JP4704797B2 - Method for producing long ingot of active refractory metal-containing alloy by plasma arc melting - Google Patents

Method for producing long ingot of active refractory metal-containing alloy by plasma arc melting Download PDF

Info

Publication number
JP4704797B2
JP4704797B2 JP2005118687A JP2005118687A JP4704797B2 JP 4704797 B2 JP4704797 B2 JP 4704797B2 JP 2005118687 A JP2005118687 A JP 2005118687A JP 2005118687 A JP2005118687 A JP 2005118687A JP 4704797 B2 JP4704797 B2 JP 4704797B2
Authority
JP
Japan
Prior art keywords
plasma arc
refractory metal
melting
ingot
containing alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005118687A
Other languages
Japanese (ja)
Other versions
JP2006299302A (en
Inventor
弘 横山
龍彦 草道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005118687A priority Critical patent/JP4704797B2/en
Publication of JP2006299302A publication Critical patent/JP2006299302A/en
Application granted granted Critical
Publication of JP4704797B2 publication Critical patent/JP4704797B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、チタンやジルコニウム等の活性高融点金属を含有する合金の長尺鋳塊を、アルゴン雰囲気下でプラズマアーク溶解法により製造する方法に関する。   The present invention relates to a method for producing a long ingot of an alloy containing an active refractory metal such as titanium or zirconium by a plasma arc melting method in an argon atmosphere.

従来、チタンやジルコニウム等の活性高融点金属を含有する各種チタン合金やジルカロイ等の実用性にすぐれた合金は、真空アーク溶解、コールドクルーシブル誘導溶解、電子ビーム溶解あるいはプラズマアーク溶解等により造塊して製造されている。   Conventionally, various titanium alloys containing active refractory metals such as titanium and zirconium, and alloys having excellent practicality such as zircaloy are agglomerated by vacuum arc melting, cold crucible induction melting, electron beam melting or plasma arc melting. Manufactured.

上記真空アーク溶解法は、所定成分の合金棒状体を消耗電極にして真空中で少しずつアーク溶解し凝固させる方法であるが、合金成分間の融点差が大きい合金を溶製する場合、低融点成分の溶落が高融点成分の溶落に先行して成分偏析のある鋳塊になりやすい。たとえば、アルミニウム含有量の多いTiAl系金属間化合物の溶製時には、低融点のアルミニウムが先行して溶落するために、消耗電極自体がチタン過剰により機械的強度が不足し未溶解で落下する。その結果、両金属成分が混じり合わないまま溶解し、合金化が不十分のまま成分偏析の大きな鋳塊しか得られないという致命的な問題がある。   The above-mentioned vacuum arc melting method is a method in which an alloy rod-shaped body of a predetermined component is used as a consumable electrode and gradually melts and solidifies in a vacuum, but when melting an alloy with a large melting point difference between the alloy components, a low melting point is used. The component falling tends to be an ingot with component segregation preceding the melting of the high melting point component. For example, when a TiAl-based intermetallic compound having a high aluminum content is melted, low melting point aluminum is first melted down, so that the consumable electrode itself is insufficient in mechanical strength due to excessive titanium and falls undissolved. As a result, there is a fatal problem that both metal components are melted without being mixed, and only ingots with large component segregation can be obtained with insufficient alloying.

上記コールドクルーシブル誘導溶解は、高周波コイルを装備した水冷銅るつぼを使用し、真空または不活性ガス雰囲気中において、るつぼ内で原料を一括して溶解する方法である。本法は、高融点差の金属成分でもるつぼ内に均質の溶融金属浴を形成できるが、Mo、W、Nb、Ta等のような、高融点高比重の金属元素を含む合金の場合は、その成分元素が製品インゴット中に未溶解物のまま残存するリスクがある。   The cold crucible induction melting is a method of using a water-cooled copper crucible equipped with a high frequency coil and melting raw materials in a crucible in a vacuum or an inert gas atmosphere. This method can form a homogeneous molten metal bath in the crucible even with a metal component having a high melting point difference, but in the case of an alloy containing a metal element having a high melting point and a high specific gravity such as Mo, W, Nb, Ta, etc. There is a risk that the constituent elements remain undissolved in the product ingot.

