted and reached a steady state, the rod-shaped molten raw material (4) can be directly brought into contact with the solidification interface (7). So that it is held from above by the support (5). Then, the melting raw material is melted at a level near the upper end of the molten metal pool (6). For this purpose, the rod-shaped molten raw material (4) may be melted by induction heating from a heating coil, or the tip of the rod-shaped molten raw material is immersed in the molten pool itself to transfer heat from the molten pool. And may be melted. Regardless of which method is used, it is indispensable that the melting raw material (4) is melted and supplied at a level lower than the upper end level of the heating coil (1) as shown in FIG. If the rod-shaped melted raw material is melted early at a position above this level, it drops as a drop or is directly absorbed by the melt and the amount of the melt pool increases, making the above-mentioned speed control difficult. Cause defects such as component segregation.

以上の操作を行なうとき、鋳塊の引き抜き速度は、直接水冷が困難なため、毎分50mm以下、よいのは30mm以下、より好ましいのは2〜25mmである。
(実施例)
下記仕様のCCIM法による鋳塊引き抜き鋳造法により、TiAl系(50/50at%)の金属間化合物の長尺鋳塊を製造した。
When the above operation is performed, the ingot drawing speed is 50 mm or less per minute, preferably 30 mm or less, more preferably 2 to 25 mm because direct water cooling is difficult.
(Example)
A long ingot of a TiAl-based (50/50 at%) intermetallic compound was manufactured by an ingot drawing and casting method according to the CCIM method having the following specifications.

・高周波電源出力:最大400kW
・周波数:約3000Hz
・水冷銅るつぼ:内径φ210mm、使用冷却水量400L/min
側面部:24本の水冷銅製セグメントで構成
底部:引き抜き機構に取り付けた水冷銅底盤
・ 高周波加熱コイル:7ターンを側面水冷銅るつぼの外周部に設置
・ 真空チャンバー:10m3
まず、工業用純チタン材で製作した引き抜きスタート盤を底部引き抜き機構に連結した水冷銅底盤(3)に取り付けて銅るつぼ(2)内に装入し、その上面が加熱用コイル(1)の下端部より10mm上方のレベルに設定した。その上に、初装原料として、TiAl組成の溶解原料15kgを塊状の形で装入した。また、追加装入すべき溶解原料は、上記組成のTiAlを直径φ150〜180mmの範囲で、長さ600mmほどの円柱状棒材を、真空チャンバー(図示しない)の上部に設置した原料吊り下げ機構の支持体(5)にとりつけた。なお、この棒状原料(4)は、複数の鋳塊を接合して重量約40kgの棒状に製作したものを使用した。
・ High frequency power output: Max 400kW
・ Frequency: about 3000Hz
・ Water-cooled copper crucible: Inner diameter 210mm, Cooling water used 400L / min
Side surface: Consists of 24 water-cooled copper segments Bottom: Water-cooled copper bottom plate attached to the pulling mechanism ・ High-frequency heating coil: 7 turns installed on the outer periphery of the side water-cooled copper crucible ・ Vacuum chamber: 10 m 3
First, a drawing start board made of industrial pure titanium material is attached to a water-cooled copper bottom board (3) connected to a bottom drawing mechanism, and is inserted into a copper crucible (2), the upper surface of which is the heating coil (1). The level was set 10 mm above the lower end. Thereon, as initial spectacles wear material, the raw material for melting 15kg of TiAl composition was charged in the form of bulk. The melting raw material to be additionally charged is a raw material suspension mechanism in which TiAl having the above composition has a diameter of 150 to 180 mm and a cylindrical bar having a length of about 600 mm is installed at the top of a vacuum chamber (not shown). It was attached to the support (5). In addition, this rod-shaped raw material (4) used what manufactured the rod shape of about 40 kg in weight by joining several ingots.

次いで、真空チャンバーを拡散ポンプで5×10-4Torrまで真空排気後、高純度アルゴンを200Torrまで充填し、不活性雰囲気に置換した。次に、高周波電源の出力を入れ、100kW(10分間)→200kW(10分間)→300kW(10分間)保持した。この操作により、初装原料のTiAl合金は溶解して銅るつぼ内に溶湯プールを形成した。そこで、棒状の溶解原料(4)を、溶湯プール上部の加熱コイル(1)の上端部よりも下側のレベルに装入されるように押し下げた。このように操作することにより、溶解原料の先端部が誘導発熱して溶解し、液滴となって落下して下方の溶湯プールに吸収され、溶解原料が溶融状態で溶湯プールに供給できることが確認できる。 Next, the vacuum chamber was evacuated to 5 × 10 −4 Torr with a diffusion pump and then filled with high-purity argon up to 200 Torr, followed by replacement with an inert atmosphere. Next, the output of the high frequency power supply was turned on, and it was maintained at 100 kW (10 minutes) → 200 kW (10 minutes) → 300 kW (10 minutes). By this operation, the TiAl alloy as the initial material melted to form a molten metal pool in the copper crucible. Therefore, the rod-shaped melting raw material (4) was pushed down so as to be charged at a level below the upper end of the heating coil (1) at the upper part of the molten metal pool. By operating in this way, it is confirmed that the tip of the melting raw material melts by induction heat generation, falls as a droplet and is absorbed by the molten pool below, and the molten raw material can be supplied to the molten pool in a molten state it can.

