JP5261216B2 - Method for melting long ingots - Google Patents

Method for melting long ingots Download PDF

Info

Publication number
JP5261216B2
JP5261216B2 JP2009018322A JP2009018322A JP5261216B2 JP 5261216 B2 JP5261216 B2 JP 5261216B2 JP 2009018322 A JP2009018322 A JP 2009018322A JP 2009018322 A JP2009018322 A JP 2009018322A JP 5261216 B2 JP5261216 B2 JP 5261216B2
Authority
JP
Japan
Prior art keywords
melting
crucible
ingot
raw material
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009018322A
Other languages
Japanese (ja)
Other versions
JP2010172934A (en
Inventor
誠矢 古田
龍彦 草道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009018322A priority Critical patent/JP5261216B2/en
Publication of JP2010172934A publication Critical patent/JP2010172934A/en
Application granted granted Critical
Publication of JP5261216B2 publication Critical patent/JP5261216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、コールドクルーシブル誘導溶解(CCIM)法で、Ti(チタン)、Zr(ジルコニウム)、Hf(ハフニウム)、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)、Cr(クロム)、Mo(モリブデン)、W(タングステン)、Mn(マンガン)、Re(レニウム)、Fe(鉄)、Ni(ニッケル)、Co(コバルト)、Y(イットリウム)、及び希土類元素などの、活性で比較的高融点である金属材料を含有する合金で成る長尺の鋳塊を製造する長尺鋳塊の溶解製造方法に関するものである。   The present invention is a cold crucible induction melting (CCIM) method, Ti (titanium), Zr (zirconium), Hf (hafnium), V (vanadium), Nb (niobium), Ta (tantalum), Cr (chromium), Mo (Molybdenum), W (Tungsten), Mn (Manganese), Re (Rhenium), Fe (Iron), Ni (Nickel), Co (Cobalt), Y (Yttrium), and Rare earth elements, etc. are active and relatively high The present invention relates to a method for melting and producing a long ingot that produces a long ingot made of an alloy containing a metal material having a melting point.

Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ni、Co、Y及び希土類元素などの、活性で比較的高融点である金属材料を含有する合金で成る鋳塊の製造には、現在、工業的には、真空アーク溶解法、プラズマアーク溶解法、電子ビーム溶解法などが採用されている。これらの溶解法は、溶解原料の全量を一括して溶解せずに、少量ずつ供給して溶解を行い、形成される溶融金属浴を下側から順次凝固させて鋳塊を製造することを特徴としている。但し、これらの溶解方法は、溶湯の攪拌力が小さく、合金成分の不均一が起こりやすいという課題も併せ持っている。   An alloy containing active and relatively high melting point metal materials such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ni, Co, Y and rare earth elements. For the production of the ingot, a vacuum arc melting method, a plasma arc melting method, an electron beam melting method and the like are currently employed industrially. These melting methods are characterized in that the entire amount of the melting raw material is not melted at once, but is supplied and dissolved in small amounts, and the molten metal bath that is formed is sequentially solidified from the lower side to produce an ingot. It is said. However, these melting methods also have the problem that the stirring power of the molten metal is small and the alloy components are likely to be uneven.

これに対し、コールドクルーシブル誘導溶解(CCIM)法は、溶解原料を一括で全量溶解して合金化した後に、凝固させて鋳塊を製造する方法である。この溶解方法であれば、合金成分の不均一を発生することなく均質な鋳塊を製造することができると考えられるが、CCIM法によって鋳塊を製造する技術自体は、現状ではまだ開発途上の段階で、実用化が進んでいないのが現状である。   On the other hand, the cold crucible induction melting (CCIM) method is a method for producing an ingot by solidifying all the melting raw materials at once to form an alloy and then solidifying them. Although it is considered that this melting method can produce a homogeneous ingot without generating non-uniform alloy components, the technology itself for producing an ingot by the CCIM method is still under development. At present, practical use is not progressing.

発明者らは、コールドクルーシブル誘導溶解(CCIM)技術に関する継続的な研究開発を進めており、既に、特許文献1、特許文献2、特許文献3等として、その研究開発成果をもとに提案を行っている。   The inventors have been continuing continuous research and development on cold-crucible induction dissolution (CCIM) technology, and have already made proposals based on the research and development results as Patent Document 1, Patent Document 2, Patent Document 3, etc. Is going.

CCIM法の特徴は、水冷銅るつぼを用いて、誘導融解を実施することにあり、一般的な誘導溶解法のような耐火物るつぼを用いる方法では、形成された溶湯プールがるつぼ耐火物と接触して、耐火物からの汚染が発生するという問題があるのに対し、汚染発生の問題を回避できることが大きな特徴となっている。   The feature of the CCIM method is that induction melting is performed using a water-cooled copper crucible. In a method using a refractory crucible such as a general induction melting method, the formed molten metal pool contacts the crucible refractory. Thus, there is a problem that contamination from the refractory material is generated, whereas the problem of occurrence of contamination can be avoided.

このため、通常の耐火物るつぼ誘導融解では、酸素ピックアップなどの汚染問題が発生するTi、Zrなどの活性な金属元素を多量に含有する合金でも、CCIM法では、汚染を発生することなく溶解することが可能となる。また、CCIM法では、誘導加熱に伴う電磁気力によって、溶湯プールを強攪拌できるため、合金元素の溶解が容易であり、活性で高融点の金属元素を含有する合金の溶解製造に適している。更には、通常の耐火物るつぼを用いた誘導融解では、るつぼ材が溶損されるため、適用が困難であったフッ化物、塩化物を多量に含有する精錬材などの併用も、CCIM法では可能になり、また、超高純度なFe、Ni、Coなどの比較的高融点である金属材料の不純物除去溶解も可能になる。   For this reason, in ordinary refractory crucible induction melting, even alloys containing a large amount of active metal elements such as Ti and Zr, which cause contamination problems such as oxygen pick-up, are dissolved without causing contamination in the CCIM method. It becomes possible. In addition, the CCIM method can strongly stir the molten metal pool by the electromagnetic force accompanying induction heating, so that the alloy elements can be easily dissolved, and is suitable for melting and manufacturing alloys containing active and high melting point metal elements. Furthermore, in the induction melting using a normal refractory crucible, the crucible material is melted down, so the combined use of refining materials containing a large amount of fluoride and chloride, which was difficult to apply, is also possible with the CCIM method. In addition, it is possible to remove and dissolve impurities of a metal material having a relatively high melting point such as ultra-high purity Fe, Ni, and Co.

以上のように、CCIM法は鋳塊の製造方法として非常に優れた方法であると考えられるが、現在、CCIM法により鋳塊を製造する場合は、水冷銅るつぼ内で形成した溶湯プールに精錬などを施した後、水冷銅るつぼ自体を傾けて溶湯プールを出湯させ、鋳型内に注入してそこで凝固させて鋳塊を製造する方法が、一般的に採用されていた。また、水冷銅るつぼ内でそのまま溶湯プールを凝固させる方法も採用されていた。しかしながら、これらの方法では、比較的小型の鋳塊しか製造することができず、大型の鋳塊を溶解製造した場合、鋳塊中に凝固欠陥が発生することがあって、鋳塊の大型化、実用化といった見地から幾つかの課題が残されていた。   As described above, the CCIM method is considered to be a very excellent method for producing an ingot. However, when producing an ingot by the CCIM method at present, it is refined into a molten metal pool formed in a water-cooled copper crucible. In general, a method of manufacturing an ingot by inclining a water-cooled copper crucible itself to discharge a molten metal pool, pouring the molten metal into a mold, and solidifying the molten metal is used. Moreover, the method of solidifying a molten metal pool as it is within the water-cooled copper crucible was also employ | adopted. However, with these methods, only relatively small ingots can be produced. When large ingots are melted and produced, solidification defects may occur in the ingots, resulting in large ingots. Some problems remained from the standpoint of practical application.

大型の鋳塊を溶解製造するためには、当然のことではあるが、大型の水冷銅るつぼを用いる必要がある。そのためには、大型水冷銅るつぼ内に溶湯プールを形成するための様々な条件を決定する必要があるが、特許文献1には、大型水冷銅るつぼに適用する高周波電源の周波数などに関する溶解条件が記載されている。   In order to melt and manufacture a large ingot, it is natural that a large water-cooled copper crucible must be used. For this purpose, it is necessary to determine various conditions for forming a molten metal pool in the large water-cooled copper crucible. However, Patent Document 1 discloses melting conditions relating to the frequency of a high-frequency power source applied to the large-sized water-cooled copper crucible. Have been described.

しかしながら、大型の鋳塊を、凝固欠陥を発生させることなく溶解鋳造する技術については、未だに開発途上の段階にある。特に、多成分系合金や、金属間化合物を多量に含有する合金などでは、鋳塊中の凝固欠陥が少ない鋳塊を製造することが条件となるが、現在の技術では十分といえないのが現状である。   However, technology for melting and casting large ingots without causing solidification defects is still in the development stage. Especially for multi-component alloys and alloys containing a large amount of intermetallic compounds, it is necessary to produce an ingot with few solidification defects in the ingot, but the current technology is not sufficient. Currently.