また、上記電子ビーム溶解法は、通常皿状の溶解容器(ハース)を使用し、その内部で溶融金属を十分に合金化することはできる。しかし、ハースを使用する限り、溶融金属域の体積が目的とする鋳塊全体に比して小さいため、それに応じた細かいサイズに配合原料を調製しなければならない制約があって、合金成分が均質な鋳塊の製造に難点がある。また、本法は、高真空下で実施するので、アルミニウムやすず等の合金成分が蒸発しやすく、鋳塊の成分組成が変動しやすい問題もある。
これに対し、プラズマアーク溶解法は、ハース内で溶融金属を十分に合金化し、ハース内の浅い溶融プールで偏析が少ない鋳塊が製造できるが、前記電子ビーム溶解法と同様に配合原料サイズの制約を受ける。しかも、ハースを用いる以上、直径に対する高さが1.5以上となるような長尺鋳塊の製造が至難である。もっとも、細粒状に調製した原料を溶湯プールに供給しつつ、凝固部分を下方へ引き抜く連続鋳造により、プラズマアーク溶解法で長尺鋳塊を製造することはすでに実用化されている。しかし、この方法では、高融点高比重の金属元素が未溶解のままでインゴット中に残存して巻き込まれるおそれがあって、製造が不安定である。
また、このプラズマアーク溶解法の場合、チャンバー内の高圧雰囲気を構成するアルゴンガスが鋳塊中に巻き込まれると、数μmのボイドを含んで均質の機械的特性を有する鋳塊の製造を困難にするので、チャンバー内圧力を低くする必要がある。下記特許文献1は、プラズマアーク溶解により、チタン基合金を溶製する方法およびそれを常圧ないし減圧下で実施する方法を開示し、2回にわたるプラズマアーク溶解を実施することで、原料調達の便宜をはかっている。しかし、この方法は、不純物レベルの低いチタン基合金の鋳塊の製造を意図するものの、鋳塊内部の数μレベルの微細な空孔を排除し、高度に安定した機械的特性が要求されるチタン合金の長尺鋳塊の製造法として満足できるものではない。
なお、下記特許文献2および3は、プラズマアーク溶解を0.3〜10気圧あるいは0.5〜10気圧のような低圧から高圧にわたる広範囲の雰囲気圧力下で実施する方法を開示する。しかし、特許文献2は、ガス成分含有量の少ない真空メッキ用蒸着源の製造を企図したもので、長尺の鋳塊に適した技術ではない。また、特許文献3は、連続鋳造により希土類元素含有合金の製造ができることを開示するが、原料を粒状で供給する方法であって、必ずしもボイド欠陥のない高品質の鋳塊が製造できるものではない。
昭57−145946号公報 昭56−13477号公報 昭55−28361号公報
Moreover, the said electron beam melting | dissolving method can use a dish-shaped melting | dissolving container (hearth) normally, and can fully alloy a molten metal in the inside. However, as long as Hearth is used, the volume of the molten metal region is small compared to the entire target ingot, so there is a restriction that the compounding material must be prepared in a fine size corresponding to it, and the alloy components are homogeneous There is a difficulty in manufacturing a simple ingot. Further, since this method is performed under a high vacuum, there is a problem that alloy components such as aluminum and tin tend to evaporate, and the component composition of the ingot tends to fluctuate.
On the other hand, the plasma arc melting method can sufficiently alloy the molten metal in the hearth and produce an ingot with little segregation in the shallow molten pool in the hearth. Limited. In addition, as long as the hearth is used, it is very difficult to produce a long ingot having a height with respect to the diameter of 1.5 or more. However, it has already been put into practical use to produce a long ingot by the plasma arc melting method by continuous casting in which the solidified portion is drawn downward while supplying the raw material prepared in a fine granule to the molten metal pool. However, in this method, the metal element having a high melting point and a high specific gravity remains undissolved and remains in the ingot, and the production is unstable.
In addition, in the case of this plasma arc melting method, when argon gas constituting the high-pressure atmosphere in the chamber is caught in the ingot, it becomes difficult to produce an ingot having a uniform mechanical characteristic including a void of several μm. Therefore, it is necessary to reduce the pressure in the chamber. The following Patent Document 1 discloses a method of melting a titanium-based alloy by plasma arc melting and a method of performing it under normal pressure or reduced pressure, and by implementing plasma arc melting twice, raw material procurement Convenient. However, although this method is intended to produce an ingot of a titanium base alloy having a low impurity level, it eliminates fine pores of several μ level inside the ingot and requires highly stable mechanical characteristics. It is not satisfactory as a method for producing a long ingot of titanium alloy.
Patent Documents 2 and 3 below disclose a method in which plasma arc melting is performed under a wide range of atmospheric pressures ranging from low pressure to high pressure such as 0.3 to 10 atmospheres or 0.5 to 10 atmospheres. However, Patent Document 2 is intended to manufacture a vacuum plating vapor deposition source with a small gas component content, and is not a technique suitable for a long ingot. Patent Document 3 discloses that a rare earth element-containing alloy can be produced by continuous casting, but is a method of supplying raw materials in a granular form, and does not necessarily produce a high-quality ingot without void defects. .
Sho 57-145946 Sho 56-13477 Sho 55-28361

本発明は、プラズマアーク溶解により、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Yまたは希土類元素等の活性高融点金属元素を合金成分として含有する合金の長尺鋳塊を製造する方法であって、成分偏析や中心部に引け巣およびボイド欠陥が発生するのを確実に阻止して溶製することを課題とする。   The present invention relates to an alloy containing an active refractory metal element such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Y or a rare earth element as an alloy component by plasma arc melting. It is a method for manufacturing a long ingot, and an object is to reliably prevent the occurrence of component segregation and shrinkage cavities and void defects in the central portion.