さらに、溶湯プールの量が増加すると、やがて棒状の溶解原料の先端部は、溶湯プールの液面と接触し、さらに溶湯プール内に浸漬した状態となり、ここからは溶湯プールからの伝熱によっても溶解できるようになる。そして、溶湯プールの量が20kgほどに増加した時点で、すでに凝固してできつつある鋳塊を引き下げ機構を操作して下方に引き抜く。本実施例では、溶湯プールの液面レベルが一定に維持できるように、引き抜き速度を毎分5mmとし、連続的に引き抜き鋳造した。   Furthermore, when the amount of the molten metal pool increases, the tip of the rod-shaped molten raw material eventually comes into contact with the liquid surface of the molten metal pool and is further immersed in the molten metal pool. It can be dissolved. Then, when the amount of the molten metal pool increases to about 20 kg, the ingot that has already solidified is pulled downward by operating the pulling mechanism. In this example, the drawing speed was set to 5 mm per minute so that the liquid level of the molten metal pool could be kept constant, and the casting was continuously drawn.

このようにして製造したφ210×(400〜500)Lmmの円柱状の鋳塊を縦方向に切断し、鋳塊の内部品質およびマクロ組織を検査に供した。   The cylindrical ingot of φ210 × (400 to 500) Lmm produced in this way was cut in the longitudinal direction, and the internal quality and macro structure of the ingot were used for inspection.

なお、比較例として、50×50×20mmサイズの塊状をした溶解原料を使用し、基本的には上記と同じような設備で溶解する二種の方法を実施した。すなわち、フイーダーを使用して塊状の溶解原料を1回に2kgずつ間欠的に溶湯へ添加し、毎分2mmの速度で連続的に鋳塊を引き抜く方法(A)および溶解原料の添加中に鋳塊の引き抜き操作を中断して溶湯プールを3分間保持したのち、添加量に相当する分量の鋳塊を引き抜く操作を20回継続する方法(B)とした。   In addition, as a comparative example, the melt | dissolution raw material made into the size of 50x50x20mm size was used, and the 2 types of method melt | dissolved basically with the same facilities as the above were implemented. That is, a method (A) in which a lump of molten raw material is intermittently added to the molten metal 2 kg at a time using a feeder, and the ingot is continuously withdrawn at a rate of 2 mm / min. After the lump drawing operation was interrupted and the molten metal pool was held for 3 minutes, the operation of drawing the ingot corresponding to the amount added was continued 20 times (B).

以上各例の試験結果は表1に示す通りで、添加原料の溶け残りによる内部品質が、本発明の実施例では明らかに良好であり、またマクロ偏析についてみると、比較例では、凝固界面に沿って偏析をみとめるのに、本発明によるものはそれがない。   The test results for each example are as shown in Table 1, and the internal quality due to the undissolved residue of the added raw material is clearly good in the examples of the present invention. There is no segregation along the line according to the present invention.

ところで、CCIM法を利用して引き抜き操作により、活性高融点金属合金の長尺鋳塊を製造しようとする場合、溶解原料の溶け残りができるのを抑制するためには、操作条件の最適化をはかることが肝要である。すなわち、成分偏析の発生は、凝固界面の進行速度のはやさに反比例する傾向があって、塊状つまり固体の溶解原料を供給するとき、そのサイズの大小によって溶湯中での溶融差を生じ、そのときの溶け残りが成分偏析をもたらす。このような問題を解決しようとするひとつの手段として、凝固鋳塊の引き抜きの間欠的な停止を組み合わせたのが上記比較法Bであるが、本発明は、同法よりもこの種活性高融点金属合金の成分組成の如何を問わず、成分偏析のない高品質の長尺鋳塊を安定的に製造できる点で安定していることがわかる。   By the way, when trying to produce a long ingot of an active refractory metal alloy by drawing operation using the CCIM method, in order to suppress the melting of the melting raw material, optimization of the operating conditions is required. It is important to measure. That is, the occurrence of component segregation tends to be inversely proportional to the speed of progress of the solidification interface, and when supplying a bulk or solid melting raw material, a difference in melting occurs in the molten metal depending on the size. The undissolved residue causes segregation of components. As one means for solving such a problem, the comparative method B is combined with intermittent stopping of the drawing of the solidified ingot, but the present invention is more active than this method. It can be seen that the metal alloy is stable in that it can stably produce a high-quality long ingot without component segregation regardless of the component composition of the metal alloy.