本発明者らは、これら従来の問題を解決すべく、CCIM法で、活性高融点金属を含む合金原料を供給しつつ、水冷銅製るつぼのるつぼ底を下方に引き抜くことで、溶解鋳造の操業条件を最適化することにより、溶解原料などの溶け残りのない健全な大型の鋳塊を製造する方法について、特許文献2や特許文献3記載の活性高融点金属含有合金の長尺鋳塊の製造法として提案している。   In order to solve these conventional problems, the inventors of the CCIM method are supplying an alloy raw material containing an active refractory metal while pulling the crucible bottom of a water-cooled copper crucible downward, thereby operating the melting casting operation conditions. A method for producing a long, large ingot of an active refractory metal-containing alloy described in Patent Document 2 or Patent Document 3 with respect to a method for producing a healthy large ingot with no melting residue such as a melting raw material As proposed.

確かに、特許文献2記載の活性高融点金属含有合金の長尺鋳塊の製造法は、溶解原料などの溶け残りのない健全な大型の鋳塊を製造できる優れた方法である。しかしながら、溶湯プールに固体の塊状、粒状などの溶解原料を装入した際に一部の溶解原料が凝固界面に捕獲されて溶け残る可能性もあり、その溶け残り領域が鋳塊の欠陥部となることが考えられ、確実に欠陥のない鋳塊を製造するには、まだ課題が残る技術でもあった。   Certainly, the method for producing a long ingot of an active refractory metal-containing alloy described in Patent Document 2 is an excellent method capable of producing a healthy large ingot with no undissolved material such as a melting raw material. However, when a molten raw material such as a solid lump or granule is charged into the molten metal pool, some molten raw material may be trapped at the solidification interface and remain undissolved. In order to reliably produce an ingot without defects, it was also a technology that still has problems.

一方、特許文献3記載の活性高融点金属含有合金の長尺鋳塊の製造法は、特許文献2記載の技術を改善した技術であり、溶湯プールに溶融状態の溶解原料を供給しつつ、鋳塊の引き抜きを行うことで、固体装入原料の凝固界面での溶け残り問題を大幅に改良することができた優れた技術である。しかしながら、この技術は、安定した溶解原料の装入が新たな課題として残る技術でもあった。   On the other hand, the method for producing a long ingot of an active refractory metal-containing alloy described in Patent Document 3 is a technique obtained by improving the technique described in Patent Document 2, and while supplying molten raw material to a molten metal pool, This is an excellent technology that has greatly improved the undissolved problem at the solidification interface of the solid charge by performing lump extraction. However, this technique has also been a technique in which stable charging of the melted raw material remains as a new problem.

すなわち、この特許文献3記載の技術で、水冷銅製るつぼ内に装入する主な溶解原料は棒状の溶解原料であって、この棒状の溶解原料を安定的に供給するための方法が課題として残されていた。   That is, with the technique described in Patent Document 3, the main melting raw material charged into the water-cooled copper crucible is a rod-shaped melting raw material, and a method for stably supplying this rod-shaped melting raw material remains as a problem. It had been.

一般に、比較的小さな溶湯プールを形成させて、その溶湯プールに溶解原料を逐次溶解させつつ、逐次鋳塊の引き抜きを行うという鋳塊の溶解製造方法に比べて、溶解原料の全量を一度に溶解させるためには、大きな電力が必要となり、必然的に大型の溶解設備が必要となる。大型鋳塊を製造するためには、大型の棒状溶解原料を作製する必要があると考えられるが、溶解原料の全量を一括して溶解するCCIM法では、大型の棒状溶解原料を作製のための大規模な溶解設備が必要となり、これが大きな障害となっている。   In general, compared to the ingot melting manufacturing method in which a relatively small molten pool is formed and the molten raw material is sequentially melted in the molten pool, and the ingot is sequentially drawn, the entire amount of the molten raw material is melted at once. In order to achieve this, a large amount of electric power is required, and a large melting facility is inevitably required. In order to produce a large ingot, it is thought that it is necessary to produce a large rod-shaped melting raw material. However, in the CCIM method in which the entire amount of the melting raw material is melted together, A large scale melting facility is required, which is a major obstacle.

特許文献3記載の技術では、この問題を解決するために、比較的小さな長尺鋳塊を、るつぼ傾動鋳造法によって金型内で凝固させて製造し、これらを複数本組み合わせて棒状の溶解原料としていた。   In the technique described in Patent Document 3, in order to solve this problem, a relatively small long ingot is produced by solidifying in a mold by a crucible tilt casting method, and a plurality of these are combined to form a rod-shaped molten raw material. I was trying.

しかしながら、この方法で棒状の溶解原料を作製した場合、長尺鋳塊が凝固する際に曲がり変形することがしばしばあり、それを組み合わせた棒状の溶解原料に隙間が形成されることがある。この隙間が形成された棒状の溶解原料を用いた場合、溶解時に流動する溶湯が棒状の溶解原料に当たった衝撃で、その隙間から水冷銅るつぼの内壁に向かってスプラッシュが飛散することとなり、鋳塊の鋳肌を劣化させるという問題が発生することが考えられる。   However, when a rod-shaped melting raw material is produced by this method, the long ingot is often bent and deformed when solidified, and a gap may be formed in the rod-shaped melting raw material obtained by combining them. When a rod-shaped melting raw material with this gap is used, the splash that scatters from the gap toward the inner wall of the water-cooled copper crucible due to the impact of the molten metal flowing during melting on the rod-shaped melting raw material. It is conceivable that a problem of deteriorating the lump casting surface occurs.

また、長尺鋳塊の曲がり変形によって、棒状の溶解原料が水冷銅るつぼの内壁に接触する事態が発生する可能性が考えられ、そのような状況になると、接触部が先に冷却されることとなり、その接触部で凝固シェルが形成されて、鋳塊と棒状の溶解原料が溶着されることが懸念され、鋳塊の引き抜き作業に影響を及ぼす可能性もあった。   In addition, there is a possibility that a rod-shaped molten raw material will come into contact with the inner wall of the water-cooled copper crucible due to the bending deformation of the long ingot, and in such a situation, the contact portion is cooled first. Therefore, there is a concern that a solidified shell is formed at the contact portion, and the ingot and the rod-shaped melting raw material are welded, which may affect the drawing operation of the ingot.

特開平11−310833号公報Japanese Patent Laid-Open No. 11-310833 特開2006−122920号公報JP 2006-122920 A 特開2006−281291号公報JP 2006-281291 A

本発明は、上記従来の問題を解消せんとしてなされたもので、引抜方向の長さが直径に対して1.5倍以上の活性高融点金属含有合金の鋳塊を、入手が容易な塊状、粒状、粉状の原料を溶解原料として用いて、しかも、その溶解原料が溶け残りとして残留することなく、また、表面欠陥等の鋳造欠陥が発生することを抑制することができ、コールドクルーシブル誘導溶解(CCIM)法を用いて、健全な長尺の鋳塊を安定して製造することができる長尺鋳塊の溶解製造方法を提供することを課題とするものである。   The present invention has been made as a solution to the above-mentioned conventional problems. An ingot of an active refractory metal-containing alloy whose length in the drawing direction is 1.5 times or more of the diameter is easily obtained. Using a granular or powdery raw material as a melting raw material, the molten raw material does not remain as an undissolved residue, and it is possible to suppress the occurrence of casting defects such as surface defects. An object of the present invention is to provide a method for melting and producing a long ingot that can stably produce a healthy long ingot by using the (CCIM) method.