本発明は、上記課題を解決するために、
(1)あらかじめ溶解調製しておいた活性高融点金属含有合金からなる原料棒を、30Torr〜200Torrのアルゴンガス雰囲気中において、プラズマアークにより溶解し、その溶湯プールを水冷銅るつぼ内に保持し、この水冷銅るつぼの外周に装備されたコイルに直流電流を通電することにより溶湯プールに回転方向の攪拌流れを生じさせつつ冷却凝固させながら、銅るつぼの可動底盤を毎分50mm以下の速度で下方へ引き抜くことを特徴とするプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法、
(2)活性高融点金属がTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Yまたは希土類元素である請求項1に記載のプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法、
(3)活性高融点金属含有合金からなる原料棒があらかじめコールドクルーシブル誘導溶解法、真空アーク溶解法、電子ビーム溶解法またはプラズマアーク溶解法により溶解調製されたものである請求項1または2に記載のプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法、
(4)直径または一辺の長さに対する高さの比が1.5以上の長尺鋳塊を製造対象とする請求項1、2または3に記載のプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法、
(5)原料棒をその長軸のまわりに回転させながらプラズマアークに向けて前進供給する請求項1、2、3または4に記載のプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法、である。
In order to solve the above problems, the present invention
(1) A raw material rod made of an active refractory metal-containing alloy previously prepared by melting is melted by a plasma arc in an argon gas atmosphere of 30 Torr to 200 Torr, and the molten metal pool is held in a water-cooled copper crucible. while cooling and solidifying while resulting stirring flow in the rotational direction to the molten metal pool by energizing a direct current to coils which are mounted on the outer circumference of the water-cooled copper crucible, a movable bottom plate of the copper crucible per minute 50mm following speed A method for producing a long ingot of an active refractory metal-containing alloy by plasma arc melting, characterized by being drawn downward;
(2) The active refractory metal by plasma arc melting according to claim 1, wherein the active refractory metal is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Y or a rare earth element. A method for producing a long ingot of a contained alloy,
(3) The raw material rod made of an active refractory metal-containing alloy is prepared by melting and preparing in advance by a cold crucible induction melting method, a vacuum arc melting method, an electron beam melting method or a plasma arc melting method. A method for producing a long ingot of an active refractory metal-containing alloy by plasma arc melting of
(4) The active refractory metal-containing alloy by plasma arc melting according to claim 1, 2 or 3, wherein the production object is a long ingot having a diameter or a ratio of the height to the length of one side of 1.5 or more. Manufacturing method of long ingot,
(5) The long ingot of an active refractory metal-containing alloy by plasma arc melting according to claim 1, wherein the raw material rod is fed forward toward the plasma arc while rotating around its long axis. Manufacturing method.

本発明は、プラズマアーク溶解により、活性高融点金属含有合金の長尺鋳塊を溶製するにあたって、アルゴンガス雰囲気の圧力を30Torr〜200Torrの範囲とし、かつ水冷銅るつぼの外周に装備されたコイルに直流電流を通電することにより溶湯プールに回転方向の攪拌流れを生じさせつつ冷却凝固させ、さらに冷却により凝固してできる鋳塊の引き下げ速度を毎分50mm以下の条件下で制御するようにしたので、凝固偏析や成分偏析がなく、中心部にボイドのない健全良質の長尺鋳塊が容易に製造できる。 In the present invention, when melting a long ingot of an active refractory metal-containing alloy by plasma arc melting, the pressure of the argon gas atmosphere is set in the range of 30 Torr to 200 Torr, and the core mounted on the outer periphery of the water-cooled copper crucible is used . In order to control the pulling speed of the ingot, which is solidified by cooling while generating a stirring flow in the rotating direction in the molten metal pool by applying a direct current to the steel plate, under the condition of 50 mm / min or less. As a result, there is no solidification segregation or component segregation, and a sound high quality long ingot having no void in the center can be easily manufactured.

本発明は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Yあるいは希土類などの活性高融点金属元素を合金成分として含有する合金類の長尺鋳塊を製造する方法である。もっとも具体的な対象合金は、金属間化合物系合金であるTiAl基合金のほか、NbTi系、NiTi系、VTiCr系、Cr系あるいはZrAlCuNi系合金のような活性高融点金属含有合金である。 The present invention relates to a long ingot of alloys containing an active refractory metal element such as Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Y or rare earth as an alloy component. It is a manufacturing method. The most specific target alloys are TiAl-based alloys that are intermetallic compound alloys, and active high melting point metal-containing alloys such as NbTi, NiTi, VTiCr, Cr, or ZrAlCuNi alloys.

そして、本発明は、鋳塊の直径または一辺の長さに対し、鋳塊の高さが1.5倍以上の円柱状もしくは角柱状をした上記合金の長尺鋳塊の製造を目的とする。   And this invention aims at manufacture of the long ingot of the said alloy made into the column shape or prismatic shape whose ingot height is 1.5 times or more with respect to the diameter or length of one side of an ingot. .