Figure 2006281291
Figure 2006281291

本発明を実施するさいに使用するコールドクルーシブル誘導溶解設備および溶解状況の概要を示す模式図である。It is a schematic diagram which shows the outline | summary of the cold crucible induction | guidance | derivation melt | dissolution equipment and melt | dissolution condition which are used when implementing this invention.

符号の説明Explanation of symbols

1: 高周波誘導加熱コイル 5: 原料の支持体
2: 水冷銅るつぼ 6: 溶湯プール
3: 銅るつぼ底盤 7: 溶湯の凝固界面
4: 棒状の溶解原料 8: 引き抜き鋳塊










1: high frequency induction heating coil 5: raw material support 2: water-cooled copper crucible 6: molten metal pool 3: copper crucible bottom 7: solidified interface 4 of molten metal 8: rod-shaped molten raw material 8: drawn ingot










Claims (5)

るつぼ底が上下方向に駆動できる水冷式銅るつぼおよび同るつぼの外周を取り巻く高周波誘導加熱コイルを使用し、真空または不活性ガス雰囲気下において、高周波誘導加熱により、上記銅るつぼの直径または短辺長さに対し1.5倍以上の長さを有する活性高融点金属含有合金の長尺鋳塊を製造する方法であって、所定配合の溶解原料を溶融状態で銅るつぼ内へ供給するとともに、銅るつぼ底部の上側に位置する加熱コイルの領域において溶湯プールを形成保持しながら、るつぼ底を溶湯プールとともに引き下げ、下方から溶湯を逐次凝固させて連続的に鋳造することを特徴とする活性高融点金属含有合金の長尺鋳塊製造法。 Using a water-cooled copper crucible whose crucible bottom can be driven in the vertical direction and a high-frequency induction heating coil surrounding the outer periphery of the crucible, the diameter or short side length of the copper crucible is obtained by high-frequency induction heating in a vacuum or inert gas atmosphere. Is a method of manufacturing a long ingot of an active refractory metal-containing alloy having a length of 1.5 times or more of the length, and supplying a melting raw material of a predetermined composition into a copper crucible in a molten state, An active refractory metal characterized in that the molten metal pool is formed and held in the region of the heating coil located on the upper side of the crucible bottom, the crucible bottom is pulled down together with the molten metal pool, and the molten metal is sequentially solidified from below to continuously cast. A method for producing long ingots of contained alloys. 棒状の溶解原料を、銅るつぼの内部に、加熱コイルの上端の高さ位置よりも下側にまで、上方から装入し、その先端部を凝固界面に接触させないようにして逐次溶解することを特徴とする請求項1に記載の活性高融点金属含有合金の長尺鋳塊製造法。   The rod-shaped melting raw material is inserted into the copper crucible from the upper side to the lower side of the height position of the upper end of the heating coil, and the melting is sequentially performed so that the tip does not contact the solidification interface. The long ingot manufacturing method of the active high melting point metal containing alloy of Claim 1 characterized by the above-mentioned. 棒状の溶解原料の先端部を、加熱コイルからの誘導発熱により溶解し、もしくは同先端部を溶湯プールに浸漬させて同プールからの伝熱により溶解し、またはこれら誘導加熱および伝熱の両者同時の加熱により溶解することを特徴とする請求項2に記載の活性高融点金属含有合金の長尺鋳塊製造法。   The tip of the rod-shaped melting raw material is melted by induction heat generation from the heating coil, or the tip is immersed in the molten metal pool and melted by heat transfer from the pool, or both induction heating and heat transfer are performed simultaneously. The method for producing a long ingot of an active refractory metal-containing alloy according to claim 2, wherein the alloy is melted by heating. Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Yおよび希土類元素から選ばれる1種または2種以上の金属元素を含有する鋳塊を溶製することを特徴とする請求項1〜3のいずれかに記載の活性高融点金属含有合金の長尺鋳塊製造法。   It is characterized by melting an ingot containing one or more metal elements selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Y and rare earth elements. The long ingot manufacturing method of the active high melting point metal containing alloy in any one of Claims 1-3. るつぼ底の引き下げにより、鋳塊を毎分50mm以下、好ましくは30mm以下、さらに好ましくは2〜25mmの速度で引き抜くことを特徴とする請求項1〜4のいずれかに記載の活性高融点金属含有合金の長尺鋳塊製造法。 The active refractory metal-containing material according to any one of claims 1 to 4, wherein the ingot is pulled out at a rate of 50 mm or less, preferably 30 mm or less, more preferably 2 to 25 mm per minute by lowering the crucible bottom. A long ingot manufacturing method for alloys.
JP2005106664A 2005-04-01 2005-04-01 Method for producing long ingots of active refractory metal alloys Active JP5048222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005106664A JP5048222B2 (en) 2005-04-01 2005-04-01 Method for producing long ingots of active refractory metal alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005106664A JP5048222B2 (en) 2005-04-01 2005-04-01 Method for producing long ingots of active refractory metal alloys