請求項1記載の発明は、るつぼ底が上下方向に移動自在に形成された水冷銅製るつぼの内部に上方より装入した溶解原料を、その水冷銅製るつぼの周囲を取り巻く高周波コイルによる誘導加熱で溶解して溶湯プールとし、前記るつぼ底を下方に移動させることにより、そのるつぼ底上の前記溶湯プールを前記高周波コイルによる誘導加熱領域外に引き抜いて凝固させて、活性高融点金属含有合金の鋳塊を製造する長尺鋳塊の溶解製造方法であって、所定の合金組成に配合した塊状、粒状、粉状のうち、少なくとも1種類の形態の溶解原料を、第1の水冷銅製るつぼ内に装入して、誘導加熱で溶解して溶湯プールを形成させた後、その溶湯プールの下部を高周波コイルによる誘導加熱領域外に引き抜いて凝固させた状態で、るつぼ底の下方への移動を停止し、更に溶解原料を前記第1の水冷銅製るつぼ内へ装入して溶湯プール内で溶解させた後、次の引き抜きを行って溶湯プールを凝固させるという工程を複数回繰り返す1番目の溶製操作と、前記1番目の溶製操作で得られた長尺の鋳塊を上下反転した状態で、前記第1の水冷銅製るつぼより内径が大きい第2の水冷銅製るつぼ内に装入して、下部から順次溶解させ、るつぼ底を下方に移動させることにより、そのるつぼ底上に形成された溶湯プールを高周波コイルによる誘導加熱領域外に引き抜いて下部から順次凝固させる2番目の溶製操作を実施することで、引抜方向の長さが直径に対して1.5倍以上の活性高融点金属含有合金の鋳塊を製造することを特徴とする長尺鋳塊の溶解製造方法である。   According to the first aspect of the present invention, a melting raw material charged from above into a water-cooled copper crucible having a crucible bottom movable in the vertical direction is melted by induction heating with a high-frequency coil surrounding the water-cooled copper crucible. The molten metal pool is then moved downward, and the molten metal pool on the bottom of the crucible is pulled out of the induction heating area by the high frequency coil and solidified, and an ingot of an active refractory metal-containing alloy is obtained. A method for melting and manufacturing a long ingot, in which at least one type of melting raw material blended in a predetermined alloy composition is placed in a first water-cooled copper crucible. After melting by induction heating to form a molten metal pool, the lower part of the molten metal pool is pulled out of the induction heating area by the high frequency coil and solidified, and is moved downward to the bottom of the crucible. First, the process of stopping the movement, charging the molten raw material into the first water-cooled copper crucible and dissolving it in the molten metal pool, and then solidifying the molten metal pool several times after the next drawing is repeated And in a second water-cooled copper crucible having an inner diameter larger than that of the first water-cooled copper crucible in a state where the long ingot obtained by the first melt operation is turned upside down. Then, the second melting is performed by sequentially melting from the bottom and moving the crucible bottom downward to draw the molten pool formed on the bottom of the crucible out of the induction heating area by the high frequency coil and sequentially solidify from the bottom. A method for melting and producing a long ingot, characterized by producing an ingot of an active refractory metal-containing alloy whose length in the drawing direction is 1.5 times or more of the diameter by performing the operation. .

請求項2記載の発明は、請求項1記載の2番目の溶製操作で得られた長尺の鋳塊を用いて、2番目の溶製操作と同様の3番目の溶解操作を実施するか、或いはその3番目溶解操作を4番目以降の溶解操作として繰返し実施することで、引抜方向の長さが直径に対して1.5倍以上の活性高融点金属含有合金の鋳塊を製造することを特徴とする長尺鋳塊の溶解製造方法である。   Does the invention according to claim 2 carry out the third melting operation similar to the second melting operation using the long ingot obtained by the second melting operation according to claim 1? Alternatively, the third melting operation is repeated as the fourth and subsequent melting operations to produce an ingot of an active refractory metal-containing alloy whose length in the drawing direction is 1.5 times or more of the diameter. It is the melt | dissolution manufacturing method of the long ingot characterized by these.

本発明の請求項1記載の長尺鋳塊の溶解製造方法によると、引抜方向の長さが直径に対して1.5倍以上の活性高融点金属含有合金の鋳塊を、入手が容易な塊状、粒状、粉状の原料を溶解原料として用いて、しかも、その溶解原料が最終的に溶け残りとして残留することなく、また、表面欠陥等の鋳造欠陥が発生することを抑制して、健全な長尺の鋳塊を安定してコールドクルーシブル誘導溶解(CCIM)法で製造することができる。   According to the method for melting and manufacturing a long ingot according to claim 1 of the present invention, it is easy to obtain an ingot of an active refractory metal-containing alloy whose length in the drawing direction is 1.5 times or more of the diameter. A lump, granular, powdery raw material is used as a melting raw material, and the molten raw material does not remain as a final undissolved material, and also suppresses the occurrence of casting defects such as surface defects. Long ingots can be stably produced by the cold crucible induction melting (CCIM) method.

本発明の請求項2記載の長尺鋳塊の溶解製造方法によると、更に確実に鋳造欠陥が発生することを抑制して、健全な長尺の鋳塊を安定して製造することができる。   According to the method for melting and producing a long ingot according to claim 2 of the present invention, it is possible to more reliably suppress the occurrence of casting defects and stably produce a healthy long ingot.

本発明の一実施形態を示すもので、1番目の溶製操作の製造工程を示す縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing a manufacturing process of a first melting operation, showing an embodiment of the present invention. 本発明の一実施形態を示すもので、2番目の溶製操作の製造工程を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing a manufacturing process of a second melting operation, showing an embodiment of the present invention. コールドクルーシブル誘導溶解装置を示す縦断面斜視図である。It is a longitudinal cross-sectional perspective view which shows a cold crucible induction dissolution apparatus. 真空チャンバーに内蔵されたコールドクルーシブル誘導溶解装置を用いて2番目の溶製操作で長尺鋳塊を製造している状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which is manufacturing the elongate ingot by the 2nd melting operation using the cold crucible induction melting apparatus incorporated in the vacuum chamber.

コールドクルーシブル誘導溶解(CCIM)法は、合金成分の不均一を発生することなく均質な鋳塊を製造することができる有効な方法であり、しかも、酸素ピックアップなどの汚染問題が発生するTi、Zrなどの活性な金属元素を多量に含有する合金でも、汚染を発生することなく溶解することが可能であり、また、超高純度なFe、Ni、Coなどの比較的高融点である金属材料の不純物除去溶解も可能であるといった様々な特長点を有する。   The cold crucible induction melting (CCIM) method is an effective method capable of producing a homogeneous ingot without generating non-uniformity of alloy components, and also causes Ti and Zr that cause contamination problems such as oxygen pickup. Even an alloy containing a large amount of an active metal element such as an alloy can be dissolved without causing contamination, and a metal material having a relatively high melting point such as ultra-high purity Fe, Ni, Co, etc. It has various features such as impurity removal and dissolution.

本発明者らは、これら様々な特長点を有するコールドクルーシブル誘導溶解(CCIM)法を、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ni、Co、Y及び希土類元素などの、活性で比較的高融点である金属材料を含有する合金で成る鋳塊の製造で実用化することを目的に、鋭意、実験、研究を進めた。   The present inventors have developed a cold crucible induction melting (CCIM) method having these various features, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ni, Co. In order to put it into practical use in the production of an ingot made of an alloy containing a metal material having a relatively high melting point, such as Y, Y and rare earth elements, diligently experimented and researched.

その結果、活性高融点金属を含む合金原料を供給しつつ、水冷銅製るつぼのるつぼ底を下方に引き抜くことで、溶解鋳造の操業条件を最適化することにより、成分偏析や引け巣がなく、均質な組成の活性高融点金属を含有した長尺鋳塊を製造することが可能なことが分かり特許文献2として出願した。   As a result, while supplying alloy raw materials containing active refractory metals, the crucible bottom of the water-cooled copper crucible is drawn downward, optimizing the operating conditions for melting and casting, so that there is no component segregation or shrinkage and homogeneous It was found that it is possible to produce a long ingot containing an active refractory metal having a simple composition, and it was filed as Patent Document 2.

しかしながら、溶湯プールに固体の塊状、粒状などの溶解原料を装入した際に、その溶解原料が大きすぎたり、また、溶解時間が短すぎたりした場合は、一部の溶解原料が凝固界面に捕獲されて溶け残る可能性があり、その溶け残り領域が鋳塊の欠陥部となることも懸念されるため、更に、実験、研究を進めることとした。   However, when a molten raw material such as a solid lump or granule is charged into the molten metal pool, if the molten raw material is too large or the melting time is too short, a part of the molten raw material may enter the solidification interface. There is a possibility that it may be trapped and remain melted, and there is a concern that the unmelted region may become a defective part of the ingot. Therefore, it was decided to further experiment and research.

その結果、所定配合の溶解原料を溶融状態で水冷銅製るつぼ内に供給することで、溶解原料の溶け残りを全くなくすることができることが分かり特許文献3として出願した。   As a result, it was found that the melted raw material could be completely eliminated by supplying the melted raw material of a predetermined composition into a water-cooled copper crucible in a molten state.

しかしながら、この方法では、溶解原料を溶融状態で水冷銅製るつぼ内に供給する必要があり、溶融状態の溶解原料を準備すること自体に非常に手間を要した。具体的には、棒状の溶解原料を上方から装入し、先端部から逐次溶解することで溶融状態の溶解原料を供給するのであるが、溶解原料としては、複数本の小型の長尺鋳塊を束ねたものが棒状の溶解原料として用いられており、その事前準備に非常に手間を要していた。   However, in this method, it is necessary to supply the molten raw material into a water-cooled copper crucible in a molten state, and it has been very troublesome to prepare the molten raw material. Specifically, a rod-shaped melting raw material is charged from above, and melted raw material is supplied by sequentially melting from the tip portion. As the melting raw material, a plurality of small long ingots are used. What was bundled was used as a rod-shaped melting raw material, and it took much time to prepare in advance.

また、このような構成の棒状の溶解原料を用いることで長尺鋳塊を製造すると、背景技術の欄でも説明したように、鋳塊表面に鋳造欠陥が生じる等の新たな問題を発生する可能性も懸念された。   In addition, when a long ingot is manufactured by using a rod-shaped melting raw material having such a configuration, new problems such as casting defects occurring on the ingot surface can occur as described in the background art section. Sex was also a concern.