本発明を実施するには、まず目的とする製品鋳塊の合金成分組成に調合された原料を溶解して丸棒状に調製する。この原料棒は任意の溶解法で製造すればよいが、コールドクルーシブル誘導溶解、真空アーク溶解、電子ビーム溶解あるいはプラズマアーク溶解のいずれかの方法で溶製するのがよい。   In order to carry out the present invention, first, raw materials prepared in the alloy composition of the target product ingot are melted to prepare a round bar shape. This raw material rod may be manufactured by any melting method, but it may be melted by any one of cold crucible induction melting, vacuum arc melting, electron beam melting or plasma arc melting.

本発明では、上記原料棒をプラズマアーク溶解により長尺の鋳塊に溶製するが、そのために図1、2に例示したプラズマアーク溶解装置を使用する。本装置は、外周に高周波コイルを装備した水冷式の銅るつぼ(1)を使用し、とくにその底盤(2)が上下方向に駆動できるように設計したものを用いる。また、原料棒(3)を水平方向に装着できるようにした原料フイーダ(4)は、水平方向に原料棒(3)を駆動できるように設計し、そして、これらの装置は、図示しない真空チャンバ内に設置してある。一方、銅るつぼ(1)の直上に位置してプラズマトーチ(5)を設け、上方から供給されるアルゴンヘリウム混合ガスをプラズマ化することにより、これを熱源として原料棒(3)を溶融する。   In the present invention, the raw material rod is melted into a long ingot by plasma arc melting. For this purpose, the plasma arc melting apparatus illustrated in FIGS. This device uses a water-cooled copper crucible (1) equipped with a high-frequency coil on the outer periphery, and in particular, a device designed so that its bottom plate (2) can be driven in the vertical direction. Moreover, the raw material feeder (4) which can mount the raw material rod (3) in the horizontal direction is designed to be able to drive the raw material rod (3) in the horizontal direction, and these devices are not shown in a vacuum chamber (not shown). It is installed inside. On the other hand, a plasma torch (5) is provided directly above the copper crucible (1), and the raw material bar (3) is melted using this as a heat source by converting the argon helium mixed gas supplied from above into plasma.

上記の設備により、原料棒を用いてプラズマアーク溶解を実施するには、はじめに同原料棒(3)と同一の組成を有する盤状のスタート盤(6)を銅るつぼ(1)内の底盤(2)の上に定置しておく。そして、チャンバ内を真空にしたのち、アルゴンガスを導入してチャンバ内を常に30Torr〜200Torrに保持した状態のもとで、プラズマトーチ(5)に供給されるアルゴンヘリウム混合ガスをプラズマ化して溶解熱源のプラズマアークを保持する。   In order to carry out plasma arc melting using the raw material rod with the above equipment, first, a plate-shaped starter plate (6) having the same composition as the raw material rod (3) is placed on the bottom plate in the copper crucible (1) ( 2) Place on top. Then, after evacuating the chamber, the argon helium mixed gas supplied to the plasma torch (5) is converted into plasma and dissolved in a state where argon gas is introduced and the chamber is always kept at 30 Torr to 200 Torr. Holds the plasma arc of the heat source.

本発明がチャンバ内の雰囲気を30Torr以上に制御するのは、溶解作業中にプラズマアークが不安定化して途切れ、溶解が中断するのを防止するためである。そのために30Torr以上にする必要があるが、200Torr以上の雰囲気になると、アルゴンガスが鋳塊中に巻き込まれて数μmのボイドが多数残存することになり、鋳塊の均質な機械的性質を損なうおそれがあるため好ましくない。   The reason why the present invention controls the atmosphere in the chamber to 30 Torr or more is to prevent the plasma arc from becoming unstable during the melting operation and being interrupted, thereby preventing the melting from being interrupted. Therefore, it is necessary to set the pressure to 30 Torr or more. However, when the atmosphere becomes 200 Torr or more, argon gas is engulfed in the ingot and many voids of several μm remain, and the homogeneous mechanical properties of the ingot are impaired. This is not preferable because of fear.

上記の雰囲気を維持した状態で、原料フイーダ(4)を駆動して原料棒(3)を水平移動させ、その先端部をプラズマアーク中に挿入することにより、その表層部が溶融し液滴となって落下し、銅るつぼ内に溶湯プールをつくる。原料フイーダ(4)は水平駆動すると同時に、原料棒(3)をその中心軸のまわりに自転できるように設計しておくと、両方の動作で原料棒(3)が全体的に均一かつ確実に溶解できる。   With the above atmosphere maintained, the raw material feeder (4) is driven to move the raw material rod (3) horizontally, and the tip portion thereof is inserted into the plasma arc, so that the surface layer portion melts and drops. It falls and creates a molten metal pool in the copper crucible. If the raw material feeder (4) is designed so that it can be driven horizontally and at the same time the raw material rod (3) can rotate around its central axis, the raw material rod (3) can be uniformly and reliably as a whole in both operations. Can dissolve.