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011098573A Division JP2011173172A (en) 2011-04-26 2011-04-26 Method for producing long cast block of active high melting point metal alloy

Publications (2)

Publication Number Publication Date
JP2006281291A true JP2006281291A (en) 2006-10-19
JP5048222B2 JP5048222B2 (en) 2012-10-17

Family

ID=37403726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005106664A Active JP5048222B2 (en) 2005-04-01 2005-04-01 Method for producing long ingots of active refractory metal alloys

Country Status (1)

Country Link
JP (1) JP5048222B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113060A (en) * 2007-11-02 2009-05-28 Kobe Steel Ltd METHOD FOR PRODUCING INGOT OF TiAl-BASED ALLOY
JP2009113063A (en) * 2007-11-02 2009-05-28 Kobe Steel Ltd Method for producing ingot
JP2010172934A (en) * 2009-01-29 2010-08-12 Kobe Steel Ltd Melting and processing method of long ingot
JP2010269333A (en) * 2009-05-20 2010-12-02 Kobe Steel Ltd Method for manufacturing ingot
JP2010269334A (en) * 2009-05-20 2010-12-02 Kobe Steel Ltd Method for manufacturing ingot and cold crucible induction melting device
JP2011230125A (en) * 2010-04-23 2011-11-17 Kobe Steel Ltd Method for melting production of long ingot
JP2016135907A (en) * 2014-09-04 2016-07-28 株式会社神戸製鋼所 DEOXIDATION METHOD OF Ti-Al-BASED ALLOY
WO2018110370A1 (en) * 2016-12-13 2018-06-21 株式会社神戸製鋼所 Casting method for active metal
JP2018094628A (en) * 2016-12-13 2018-06-21 株式会社神戸製鋼所 Casting method of active metal
CN115161501A (en) * 2021-11-18 2022-10-11 上海大学 In-situ autogenous refining method and continuous preparation device for refractory alloy material
CN117721334A (en) * 2024-02-18 2024-03-19 北京理工大学 Preparation method of TiZrNb-series refractory multi-principal element alloy with uniform equiaxed fine grain structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192543A (en) * 1987-01-15 1988-08-09 コンパニー・ユーロペンヌ・ドユ・ジルコニウム・セジユス Melting and continuous casting device for metal, operating method of said device and usage of said device
JPH04123844A (en) * 1990-09-10 1992-04-23 Daido Steel Co Ltd Method and apparatus for continuously melting and casting metal
JPH04162954A (en) * 1990-10-24 1992-06-08 Sumitomo Metal Ind Ltd Device for continuously melting and casting metal
JPH04272146A (en) * 1991-02-25 1992-09-28 Sumitomo Metal Ind Ltd Production of titanium and titanium alloy product
JPH07136740A (en) * 1993-11-19 1995-05-30 Sumitomo Metal Ind Ltd Casting method of ti alloy
JP2005059015A (en) * 2003-08-18 2005-03-10 Daido Steel Co Ltd Device for melting and casting metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192543A (en) * 1987-01-15 1988-08-09 コンパニー・ユーロペンヌ・ドユ・ジルコニウム・セジユス Melting and continuous casting device for metal, operating method of said device and usage of said device
JPH04123844A (en) * 1990-09-10 1992-04-23 Daido Steel Co Ltd Method and apparatus for continuously melting and casting metal
JPH04162954A (en) * 1990-10-24 1992-06-08 Sumitomo Metal Ind Ltd Device for continuously melting and casting metal
JPH04272146A (en) * 1991-02-25 1992-09-28 Sumitomo Metal Ind Ltd Production of titanium and titanium alloy product
JPH07136740A (en) * 1993-11-19 1995-05-30 Sumitomo Metal Ind Ltd Casting method of ti alloy
JP2005059015A (en) * 2003-08-18 2005-03-10 Daido Steel Co Ltd Device for melting and casting metal