そこで、以上の問題をすべて解決することができる長尺鋳塊の溶解製造方法を発明するために、本発明者らは、更に、実験、研究を進めた。その結果、水冷銅製るつぼのるつぼ底を下方に引き抜く方法を用いたコールドクルーシブル誘導溶解(CCIM)を、2度、或いはそれ以上の回数、繰り返して実施することで、溶解原料が溶け残りとして残留することなく、また、表面欠陥等の鋳造欠陥が発生することを抑制して、健全な長尺の鋳塊を安定して製造できることが分かり、本発明の完成に至った。   Therefore, in order to invent a method for melting and producing a long ingot that can solve all the above problems, the present inventors have further advanced experiments and research. As a result, by carrying out cold crucible induction melting (CCIM) using the method of pulling out the crucible bottom of the water-cooled copper crucible downward twice or more times, the molten raw material remains as undissolved. In addition, it has been found that a sound long ingot can be stably produced by suppressing the occurrence of casting defects such as surface defects, and the present invention has been completed.

以下、本発明を添付図面に示す実施形態に基づいて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the accompanying drawings.

まず、本発明の長尺鋳塊の溶解製造方法に用いるコールドクルーシブル誘導溶解(CCIM)装置Aについて説明する。本発明によって製造される長尺鋳塊4は、例えば、図3及び図4に示すような、るつぼ底2が上下方向に移動自在に形成された水冷銅製るつぼ1と、その水冷銅製るつぼ1の周囲を取り巻くように配置された高周波コイル3で成るコールドクルーシブル誘導溶解装置Aを用いて製造される。尚、図3は1番目の溶製操作に用いる第1の水冷銅製るつぼ1aを、図4は2番目の溶製操作に用いる第2の水冷銅製るつぼ1bを夫々示しているが、水冷銅製るつぼ1の内径が異なる点を除き、略同一構成である。   First, the cold crucible induction melting (CCIM) apparatus A used in the method for melting and manufacturing a long ingot of the present invention will be described. The long ingot 4 manufactured according to the present invention includes, for example, a water-cooled copper crucible 1 in which a crucible bottom 2 is formed to be movable in the vertical direction as shown in FIGS. 3 and 4, and the water-cooled copper crucible 1. It is manufactured using a cold crucible induction melting apparatus A composed of a high frequency coil 3 arranged so as to surround the periphery. 3 shows a first water-cooled copper crucible 1a used for the first melting operation, and FIG. 4 shows a second water-cooled copper crucible 1b used for the second melting operation. The configuration is substantially the same except that the inner diameter of 1 is different.

このコールドクルーシブル誘導溶解装置Aを構成する水冷銅製るつぼ1は、複数本の銅製セグメント7を円筒状に組み合わせて構成されており、底部には円形で銅製のるつぼ底2が配置されている。各銅製セグメント7の間には、夫々0.05〜2mmのスリットが設けられており、それらスリットには、電気的絶縁のため、イットリア(Y)系セメント、或いはアルミナ(Al)系セメント等の絶縁材が埋め込まれている。高周波コイル3は、水冷銅製るつぼ1の周囲をその上下端をある程度残し、螺旋状に取り巻くように水冷銅製るつぼ1の表面より僅かに離れて設けられており、大出力の高周波電源8に接続されている。銅製セグメント7、るつぼ底2、高周波コイル3は夫々中空状であり、中空内部には冷却水が注入されている。るつぼ底2は、下方のシリンダ等の引き抜き機構9に連結されて上下方向に移動自在に構成されており、水冷銅製るつぼ1の銅製セグメント7で成る円筒状の本体から下方に引き抜くように移動させることができる。 The water-cooled copper crucible 1 constituting the cold crucible induction melting apparatus A is configured by combining a plurality of copper segments 7 in a cylindrical shape, and a circular copper crucible bottom 2 is disposed at the bottom. Between each copper segment 7, 0.05-2 mm slits are provided, and these slits are provided with yttria (Y 2 O 3 ) cement or alumina (Al 2 O) for electrical insulation. 3 ) An insulating material such as cement is embedded. The high-frequency coil 3 is provided slightly apart from the surface of the water-cooled copper crucible 1 so as to surround the water-cooled copper crucible 1 with its upper and lower ends to some extent, and is connected to a high-power high-frequency power source 8. ing. The copper segment 7, the crucible bottom 2, and the high-frequency coil 3 are hollow, and cooling water is injected into the hollow. The crucible bottom 2 is connected to an extraction mechanism 9 such as a lower cylinder and is configured to be movable in the vertical direction, and is moved so as to be extracted downward from a cylindrical main body formed of the copper segment 7 of the water-cooled copper crucible 1. be able to.

このコールドクルーシブル誘導溶解装置Aを用いて、長尺鋳塊4、4aの製造が行われるが、このコールドクルーシブル誘導溶解装置Aは、真空チャンバーB内に設けられており、真空または不活性ガス雰囲気として、長尺鋳塊4、4aの製造は実施される。また、るつぼ底2の上面には、溶解開始時のスタート材となる底盤10が取り付けられている。この底盤10は、製造される長尺鋳塊4、4aの材質を考慮した金属材料で形成されている。尚、図1、図2、図4、および本明細書中では、2番目の溶製操作で製造される最終製品の長尺鋳塊4とは区別して、1番目の溶製操作で製造され、2番目の溶製操作で棒状溶解材料として用いられる中間製品の長尺鋳塊は符号4aで示す。   This cold crucible induction melting apparatus A is used to manufacture the long ingots 4 and 4a. This cold crucible induction melting apparatus A is provided in a vacuum chamber B and is in a vacuum or inert gas atmosphere. As described above, the production of the long ingots 4 and 4a is performed. Further, a bottom plate 10 serving as a starting material at the start of melting is attached to the upper surface of the crucible bottom 2. The bottom plate 10 is formed of a metal material considering the material of the long ingots 4 and 4a to be manufactured. In addition, in FIG.1, FIG.2, FIG.4 and this specification, it manufactures by the 1st melting operation in distinction from the long ingot 4 of the final product manufactured by the 2nd melting operation. The long ingot of the intermediate product used as the rod-shaped melting material in the second melting operation is denoted by reference numeral 4a.

また、本発明が対象とする長尺鋳塊4のサイズは、引抜方向の長さが直径に対して1.5倍以上であることとする。引抜方向の長さが直径に対して1.5倍未満の鋳塊を本発明の対象としないのは、るつぼ底2からの冷却により、特別な操作を行わなくても、鋳塊の中央部の引け巣領域などの凝固欠陥が発生することが殆どないためであり、CCIM法を用いなくても健全な鋳塊を製造することができる。   The length of the long ingot 4 targeted by the present invention is such that the length in the drawing direction is 1.5 times or more the diameter. The reason why the ingot of which the length in the drawing direction is less than 1.5 times the diameter is not the object of the present invention is that the center of the ingot is not subjected to any special operation by cooling from the crucible bottom 2. This is because solidification defects such as shrinkage nest regions hardly occur, and a sound ingot can be produced without using the CCIM method.

以下、本発明の長尺鋳塊の溶解製造方法を、図1に示す1番目の溶製操作と、図2に示す2番目の溶製操作に分けて説明する。   Hereinafter, the method for melting and manufacturing a long ingot according to the present invention will be described by dividing it into a first melting operation shown in FIG. 1 and a second melting operation shown in FIG.

まず、コールドクルーシブル誘導溶解装置Aを用いて長尺鋳塊4を製造する作業を始める前に、溶解原料5を準備する。溶解原料5は、所定の合金組成に配合した塊状、粒状、粉状の溶解原料5であり、これらの形態のうち少なくとも1種類の形態の溶解原料5であれば良く、入手は極めて容易である。最初に、この溶解原料5、を図1(a)に示すように、第1の水冷銅製るつぼ1a内に装入する。尚、ここで示す溶解原料5の形態は、塊状(軸状)と粒状である。   First, before starting the operation | work which manufactures the long ingot 4 using the cold crucible induction melting apparatus A, the melt | dissolution raw material 5 is prepared. The melting raw material 5 is a lump, granular, powdery melting raw material 5 blended in a predetermined alloy composition, and any melting raw material 5 in at least one of these forms may be used, and it is very easy to obtain. . First, as shown in FIG. 1A, the melting raw material 5 is charged into a first water-cooled copper crucible 1a. In addition, the form of the melt | dissolution raw material 5 shown here is a block shape (shaft shape) and a granular form.

溶解原料5を第1の水冷銅製るつぼ1a内に装入した後、高周波コイル3に高周波電流を通電することにより、図1(b)に示すように、高周波コイル3による誘導発熱領域にある初期の溶解原料5を誘導加熱で溶解する。溶解された初期の溶解原料5は、初期の溶湯プール6を形成する。   After the molten raw material 5 is inserted into the first water-cooled copper crucible 1a, a high-frequency current is passed through the high-frequency coil 3, so that the initial state in the induction heat generation region by the high-frequency coil 3 is obtained as shown in FIG. The melting raw material 5 is melted by induction heating. The melted initial melt raw material 5 forms an initial melt pool 6.