原料棒(3)を溶解しながら、その溶湯を載せた状態のままで銅るつぼ(1)の底盤(2)を引き下げることにより、長尺の鋳塊が連続的に製造できる。すなわち、この引き下げ操作により、銅るつぼ(1)の内部に保持された溶湯は、水冷銅るつぼの冷却作用を受けて徐々に凝固しながらるつぼ内を下降すると同時に、固体状に変化して鋳塊になった部分は確実にるつぼから下方へ引き抜かれ、製品鋳塊へと成長していく。   A long ingot can be continuously produced by lowering the bottom plate (2) of the copper crucible (1) while melting the raw material rod (3) while the molten metal is placed. That is, by this pulling-down operation, the molten metal held in the copper crucible (1) is lowered into the crucible while gradually solidifying under the cooling action of the water-cooled copper crucible, and at the same time, changed into a solid state and ingot. The part which became becomes surely pulled down from the crucible and grows into a product ingot.

本発明は、銅るつぼの底盤(2)の引き下げによる鋳塊の引き抜き速度を毎分50mm以下に制御することが特徴である。本操作により、溶解金属は冷却され凝固しながら下方へ引き抜かれるので、あまり高速になると、溶湯の一部が冷却不足のため未凝固のままるつぼ外へ漏れ出るおそれがあり、従って、毎分50mm以下、望ましくは毎分20mm以下の範囲で制御する。但し、この引き抜き速度があまり小さい条件では生産性を阻害することになるため、1mm以上に維持することが好ましい。なお、アルミニウムや銅の連続鋳造のように、直接に鋳塊を水冷することが考えられるが、本発明が対象とする活性高融点金属を含有する合金は、酸化されるのを回避しなければならないから、冷却状況にあわせた引き抜き速度を適切に制御することが不可欠である。   The present invention is characterized in that the ingot drawing speed by lowering the bottom plate (2) of the copper crucible is controlled to 50 mm or less. Because this operation cools and melts the molten metal and draws it downward while solidifying, if the speed is too high, a portion of the molten metal may leak out of the crucible due to insufficient cooling, and therefore 50 mm per minute. Hereinafter, it is desirably controlled within a range of 20 mm or less per minute. However, since the productivity is hindered when the drawing speed is too low, it is preferable to maintain the drawing speed at 1 mm or more. Although it is conceivable that the ingot is directly water-cooled like continuous casting of aluminum or copper, the alloy containing the active refractory metal targeted by the present invention must be avoided from being oxidized. Therefore, it is indispensable to appropriately control the drawing speed according to the cooling situation.

一方、銅るつぼの外周にはコイルを装備してあり、これに直流電流を通電することにより、溶湯プールに回転方向の撹拌流れが生じて鋳型内に均等に熱供給でき、引き抜き鋳塊の表面品質が一定になる効果が期待できる。 On the other hand, the outer circumference of the copper crucible Yes equipped with coils, by energizing a direct current thereto, caused agitation flow in the rotational direction to the melt pool can uniformly heat supply into the mold, the withdrawal ingot The effect that the surface quality becomes constant can be expected.

このようにして溶解および引き抜き操作を継続し、やがて図2のように、原料フイーダ(4)により供給される原料棒(3)が所定の位置に到達した時点で、鋳塊の引き抜き操作を停止するが、この鋳造終了過程においては、プラズマアークの熱量を段階的に低減させる操作をおこなう。そうすることにより、鋳塊の最終部分がゆるやかに凝固し、鋳塊に引け巣が発生するのが防止でき、最終的に凝固欠陥および成分偏析がない健全な長尺鋳塊が連続的に製造できる。
(実施例)
本発明の実施例として、図1の設備を使用し、直径160mmおよび長さ600mm〜700mmのTiAl系(50/50at%)金属間化合物合金の鋳塊を製造した。このときの設備の仕様および操作条件は下記のとおりである。
The melting and drawing operation is continued in this way, and the ingot drawing operation is stopped when the raw material rod (3) supplied by the raw material feeder (4) reaches a predetermined position as shown in FIG. However, in the process of finishing the casting, an operation for reducing the amount of heat of the plasma arc in a stepwise manner is performed. By doing so, the final part of the ingot is gradually solidified, and it is possible to prevent the formation of shrinkage cavities in the ingot, and finally a continuous long ingot without solidification defects and component segregation is continuously produced. it can.
(Example)
As an example of the present invention, an ingot of TiAl-based (50/50 at%) intermetallic compound alloy having a diameter of 160 mm and a length of 600 mm to 700 mm was manufactured using the equipment of FIG. The equipment specifications and operating conditions at this time are as follows.