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113060A (en) * 2007-11-02 2009-05-28 Kobe Steel Ltd METHOD FOR PRODUCING INGOT OF TiAl-BASED ALLOY
JP2009113063A (en) * 2007-11-02 2009-05-28 Kobe Steel Ltd Method for producing ingot
JP2010172934A (en) * 2009-01-29 2010-08-12 Kobe Steel Ltd Melting and processing method of long ingot
JP2010269333A (en) * 2009-05-20 2010-12-02 Kobe Steel Ltd Method for manufacturing ingot
JP2010269334A (en) * 2009-05-20 2010-12-02 Kobe Steel Ltd Method for manufacturing ingot and cold crucible induction melting device
JP2011230125A (en) * 2010-04-23 2011-11-17 Kobe Steel Ltd Method for melting production of long ingot
JP2016135907A (en) * 2014-09-04 2016-07-28 株式会社神戸製鋼所 DEOXIDATION METHOD OF Ti-Al-BASED ALLOY
WO2018110370A1 (en) * 2016-12-13 2018-06-21 株式会社神戸製鋼所 Casting method for active metal
JP2018094628A (en) * 2016-12-13 2018-06-21 株式会社神戸製鋼所 Casting method of active metal
CN110062671A (en) * 2016-12-13 2019-07-26 株式会社神户制钢所 The casting method of active metal
US10981222B2 (en) 2016-12-13 2021-04-20 Kobe Steel, Ltd. Casting method for active metal
JP7043217B2 (en) 2016-12-13 2022-03-29 株式会社神戸製鋼所 How to cast active metal
CN115161501A (en) * 2021-11-18 2022-10-11 上海大学 In-situ autogenous refining method and continuous preparation device for refractory alloy material
CN115161501B (en) * 2021-11-18 2024-02-27 上海大学 Method for in-situ autogenous refining of refractory alloy material and continuous preparation device
CN117721334A (en) * 2024-02-18 2024-03-19 北京理工大学 Preparation method of TiZrNb-series refractory multi-principal element alloy with uniform equiaxed fine grain structure
CN117721334B (en) * 2024-02-18 2024-04-30 北京理工大学 Preparation method of TiZrNb-series refractory multi-principal element alloy with uniform equiaxed fine grain structure

Also Published As

Publication number Publication date
JP5048222B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5048222B2 (en) Method for producing long ingots of active refractory metal alloys
US6144690A (en) Melting method using cold crucible induction melting apparatus
JP4704797B2 (en) Method for producing long ingot of active refractory metal-containing alloy by plasma arc melting
JPH04314836A (en) Method and equipment for manufacturing alloy composed mainly of titanium and aluminum
JP2007154214A (en) METHOD FOR REFINING ULTRAHIGH PURITY Fe-BASE, Ni-BASE AND Co-BASE ALLOY MATERIALS
JP2007302954A (en) Method for electrically remelting slag in vacuum and apparatus for electrically remelting slag in vacuum
JP2011173172A (en) Method for producing long cast block of active high melting point metal alloy
JP5064974B2 (en) Ingot manufacturing method for TiAl-based alloy
CN114318109B (en) Method for smelting high-nitrogen die steel by using vacuum induction furnace and pressurized electroslag furnace
JP3571212B2 (en) Metal and alloy melting method and melting casting method
JP4414861B2 (en) Long ingot manufacturing method for active refractory metal-containing alloys
CN108660320A (en) A kind of low-aluminium high titanium-type high temperature alloy electroslag remelting process
JP4939371B2 (en) Ingot manufacturing method
JP5006161B2 (en) Ingot manufacturing method for TiAl-based alloy
KR20160071949A (en) Slag for electro slag remelting and the method for preparing ingot using the same
JP7412197B2 (en) Method for manufacturing Ti-Al alloy
JP5261216B2 (en) Method for melting long ingots
JP5444109B2 (en) Method for melting long ingots
JP5342322B2 (en) Ingot manufacturing method
US20080178705A1 (en) Group IVB Metal Processing with Electric Induction Energy
JP5250480B2 (en) Ingot manufacturing method and cold crucible induction melting apparatus
RU2782193C1 (en) Method for smelting khn33kv alloy
JP5022184B2 (en) Ingot manufacturing method for TiAl-based alloy
JP5636316B2 (en) Ingot manufacturing method
JP2003340560A (en) Method and apparatus for manufacturing active metal ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110606

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150