次に、図1(c)に示すように、るつぼ底2を徐々に下方に引き下げれば、るつぼ底2上の溶湯プール6は、高周波コイル4による誘導発熱領域から徐々に下方に抜き出されることとなり、その下方から凝固を開始する。尚、溶湯プール6のうち水冷銅製るつぼ1の内壁面に接触した外表面から、水冷により事前に凝固を開始して凝固層12となっているため、溶湯プール6は下方に抜き出しても流れ出すことはない。   Next, as shown in FIG. 1C, if the crucible bottom 2 is gradually lowered downward, the molten metal pool 6 on the crucible bottom 2 is gradually extracted downward from the induction heat generation region by the high-frequency coil 4. Thus, coagulation starts from below. In addition, since the solidification layer 12 is started in advance by water cooling from the outer surface of the molten metal pool 6 in contact with the inner wall surface of the water-cooled copper crucible 1, the molten metal pool 6 flows out even if it is drawn downward. There is no.

溶湯プール6を徐々に下方に引き抜くにつれて、溶湯プール6は下方から凝固を開始するが、例えば、溶湯プール6の半分以上が凝固した状態で、るつぼ底2の下方への移動を停止する。このるつぼ底2の移動が停止した状態で、図1(d)に示すように、第1の水冷銅製るつぼ1a内へ追加の溶解原料5の装入を行い、図1(e)に示すように、溶湯プール6内で溶解させる。   As the molten pool 6 is gradually pulled out downward, the molten pool 6 starts to solidify from below, but, for example, in a state where more than half of the molten pool 6 has solidified, the downward movement of the crucible bottom 2 is stopped. With the movement of the crucible bottom 2 stopped, as shown in FIG. 1 (d), an additional molten raw material 5 is charged into the first water-cooled copper crucible 1a, as shown in FIG. 1 (e). Next, it is dissolved in the molten metal pool 6.

追加の溶解原料5の溶解後、再度、るつぼ底2を下方に引き下げれば、るつぼ底2上の溶湯プール6は、高周波コイル4による誘導発熱領域から徐々に下方に抜き出されることとなり、その下方から凝固を開始する。以上の工程を、図1(f)、(g)に示すように、数回繰り返すことにより、長尺鋳塊4aを得ることができる。以上が、1番目の溶製操作である。   If the crucible bottom 2 is pulled downward again after the additional melting raw material 5 is melted, the molten metal pool 6 on the crucible bottom 2 will be gradually extracted downward from the induction heat generation region by the high frequency coil 4. Start clotting from below. The long ingot 4a can be obtained by repeating the above steps several times as shown in FIGS. 1 (f) and 1 (g). The above is the first melting operation.

続いて、図2に示す2番目の溶製操作を実施する。この2番目の溶製操作で用いられる第2の水冷銅製るつぼ1bの内径は、1番目の溶製操作で用いた第1の水冷銅製るつぼ1aの内径より大きい。その理由は、2番目の溶製操作では、1番目の溶製操作で製造した長尺鋳塊4aを、棒状溶解原料として用いるためである。第1の水冷銅製るつぼ1aの内径と第2の水冷銅製るつぼ1bの内径が同一である場合は、第2の水冷銅製るつぼ1b内への棒状溶解原料の装入が困難になる。この第2の水冷銅製るつぼ1bの内径は、第1の水冷銅製るつぼ1aの内径より10mm以上大きいことが望ましい。内径が10mm未満の差であると、上方からの溶湯プール6の観察が困難となり、棒状溶解原料が水冷銅製るつぼ1aの内壁と接触して、溶湯プール6に凝固スカルが形成されて、棒状溶解原料と下方の凝固鋳塊が溶着する事態となっても、状況が把握できないためである。そのため、少なくとも10mmの隙間を形成することで、溶湯プール6の外周部を観察できるようにしておく必要がある。尚、第2の水冷銅製るつぼ1bの内径は、第1の水冷銅製るつぼ1aの内径より20mm以上大きいことがより望ましく、30mm以上大きいことが更に望ましい。   Subsequently, the second melting operation shown in FIG. 2 is performed. The inner diameter of the second water-cooled copper crucible 1b used in the second melting operation is larger than the inner diameter of the first water-cooled copper crucible 1a used in the first melting operation. The reason is that in the second melting operation, the long ingot 4a manufactured by the first melting operation is used as a rod-shaped melting raw material. When the inner diameter of the first water-cooled copper crucible 1a is the same as the inner diameter of the second water-cooled copper crucible 1b, it becomes difficult to charge the rod-shaped molten raw material into the second water-cooled copper crucible 1b. The inner diameter of the second water-cooled copper crucible 1b is desirably 10 mm or more larger than the inner diameter of the first water-cooled copper crucible 1a. When the inner diameter is less than 10 mm, it is difficult to observe the molten pool 6 from above, and the rod-shaped molten raw material comes into contact with the inner wall of the water-cooled copper crucible 1a, and a solidified skull is formed in the molten pool 6 to melt the rod. This is because the situation cannot be grasped even if the raw material and the lower solidified ingot are welded. Therefore, it is necessary to be able to observe the outer peripheral part of the molten metal pool 6 by forming a gap of at least 10 mm. The inner diameter of the second water-cooled copper crucible 1b is more preferably 20 mm or more, and more preferably 30 mm or more larger than the inner diameter of the first water-cooled copper crucible 1a.

2番目の溶製操作では、1番目の溶製操作で製造した長尺鋳塊4aを上下反転して棒状溶解原料として用いる。その理由は、長尺鋳塊4aの最終凝固部、すなわち、その上端部では合金元素の濃化偏析が発生するが、長尺鋳塊4aを上下反転させることで、その部位を最初に溶解する下端部とすることができ、2番目の溶製操作の下端部で通常発生する合金元素の希釈偏析を緩和する効果が期待できるためである。   In the second melting operation, the long ingot 4a produced by the first melting operation is turned upside down and used as a rod-shaped melting raw material. The reason for this is that concentrated segregation of the alloy element occurs in the final solidified portion of the long ingot 4a, that is, the upper end portion thereof, but the portion is first melted by turning the long ingot 4a upside down. This is because it can be the lower end portion, and an effect of alleviating dilution segregation of the alloy element normally generated at the lower end portion of the second melting operation can be expected.

2番目の溶製操作では、まず、図2(a)に示すように、1番目の溶製操作で製造した長尺鋳塊4aを上下反転して、真空チャンバーBの上部に設けた吊り下げ機構11に吊り下げた状態とする。この状態で、第2の水冷銅製るつぼ1b内に、長尺鋳塊4aの一部を切り出した初期溶解原料5を装入する。次に、高周波コイル3に高周波電流を通電することにより、図2(b)に示すように、高周波コイル3による誘導発熱領域にある初期の溶解原料5を誘導加熱で溶解する。溶解された初期の溶解原料5は、初期の溶湯プール6を形成する。   In the second melting operation, first, as shown in FIG. 2 (a), the long ingot 4a manufactured by the first melting operation is turned upside down, and suspended from the vacuum chamber B. The state is suspended from the mechanism 11. In this state, the initial molten raw material 5 obtained by cutting out a part of the long ingot 4a is charged into the second water-cooled copper crucible 1b. Next, by applying a high-frequency current to the high-frequency coil 3, as shown in FIG. 2B, the initial melting raw material 5 in the induction heating region by the high-frequency coil 3 is melted by induction heating. The melted initial melt raw material 5 forms an initial melt pool 6.

初期の溶湯プール6が形成された状態で、図2(c)に示すように、長尺鋳塊4aで成る棒状溶解原料の装入を開始する。更に、図2(d)、(e)に示すように、るつぼ底2を徐々に下方に引き下げれば、るつぼ底2上の溶湯プール6は、高周波コイル3による誘導発熱領域から徐々に下方に抜き出されることとなり、その下方から凝固を開始する。尚、溶湯プール6のうち第2の水冷銅製るつぼ1bの内壁面に接触した外表面から、水冷により事前に凝固を開始して凝固層12となるため、溶湯プール6は下方に抜き出しても流れ出すことはない。   In the state where the initial molten metal pool 6 is formed, as shown in FIG. 2 (c), charging of the rod-shaped molten raw material made of the long ingot 4a is started. Further, as shown in FIGS. 2 (d) and 2 (e), if the crucible bottom 2 is gradually lowered downward, the molten metal pool 6 on the crucible bottom 2 gradually lowers from the induction heat generation region by the high frequency coil 3. It will be extracted and coagulation will start from below. In addition, since the solidification layer 12 is started in advance by water cooling from the outer surface in contact with the inner wall surface of the second water-cooled copper crucible 1b in the molten metal pool 6, the molten metal pool 6 flows out even if it is drawn downward. There is nothing.