・電源出力:最大100kW
・操業電流:700〜950A
・水冷銅るつぼの内径:160mm
・水冷銅るつぼの冷却水量:100L/min
・銅るつぼの底盤:引き抜き機構付きの水冷式銅底盤
・プラズマガス:Ar1−He5の混合ガス(流量約60L/min)
・真空チャンバ:2m3
まず、TiAl系金属の原料をコールドクルーシブル溶解法により溶解して、直径120mm、長さ1000mmの丸棒状の鋳塊に製作し原料棒とし、これを原料フイーダに水平方向に装着した。また、この原料棒と同一組成のTiAl材で引き抜きスタート盤を製作し、るつぼ底部の引き抜き機構に装着した。
そして、真空チャンバをブースターポンプにて1Torrまで真空排気後、高純度アルゴンを、実施例1では200Torrまで、また実施例2では150Torrまで、実施例3では80Torrまで、実施例4では30Torrまで、それぞれ充填して不活性ガス雰囲気に置換した。
つぎに、プラズマトーチを起動してアルゴンヘリウム混合ガスによりプラズマアークをを発生させ、その中へ原料棒を回転させながら、その先端部分を原料フイーダの駆動により挿入した。この操作により、原料棒先端の表層部は溶融し、液滴となって落下し、銅るつぼ内にプールを形成した。この操作と同時に、銅るつぼ外周のコイルに通電してプールに回転方向の撹拌流れを起こし、鋳型内に均等な熱供給を行い、鋳塊の表面品質が一定となるように制御した。
そして、各実施例とも表1に示すように、溶湯プールを毎分2〜50mmの速度で下方へ引き下げる操作を実施し、φ160mm×700Lmmの長尺鋳塊を得た。
一方、上記実施例1〜4とは別に、比較のため、真空チャンバ内の圧力を900Torr、引き抜き速度を毎分70mmとした場合(比較例1)、同圧力を250Torr、引き抜き速度を毎分2mmとした場合(比較例2)、また同圧力を80Torr、引き抜き速度を毎分2mmとした場合(比較例3)についても同様の溶製をおこなった。
以上7例の各鋳塊の品質を表1に示す。これによって、本発明による溶製効果の優れている事実がよく理解できる。
・ Power output: Up to 100kW
・ Operating current: 700-950A
・ Inner diameter of water-cooled copper crucible: 160mm
・ Water cooling capacity of water-cooled copper crucible: 100 L / min
・ Copper crucible bottom plate: Water-cooled copper bottom plate with pull-out mechanism ・ Plasma gas: Ar1-He5 mixed gas (flow rate: about 60 L / min)
・ Vacuum chamber: 2m 3
First, a TiAl-based metal raw material was melted by a cold crucible melting method to produce a round bar-shaped ingot having a diameter of 120 mm and a length of 1000 mm as a raw material rod, and this was mounted on a raw material feeder in a horizontal direction. In addition, a drawing start board was manufactured from a TiAl material having the same composition as that of the raw material rod and mounted on the drawing mechanism at the bottom of the crucible.
Then, after evacuating the vacuum chamber to 1 Torr with a booster pump, high-purity argon, up to 200 Torr in Example 1, up to 150 Torr in Example 2, up to 80 Torr in Example 3, up to 30 Torr in Example 4, respectively. Filled and replaced with inert gas atmosphere.
Next, the plasma torch was activated to generate a plasma arc with an argon-helium mixed gas, and while rotating the raw material rod, the tip portion was inserted by driving the raw material feeder. By this operation, the surface layer portion at the tip of the raw material rod was melted and dropped as a droplet to form a pool in the copper crucible. Simultaneously with this operation, the coil on the outer periphery of the copper crucible was energized to cause a stirring flow in the rotational direction in the pool, and even heat was supplied into the mold to control the surface quality of the ingot to be constant.
And in each Example, as shown in Table 1, the operation which pulls down a molten metal pool at the speed of 2-50 mm / min was implemented, and the long ingot of (phi) 160mm x 700Lmm was obtained.
On the other hand, for comparison, when the pressure in the vacuum chamber is 900 Torr and the extraction speed is 70 mm / min for comparison (Comparative Example 1), the pressure is 250 Torr and the extraction speed is 2 mm / min. The same melting was performed in the case of (Comparative Example 2), and also in the case of the same pressure of 80 Torr and the drawing speed of 2 mm / min (Comparative Example 3).
Table 1 shows the quality of each of the seven ingots. Thus, the fact that the melting effect according to the present invention is excellent can be well understood.

Figure 0004704797
Figure 0004704797

プラズマアーク溶解設備の概略を示す。An outline of the plasma arc melting equipment is shown. 上記設備による鋳造時の状況を示す概略図。Schematic which shows the condition at the time of casting by the said equipment.