溶湯プール6を徐々に下方に引き抜くにつれて、第2の水冷銅製るつぼ1b内の溶湯プール6の量が減少するため、その引き抜き量と見合う量の長尺鋳塊4aで成る棒状溶解原料を上方より徐々に追加供給して溶解することにより、溶湯プール6の量を常に一定に保つことが可能である。この引き抜きによって凝固した鋳塊が目的の長尺鋳塊4となる。   As the molten pool 6 is gradually drawn downward, the amount of the molten pool 6 in the second water-cooled copper crucible 1b decreases, so that the rod-shaped molten raw material comprising the long ingot 4a corresponding to the drawn amount is drawn from above. The amount of the molten metal pool 6 can always be kept constant by gradually adding and melting. The ingot solidified by this drawing becomes the target long ingot 4.

たとえ、1番目の溶製操作で長尺鋳塊4aの内部に溶解原料5の溶け残りが発生したとしても、この2番目の溶製操作を行うことで、その鋳塊中欠陥を消滅させることができ、健全な長尺鋳塊4を得ることができる。   Even if the melted raw material 5 is not melted in the long ingot 4a by the first melting operation, the second melting operation is performed to eliminate defects in the ingot. And a healthy long ingot 4 can be obtained.

以上に説明した1番目の溶製操作と2番目の溶製操作を行っても、鋳塊中欠陥を消滅させることができない場合は、2番目の溶製操作で得られた長尺鋳塊4を上下反転させて棒状溶解原料とし、2番目の溶製操作で用いた第2の水冷銅製るつぼ1bより内径が大きい第3の水冷銅製るつぼ(図示しない)を用いて、先に説明した2番目の溶製操作と同様の3番目の溶解操作を実施することで、鋳塊中欠陥を消滅させることが可能である。この3番目の溶解操作でも鋳塊中欠陥の消滅ができない場合は、4番目以降の溶解操作を繰り返して実施することも可能である。   If the defects in the ingot cannot be eliminated even after performing the first melting operation and the second melting operation described above, the long ingot 4 obtained by the second melting operation. Is turned upside down to obtain a rod-shaped melting raw material, using the third water-cooled copper crucible (not shown) having a larger inner diameter than the second water-cooled copper crucible 1b used in the second melting operation, It is possible to eliminate defects in the ingot by performing a third melting operation similar to the melting operation. If the defects in the ingot cannot be eliminated even by this third melting operation, the fourth and subsequent melting operations can be repeated.

しかしながら、Ti、Zrなどの活性金属元素を多量に含有する合金鋳塊の溶製では、溶解操作の都度、酸素などの不純物元素のピックアップが進み、不純物濃度が高くなる可能性があるため、その点も考慮して複数回の溶解操作を進める必要がある。   However, in the melting of an alloy ingot containing a large amount of active metal elements such as Ti and Zr, the pick-up of impurity elements such as oxygen is advanced each time the melting operation is performed, and the impurity concentration may increase. Considering this point, it is necessary to proceed with a plurality of melting operations.

所定の合金組成に配合した溶解原料から、コールドクルーシブル誘導溶解(CCIM)装置を用いて、Ti−30Al−13Cr−3V−4Mn合金(質量%)と、SUS304(Fe−18Cr−8Ni合金(質量%))の長尺鋳塊を製造した。尚、以下の説明では、Ti−30Al−13Cr−3V−4Mn合金を合金A、SUS304を合金Bとして説明する。また、合金Aの製造に用いた溶解原料は、スクラップTi、粒状金属Al、金属Cr、塊状AlV母合金、塊状AlMn母合金であって、合金Bの製造に用いた溶解原料は、電解鉄、電解Ni、金属Crである。何れの合金の場合も1番目の溶製操作だけを実施したものを比較例、1番目の溶製操作と2番目の溶製操作を実施したものを実施例とする。   From a melting raw material blended in a predetermined alloy composition, using a cold crucible induction melting (CCIM) apparatus, Ti-30Al-13Cr-3V-4Mn alloy (mass%) and SUS304 (Fe-18Cr-8Ni alloy (mass%) )) Long ingot. In the following description, the Ti-30Al-13Cr-3V-4Mn alloy will be described as alloy A, and SUS304 will be described as alloy B. In addition, the melting raw material used for the production of the alloy A is scrap Ti, granular metal Al, metal Cr, massive AlV master alloy, massive AlMn mother alloy, and the melting raw material used for the production of the alloy B is electrolytic iron, Electrolytic Ni and metal Cr. In any case, a comparative example is obtained by performing only the first melting operation, and an example in which the first melting operation and the second melting operation are performed.

尚、使用したCCIM装置の高周波電源は、周波数:3kHz、出力:最大400Wの電源である。また、1番目の溶製操作に用いた第1の水冷銅製るつぼの内径はφ220mm、2番目の溶製操作に用いた第2の水冷銅製るつぼの内径はφ250mmであり、鋳塊引き抜き長さは、第1の水冷銅製るつぼで600〜1000Lmm、第2の水冷銅製るつぼで600Lmmである。螺旋状に巻いた高周波コイルの巻数は、何れも7ターンである。また、第1の水冷銅製るつぼ、第2の水冷銅製るつぼともに、24本の銅製セグメントで構成された構造である。   In addition, the high frequency power supply of the used CCIM apparatus is a power supply of frequency: 3 kHz and output: 400 W at the maximum. The inner diameter of the first water-cooled copper crucible used for the first melting operation is φ220 mm, the inner diameter of the second water-cooled copper crucible used for the second melting operation is φ250 mm, and the ingot drawing length is The first water-cooled copper crucible is 600 to 1000 Lmm, and the second water-cooled copper crucible is 600 Lmm. The number of turns of the spirally wound high-frequency coil is 7 turns. Further, both the first water-cooled copper crucible and the second water-cooled copper crucible have a structure composed of 24 copper segments.

以下、合金A、合金B毎に、1番目の溶製操作と2番目の溶製操作を説明する。   Hereinafter, for each of the alloys A and B, the first melting operation and the second melting operation will be described.

合金Aの1番目の溶製操作では、所定の合金組成に配合した溶解原料を秤量し、初期の装入原料を25kgとした。次に、第1の水冷銅製るつぼのるつぼ底に、純Ti製スタブ(底盤)を装着し、その上に前記した初期の溶解原料を25kg装入した。長尺鋳塊の溶解製造は、真空排気した後にArガス置換(600Torr=79.99kPa)したArガス雰囲気下で実施した。まず、350kWの電力で溶湯プールを形成し、15分間保持後、出力300kWに調整した。次に、引張速度4mm/minで、25分間引き抜き(引抜長さ:100mm、引抜重量:15kg)を実施した後、引き抜きを停止した。   In the first melting operation of the alloy A, the melting raw material blended in a predetermined alloy composition was weighed, and the initial charging raw material was 25 kg. Next, a pure Ti stub (bottom plate) was attached to the crucible bottom of the first water-cooled copper crucible, and 25 kg of the initial dissolved raw material was charged thereon. Melting production of the long ingot was performed in an Ar gas atmosphere after evacuation and Ar gas replacement (600 Torr = 79.99 kPa). First, a molten metal pool was formed with a power of 350 kW, held for 15 minutes, and then adjusted to an output of 300 kW. Next, extraction was performed at a pulling speed of 4 mm / min for 25 minutes (extraction length: 100 mm, extraction weight: 15 kg), and then the extraction was stopped.

引き抜き停止後、更に15kgの溶解原料を原料供給フィーダーを用いて追加装入し、350kWの電力で溶湯プールを形成し、15分間保持後、出力300kWに調整した。次に、引張速度4mm/minで、25分間引き抜き(引抜長さ:100mm、引抜重量:15kg)を実施した後、引き抜きを停止した。この工程を計7度繰り返して実施した。合計130kg(初装:25kg、追装:15kg×7=105kg)の溶解原料を装入し、鋳塊引き抜きを実施することで、φ215×800Lmmの長尺鋳塊を得た。   After the drawing was stopped, 15 kg of molten raw material was additionally charged using a raw material supply feeder, a molten metal pool was formed with a power of 350 kW, held for 15 minutes, and adjusted to an output of 300 kW. Next, extraction was performed at a pulling speed of 4 mm / min for 25 minutes (extraction length: 100 mm, extraction weight: 15 kg), and then the extraction was stopped. This process was repeated a total of 7 times. A total of 130 kg (initial loading: 25 kg, additional loading: 15 kg × 7 = 105 kg) of molten raw material was charged, and the ingot was drawn to obtain a long ingot of φ215 × 800 Lmm.

合金Bの1番目の溶製操作では、所定の合金組成に配合した溶解原料を秤量し、初期の装入原料を40kgとした。次に、第1の水冷銅製るつぼのるつぼ底に、SUS304製スタブ(底盤)を装着し、その上に前記した初期の溶解原料を40kg装入した。長尺鋳塊の溶解製造は、真空排気した後にArガス置換(600Torr=79.99kPa)したArガス雰囲気下で実施した。まず、330kWの電力で溶湯プールを形成し、15分間保持後、出力300kWに調整した。次に、引張速度4mm/minで、25分間引き抜き(引抜長さ:100mm、引抜重量:30kg)を実施した後、引き抜きを停止した。   In the first melting operation of the alloy B, the melting raw material blended in a predetermined alloy composition was weighed, and the initial charging raw material was 40 kg. Next, a SUS304 stub (bottom plate) was attached to the crucible bottom of the first water-cooled copper crucible, and 40 kg of the above-mentioned initial dissolved raw material was charged thereon. Melting production of the long ingot was performed in an Ar gas atmosphere after evacuation and Ar gas replacement (600 Torr = 79.99 kPa). First, a molten metal pool was formed with a power of 330 kW, held for 15 minutes, and then adjusted to an output of 300 kW. Next, extraction was performed at a pulling speed of 4 mm / min for 25 minutes (extraction length: 100 mm, extraction weight: 30 kg), and then the extraction was stopped.

引き抜き停止後、更に30kgの溶解原料を原料供給フィーダーを用いて追加装入し、330kWの電力で溶湯プールを形成し、15分間保持後、出力300kWに調整した。次に、引張速度4mm/minで、25分間引き抜き(引抜長さ:100mm、引抜重量:30kg)を実施した後、引き抜きを停止した。この工程を計6度繰り返して実施した。合計220kg(初装:40kg、追装:30kg×6=180kg)の溶解原料を装入し、鋳塊引き抜きを実施することで、φ215×800Lmmの長尺鋳塊を得た。   After the drawing was stopped, 30 kg of molten raw material was additionally charged using a raw material supply feeder, a molten metal pool was formed with an electric power of 330 kW, held for 15 minutes, and adjusted to an output of 300 kW. Next, extraction was performed at a pulling speed of 4 mm / min for 25 minutes (extraction length: 100 mm, extraction weight: 30 kg), and then the extraction was stopped. This process was repeated a total of 6 times. A total of 220 kg (initial loading: 40 kg, additional loading: 30 kg × 6 = 180 kg) of molten raw material was charged and the ingot was drawn to obtain a long ingot of φ215 × 800 Lmm.

合金Aの2番目の溶製操作では、初期の装入原料として、1番目の溶製操作で得られた別の長尺鋳塊から20kg分を切り出した。次に、第2の水冷銅製るつぼのるつぼ底に、純Ti製スタブ(底盤)を装着し、その上に前記した初期の溶解原料を20kg装入した。長尺鋳塊の溶解製造は、真空排気した後にArガス置換(200Torr=26.66kPa)したArガス雰囲気下で実施した。まず、260kWの電力で溶湯プールを形成し、5分間保持後、出力250kWに調整した。次に、引張速度2mm/minで、20分間引き抜き(引抜長さ:40mm、引抜重量:4kg)を実施した後、引き抜きを停止した。   In the second melting operation of Alloy A, 20 kg was cut out from another long ingot obtained by the first melting operation as an initial charging raw material. Next, a pure Ti stub (bottom plate) was attached to the crucible bottom of the second water-cooled copper crucible, and 20 kg of the above-mentioned initial dissolved raw material was charged thereon. Melting production of the long ingot was performed in an Ar gas atmosphere after evacuation and after replacement with Ar gas (200 Torr = 26.66 kPa). First, a molten metal pool was formed with a power of 260 kW, held for 5 minutes, and then adjusted to an output of 250 kW. Next, drawing was performed at a pulling speed of 2 mm / min for 20 minutes (drawing length: 40 mm, drawing weight: 4 kg), and then drawing was stopped.

引き抜き停止後、1番目の溶製操作で得られた長尺鋳塊を棒状溶解原料(φ215×800Lmm)とし、溶湯プールの直上まで装入し予熱を行った。その後、棒状溶解原料を下端から2.7mm/minの速度で、徐々に溶湯プールに装入し、電力を210kWに調整した。その棒状溶解原料の装入に対応して、2mm/minの速度で鋳塊の引き抜きを実施して、棒状溶解原料が殆ど溶解した時点で、残る一部の溶解原料を引き上げた。その後も連続して2mm/minの引抜速度で鋳塊の引き抜きを続行し、溶湯プールの表面が凝固してからも30分間、加熱と鋳塊の引き抜きを継続した後、電源をOFFし、鋳塊の引き抜きを停止した。停止後、翌日まで置いた後、φ245×600Lmmの長尺鋳塊を取り出した。   After the drawing was stopped, the long ingot obtained by the first melting operation was used as a rod-shaped melting raw material (φ215 × 800 Lmm), and was charged up to just above the molten metal pool for preheating. Thereafter, the rod-shaped melting raw material was gradually charged into the molten metal pool at a speed of 2.7 mm / min from the lower end, and the electric power was adjusted to 210 kW. Corresponding to the charging of the rod-shaped melted raw material, the ingot was drawn at a speed of 2 mm / min, and when the rod-shaped melted raw material was almost dissolved, the remaining part of the melted raw material was pulled up. After that, the ingot was continuously drawn at a drawing speed of 2 mm / min. After the molten pool surface solidified, heating and drawing of the ingot were continued for 30 minutes. The lump withdrawal was stopped. After stopping, it was placed until the next day, and then a long ingot of φ245 × 600 Lmm was taken out.

合金Bの2番目の溶製操作では、初期の装入原料として、1番目の溶製操作で得られた別の長尺鋳塊から30kg分を切り出した。次に、第2の水冷銅製るつぼのるつぼ底に、SUS304製スタブ(底盤)を装着し、その上に前記した初期の溶解原料を30kg装入した。長尺鋳塊の溶解製造は、真空排気した後にArガス置換(200Torr26.66kPa)したArガス雰囲気下で実施した。まず、330kWの電力で溶湯プールを形成し、5分間保持後、出力300kWに調整した。次に、引張速度4mm/minで、10分間引き抜き(引抜長さ:40mm、引抜重量:8kg)を実施した後、引き抜きを停止した。   In the second melting operation of Alloy B, 30 kg was cut out from another long ingot obtained by the first melting operation as an initial charging raw material. Next, a SUS304 stub (bottom plate) was attached to the crucible bottom of the second water-cooled copper crucible, and 30 kg of the initial dissolved raw material was charged thereon. The long ingot was melted and manufactured in an Ar gas atmosphere that was evacuated and purged with Ar gas (200 Torr 26.66 kPa). First, a molten metal pool was formed with a power of 330 kW, held for 5 minutes, and then adjusted to an output of 300 kW. Next, after drawing for 10 minutes (drawing length: 40 mm, drawing weight: 8 kg) at a pulling speed of 4 mm / min, the drawing was stopped.

引き抜き停止後、1番目の溶製操作で得られた長尺鋳塊を棒状溶解原料(φ215×800Lmm)とし、溶湯プールの直上まで装入し予熱を行った。その後、棒状溶解原料を下端から5.4mm/minの速度で、徐々に溶湯プールに装入し、電力を250kWに調整した。その棒状溶解原料の装入に対応して、4mm/minの速度で鋳塊の引き抜きを実施して、棒状溶解原料が殆ど溶解した時点で、残る一部の溶解原料を引き上げた。その後も連続して4mm/minの引抜速度で鋳塊の引き抜きを続行し、溶湯プールの表面が凝固してからも30分間、加熱と鋳塊の引き抜きを継続した後、電源をOFFし、鋳塊の引き抜きを停止した。停止後、翌日まで置いた後、φ245×600Lmmの長尺鋳塊を取り出した。   After the drawing was stopped, the long ingot obtained by the first melting operation was used as a rod-shaped melting raw material (φ215 × 800 Lmm), and was charged up to just above the molten metal pool for preheating. Then, the rod-shaped melting raw material was gradually charged into the molten metal pool at a speed of 5.4 mm / min from the lower end, and the electric power was adjusted to 250 kW. Corresponding to the charging of the rod-shaped melted raw material, the ingot was pulled out at a speed of 4 mm / min, and when the rod-shaped melted raw material was almost dissolved, the remaining part of the melted raw material was pulled up. After that, the ingot was continuously drawn at a drawing speed of 4 mm / min. After the molten pool surface solidified, heating and drawing of the ingot were continued for 30 minutes, and then the power was turned off. The lump withdrawal was stopped. After stopping, it was placed until the next day, and then a long ingot of φ245 × 600 Lmm was taken out.

以上の溶解製造で得られた4種の長尺鋳塊を、長尺鋳塊の高さ方向(長さ方向)に切断し、断面観察を実施した。その結果を表1に示す。   Four types of long ingots obtained by the above melting production were cut in the height direction (length direction) of the long ingots, and cross-sectional observation was performed. The results are shown in Table 1.

Figure 0005261216
Figure 0005261216

断面観察結果によると、合金A、合金Bともに、1番目の溶製操作だけを実施した比較例の長尺鋳塊では、溶解原料を追加装入した時の凝固界面の一部に、溶解原料の溶け残りが認められたが、1番目の溶製操作と2番目の溶製操作をともに実施した本発明の実施例の長尺鋳塊では、全く溶解原料の溶け残りは認められなかった。すなわち、1番目の溶製操作で発生した溶解原料の溶け残りが、2番目の溶製操作を行うことで消滅していることが確認できた。   According to the cross-sectional observation results, in both the alloy A and the alloy B, in the long ingot of the comparative example in which only the first melting operation was performed, the molten raw material was partially added to the solidification interface when the molten raw material was additionally charged. In the long ingot of the example of the present invention in which both the first melting operation and the second melting operation were performed, no melting residue was observed at all. That is, it was confirmed that the undissolved residue of the melting raw material generated in the first melting operation disappeared by performing the second melting operation.

1…水冷銅製るつぼ
1a…第1の水冷銅製るつぼ
1b…第2の水冷銅製るつぼ
2…るつぼ底
3…高周波コイル
4…長尺鋳塊
4a…長尺鋳塊
5…溶解原料
6…溶湯プール
7…銅製セグメント
8…高周波電源
9…引き抜き機構
10…底盤
11…吊り下げ機構
12…凝固層
A…コールドクルーシブル誘導溶解装置
B…真空チャンバー
DESCRIPTION OF SYMBOLS 1 ... Water-cooled copper crucible 1a ... 1st water-cooled copper crucible 1b ... 2nd water-cooled copper crucible 2 ... Crucible bottom 3 ... High frequency coil 4 ... Long ingot 4a ... Long ingot 5 ... Melting raw material 6 ... Molten metal pool 7 ... Copper segment 8 ... High frequency power supply 9 ... Pulling mechanism 10 ... Bottom base 11 ... Hanging mechanism 12 ... Solidified layer A ... Cold crucible induction melting apparatus B ... Vacuum chamber

Claims (2)

るつぼ底が上下方向に移動自在に形成された水冷銅製るつぼの内部に上方より装入した溶解原料を、その水冷銅製るつぼの周囲を取り巻く高周波コイルによる誘導加熱で溶解して溶湯プールとし、前記るつぼ底を下方に移動させることにより、そのるつぼ底上の前記溶湯プールを前記高周波コイルによる誘導加熱領域外に引き抜いて凝固させて、活性高融点金属含有合金の鋳塊を製造する長尺鋳塊の溶解製造方法であって、
所定の合金組成に配合した塊状、粒状、粉状のうち、少なくとも1種類の形態の溶解原料を、第1の水冷銅製るつぼ内に装入して、誘導加熱で溶解して溶湯プールを形成させた後、その溶湯プールの下部を高周波コイルによる誘導加熱領域外に引き抜いて凝固させた状態で、るつぼ底の下方への移動を停止し、更に溶解原料を前記第1の水冷銅製るつぼ内へ装入して溶湯プール内で溶解させた後、次の引き抜きを行って溶湯プールを凝固させるという工程を複数回繰り返す1番目の溶製操作と、
前記1番目の溶製操作で得られた長尺の鋳塊を上下反転した状態で、前記第1の水冷銅製るつぼより内径が大きい第2の水冷銅製るつぼ内に装入して、下部から順次溶解させ、るつぼ底を下方に移動させることにより、そのるつぼ底上に形成された溶湯プールを高周波コイルによる誘導加熱領域外に引き抜いて下部から順次凝固させる2番目の溶製操作を実施することで、
引抜方向の長さが直径に対して1.5倍以上の活性高融点金属含有合金の鋳塊を製造することを特徴とする長尺鋳塊の溶解製造方法。
The melting raw material charged from above into a water-cooled copper crucible whose crucible bottom is movable in the vertical direction is melted by induction heating with a high-frequency coil surrounding the water-cooled copper crucible to form a molten metal pool. By moving the bottom downward, the molten metal pool on the bottom of the crucible is pulled out of the induction heating region by the high frequency coil and solidified to produce an ingot of an active refractory metal-containing alloy. A melt production method comprising:
The molten raw material of at least one of the lump, granule, and powder blended in a predetermined alloy composition is charged into the first water-cooled copper crucible and melted by induction heating to form a molten metal pool. After that, with the lower part of the molten metal pool pulled out of the induction heating area by the high frequency coil and solidified, the downward movement of the bottom of the crucible is stopped, and the molten raw material is loaded into the first water-cooled copper crucible. First melting operation of repeating the process of solidifying the molten metal pool by performing the next drawing after having been melted in the molten metal pool,
In a state where the long ingot obtained by the first melting operation is turned upside down, it is inserted into a second water-cooled copper crucible having an inner diameter larger than that of the first water-cooled copper crucible, and sequentially from the bottom. By melting and moving the bottom of the crucible downward, a second melting operation is performed in which the molten metal pool formed on the bottom of the crucible is pulled out of the induction heating area by the high frequency coil and solidified sequentially from the bottom. ,
A method for melting and producing a long ingot, comprising producing an ingot of an active refractory metal-containing alloy having a length in a drawing direction of 1.5 times or more of a diameter.
請求項1記載の2番目の溶製操作で得られた長尺の鋳塊を用いて、2番目の溶製操作と同様の3番目の溶解操作を実施するか、或いはその3番目溶解操作を4番目以降の溶解操作として繰返し実施することで、引抜方向の長さが直径に対して1.5倍以上の活性高融点金属含有合金の鋳塊を製造することを特徴とする長尺鋳塊の溶解製造方法。   Using the long ingot obtained by the second melting operation according to claim 1, the third melting operation similar to the second melting operation is performed, or the third melting operation is performed. A long ingot characterized by producing an ingot of an active refractory metal-containing alloy whose length in the drawing direction is 1.5 times or more of the diameter by repeatedly performing as the fourth and subsequent melting operations The manufacturing method of melt | dissolution.
JP2009018322A 2009-01-29 2009-01-29 Method for melting long ingots Active JP5261216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018322A JP5261216B2 (en) 2009-01-29 2009-01-29 Method for melting long ingots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018322A JP5261216B2 (en) 2009-01-29 2009-01-29 Method for melting long ingots

Publications (2)

Publication Number Publication Date
JP2010172934A JP2010172934A (en) 2010-08-12
JP5261216B2 true JP5261216B2 (en) 2013-08-14

Family

ID=42704381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018322A Active JP5261216B2 (en) 2009-01-29 2009-01-29 Method for melting long ingots

Country Status (1)

Country Link
JP (1) JP5261216B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636316B2 (en) * 2011-03-10 2014-12-03 株式会社神戸製鋼所 Ingot manufacturing method
CN111230075A (en) * 2020-03-13 2020-06-05 河南国玺超纯新材料股份有限公司 Production process of high-purity zinc ingot

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245584A (en) * 1992-03-10 1993-09-24 Daido Steel Co Ltd Continuous casting method for alloy
JP3571212B2 (en) * 1998-04-28 2004-09-29 株式会社神戸製鋼所 Metal and alloy melting method and melting casting method
JP4414861B2 (en) * 2004-10-26 2010-02-10 株式会社神戸製鋼所 Long ingot manufacturing method for active refractory metal-containing alloys
JP5048222B2 (en) * 2005-04-01 2012-10-17 株式会社神戸製鋼所 Method for producing long ingots of active refractory metal alloys

Also Published As

Publication number Publication date
JP2010172934A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP4704797B2 (en) Method for producing long ingot of active refractory metal-containing alloy by plasma arc melting
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
JP5048222B2 (en) Method for producing long ingots of active refractory metal alloys
JP5064974B2 (en) Ingot manufacturing method for TiAl-based alloy
JP5027682B2 (en) Method for producing refractory metal ingot
JP2010037651A (en) Method for producing titanium-ingot by vacuum arc melting method
JP5703414B1 (en) Method for producing platinum group base alloy
JP2010116581A (en) Method for producing titanium ingot using vacuum arc melting furnace
JP5261216B2 (en) Method for melting long ingots
JP4414861B2 (en) Long ingot manufacturing method for active refractory metal-containing alloys
JP5444109B2 (en) Method for melting long ingots
JP4939371B2 (en) Ingot manufacturing method
JP2011173172A (en) Method for producing long cast block of active high melting point metal alloy
JP5006161B2 (en) Ingot manufacturing method for TiAl-based alloy
US7753986B2 (en) Titanium processing with electric induction energy
JP5342322B2 (en) Ingot manufacturing method
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
JP5250480B2 (en) Ingot manufacturing method and cold crucible induction melting apparatus
JP2011036877A (en) METHOD FOR PRODUCING TiAl ALLOY INGOT, AND TiAl ALLOY INGOT PRODUCED BY THE METHOD
JP5636316B2 (en) Ingot manufacturing method
JP2012228722A (en) Melting furnace for smelting metal
JP2003221630A (en) Method for manufacturing titanium ingot
JP5022184B2 (en) Ingot manufacturing method for TiAl-based alloy
JP2003340560A (en) Method and apparatus for manufacturing active metal ingot
JP2009113064A (en) Method for producing ingot

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5261216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150