(1)水冷銅るつぼ (4)原料フイーダ
(2)るつぼ底盤 (5)プラズマトーチ
(3)原料棒 (6)スタート盤



(1) Water-cooled copper crucible (4) Raw material feeder (2) Crucible bottom board (5) Plasma torch (3) Raw material bar (6) Start board



Claims (5)

あらかじめ溶解調製しておいた活性高融点金属含有合金からなる原料棒を、30Torr〜200Torrのアルゴンガス雰囲気中において、プラズマアークにより溶解し、その溶湯プールを水冷銅るつぼ内に保持し、この水冷銅るつぼの外周に装備されたコイルに直流電流を通電することにより溶湯プールに回転方向の攪拌流れを生じさせつつ冷却凝固させながら、銅るつぼの可動底盤を毎分50mm以下の速度で下方へ引き抜くことを特徴とするプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法。 A raw material rod made of an active refractory metal-containing alloy prepared in advance is melted by a plasma arc in an argon gas atmosphere of 30 Torr to 200 Torr, and the molten metal pool is held in a water-cooled copper crucible. while cooling and solidifying while causing agitation flow in the rotational direction to the molten metal pool by energizing a direct current to coils that is provided on the outer periphery of the crucible, pulling down the movable bottom plate of the copper crucible per minute 50mm following speed A method for producing a long ingot of an active refractory metal-containing alloy by plasma arc melting. 活性高融点金属がTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Yまたは希土類元素である請求項1に記載のプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法。   The active refractory metal-containing alloy according to claim 1, wherein the active refractory metal is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Y, or a rare earth element. Manufacturing method of long ingot. 活性高融点金属含有合金からなる原料棒があらかじめコールドクルーシブル誘導溶解法、真空アーク溶解法、電子ビーム溶解法またはプラズマアーク溶解法により溶解調製されたものである請求項1または2に記載のプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法。   The plasma arc according to claim 1 or 2, wherein the raw material rod made of an active refractory metal-containing alloy is prepared in advance by a cold crucible induction melting method, a vacuum arc melting method, an electron beam melting method or a plasma arc melting method. A method for producing a long ingot of an active refractory metal-containing alloy by melting. 直径または一辺の長さに対する高さの比が1.5以上の長尺鋳塊を製造対象とする請求項1、2または3に記載のプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法。   The long casting of an active refractory metal-containing alloy by plasma arc melting according to claim 1, wherein a long ingot having a diameter or a ratio of a height to a side length of 1.5 or more is a production object. A method of manufacturing a lump. 原料棒をその長軸のまわりに回転させながらプラズマアークに向けて前進供給する請求項1、2、3または4に記載のプラズマアーク溶解による活性高融点金属含有合金の長尺鋳塊の製造方法。   The method for producing a long ingot of an active refractory metal-containing alloy by plasma arc melting according to claim 1, wherein the raw material rod is forwardly fed toward the plasma arc while rotating around its long axis. .
JP2005118687A 2005-04-15 2005-04-15 Method for producing long ingot of active refractory metal-containing alloy by plasma arc melting Expired - Fee Related JP4704797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118687A JP4704797B2 (en) 2005-04-15 2005-04-15 Method for producing long ingot of active refractory metal-containing alloy by plasma arc melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118687A JP4704797B2 (en) 2005-04-15 2005-04-15 Method for producing long ingot of active refractory metal-containing alloy by plasma arc melting

Publications (2)

Publication Number Publication Date
JP2006299302A JP2006299302A (en) 2006-11-02
JP4704797B2 true JP4704797B2 (en) 2011-06-22

Family

ID=37467953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118687A Expired - Fee Related JP4704797B2 (en) 2005-04-15 2005-04-15 Method for producing long ingot of active refractory metal-containing alloy by plasma arc melting

Country Status (1)

Country Link
JP (1) JP4704797B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031431A1 (en) * 2011-09-02 2013-03-07 株式会社神戸製鋼所 Continuous casting equipment for titanium or titanium alloy slab
WO2014115822A1 (en) * 2013-01-23 2014-07-31 株式会社神戸製鋼所 Method for continuously casting slab comprising titanium or titanium alloy

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110008201A1 (en) * 2009-07-07 2011-01-13 H.C. Starck Inc. Niobium based alloy that is resistant to aqueous corrosion
JP5770156B2 (en) * 2012-12-26 2015-08-26 株式会社神戸製鋼所 Continuous casting method of ingot made of titanium or titanium alloy
JP2014161887A (en) * 2013-02-26 2014-09-08 Dia Shinku Kk Melting material supply device and supply method, and melting furnace device having melting material supply device
JP6022416B2 (en) * 2013-06-27 2016-11-09 株式会社神戸製鋼所 Continuous casting equipment for ingots made of titanium or titanium alloy
JP5703414B1 (en) * 2014-09-10 2015-04-22 石福金属興業株式会社 Method for producing platinum group base alloy
FR3033508B1 (en) * 2015-03-12 2018-11-09 Safran Aircraft Engines PROCESS FOR MANUFACTURING TURBOMACHINE PIECES, BLANK AND FINAL PIECE
JP7043217B2 (en) * 2016-12-13 2022-03-29 株式会社神戸製鋼所 How to cast active metal
KR102093132B1 (en) * 2018-10-10 2020-03-25 울산과학기술원 Flow-accelerated corrosion resistant alloy steel and method of manufacturing the same
JP7406073B2 (en) * 2019-11-15 2023-12-27 日本製鉄株式会社 Manufacturing method for titanium ingots
CN115265189A (en) * 2022-03-05 2022-11-01 哈尔滨工业大学 Magnetic control arc variable temperature gradient smelting equipment and method
CN115855745B (en) * 2022-12-16 2023-06-16 贵州航天新力科技有限公司 Method for measuring melting speed of 7-series aluminum alloy material in melting process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126525A (en) * 1973-04-11 1974-12-04
JPS51147410A (en) * 1975-06-13 1976-12-17 Daido Steel Co Ltd A melting method and apparatus by non- consumable electrode melting
JPS6092432A (en) * 1983-10-24 1985-05-24 Daido Steel Co Ltd Method and device for plasma arc melting
JPS62222031A (en) * 1986-03-24 1987-09-30 Toshiba Corp Method for melting and refining rodlike metallic stock
JPH02228435A (en) * 1989-03-01 1990-09-11 Natl Res Inst For Metals Method for melting and casting mn-added tial intermetallic compound
JPH0332447A (en) * 1989-06-28 1991-02-13 Sumitomo Electric Ind Ltd Method and apparatus for melting and casting metal
JPH0421727A (en) * 1990-05-14 1992-01-24 Daido Steel Co Ltd Method and apparatus for producing titanium cast ingot
JPH0641618A (en) * 1991-02-27 1994-02-15 Sumitomo Sitix Corp Method and device for continuously producing active metal powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442531A (en) * 1987-08-07 1989-02-14 Nippon Kokan Kk Arc melting apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126525A (en) * 1973-04-11 1974-12-04
JPS51147410A (en) * 1975-06-13 1976-12-17 Daido Steel Co Ltd A melting method and apparatus by non- consumable electrode melting
JPS6092432A (en) * 1983-10-24 1985-05-24 Daido Steel Co Ltd Method and device for plasma arc melting
JPS62222031A (en) * 1986-03-24 1987-09-30 Toshiba Corp Method for melting and refining rodlike metallic stock
JPH02228435A (en) * 1989-03-01 1990-09-11 Natl Res Inst For Metals Method for melting and casting mn-added tial intermetallic compound
JPH0332447A (en) * 1989-06-28 1991-02-13 Sumitomo Electric Ind Ltd Method and apparatus for melting and casting metal
JPH0421727A (en) * 1990-05-14 1992-01-24 Daido Steel Co Ltd Method and apparatus for producing titanium cast ingot
JPH0641618A (en) * 1991-02-27 1994-02-15 Sumitomo Sitix Corp Method and device for continuously producing active metal powder

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031431A1 (en) * 2011-09-02 2013-03-07 株式会社神戸製鋼所 Continuous casting equipment for titanium or titanium alloy slab
JP2013052411A (en) * 2011-09-02 2013-03-21 Kobe Steel Ltd Continuous casting equipment for titanium or titanium alloy slab
WO2014115822A1 (en) * 2013-01-23 2014-07-31 株式会社神戸製鋼所 Method for continuously casting slab comprising titanium or titanium alloy
JP2014140864A (en) * 2013-01-23 2014-08-07 Kobe Steel Ltd Continuous casting method for slab made of titanium or titanium alloy
US9333556B2 (en) 2013-01-23 2016-05-10 Kobe Steel, Ltd. Continuous casting method for slab made of titanium or titanium alloy

Also Published As

Publication number Publication date
JP2006299302A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4704797B2 (en) Method for producing long ingot of active refractory metal-containing alloy by plasma arc melting
JP5398260B2 (en) Method for producing porous body
JP5048222B2 (en) Method for producing long ingots of active refractory metal alloys
JP4235813B2 (en) Method for producing metal porous body
JP5027682B2 (en) Method for producing refractory metal ingot
JP5703414B1 (en) Method for producing platinum group base alloy
JP5064974B2 (en) Ingot manufacturing method for TiAl-based alloy
JP4414861B2 (en) Long ingot manufacturing method for active refractory metal-containing alloys
JP2011173172A (en) Method for producing long cast block of active high melting point metal alloy
JPH06287661A (en) Production of smelted material of refractory metal
JP5261216B2 (en) Method for melting long ingots
CN115540594A (en) Continuous smelting method and device of titanium alloy ingot electromagnetic cold crucible with electromagnetic stirring device
JP5006161B2 (en) Ingot manufacturing method for TiAl-based alloy
KR100659285B1 (en) Plasma arc melting method and method of fabricating small-diameter rod of high melting point active metal using the same
JP4651335B2 (en) Method for producing titanium ingot
JP5444109B2 (en) Method for melting long ingots
US20080178705A1 (en) Group IVB Metal Processing with Electric Induction Energy
JPH0531568A (en) Plasma melting/casting method
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
JP2008142745A (en) Continuous casting method for molten metal
US5114467A (en) Method for manufacturing magnetostrictive materials
JP7406073B2 (en) Manufacturing method for titanium ingots
JP2003221630A (en) Method for manufacturing titanium ingot
JP5250480B2 (en) Ingot manufacturing method and cold crucible induction melting apparatus
Wang et al. Macro-/micro-structures and mechanical properties of magnesium alloys based on additive manufacturing: a review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

R150 Certificate of patent or registration of utility model

Ref document number: 4704797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees